
Atomic Power in Forks: A Super-Logarithmic Lower Bound for

Implementing Butterfly Networks in the Nonatomic Binary Fork-Join

Model ∗

Michael T. Goodrich† Riko Jacob‡ Nodari Sitchinava§

Abstract

We prove an Ω(logn log log n) lower bound for the span of

implementing the n input, logn-depth FFT circuit (also

known as butterfly network) in the nonatomic binary fork-

join model. In this model, memory-access synchronizations

occur only through fork operations, which spawn two child

threads, and join operations, which resume a parent thread

when its child threads terminate. Our bound is asymp-

totically tight for the nonatomic binary fork-join model,

which has been of interest of late, due to its conceptual ele-

gance and ability to capture asynchrony. Our bound implies

super-logarithmic lower bound in the nonatomic binary fork-

join model for implementing the butterfly merging networks

used, e.g., in Batcher’s bitonic and odd-even mergesort net-

works. This lower bound also implies an asymptotic sepa-

ration result for the atomic and nonatomic versions of the

fork-join model, since, as we point out, FFT circuits can be

implemented in the atomic binary fork-join model with span

equal to their circuit depth.

1 Introduction

The parallel random access machine (PRAM) [33, 34] is
a computational model where p synchronous processors
share a common memory of potentially unbounded size.
It has been studied for decades, with many interesting
results, but it has also been criticized because its
synchronization requirement that processors “march in
lockstep” is unrealistic for modern parallel computer
systems, where processors are asynchronous, due to
such factors as different CPU speeds, caching effects,
branch predictions, interrupts, and interactions between
multiple concurrent jobs, e.g., see [9].

In contrast, the fork-join model of parallel compu-

∗This material is based upon work initiated during discussions
at the AlgoPARC Workshop on Parallel Algorithms and Data

Structures at the University of Hawaii at Manoa, in part sup-

ported by the National Science Foundation under grants CCF-
1930579, CCF-1533823, and CCF-1911245.
†University of California, Irvine, USA, goodrich@uci.edu.
‡IT University of Copenhagen, Denmark, rikj@itu.dk.
§University of Hawaii at Manoa, USA, nodari@hawaii.edu.

tation (also known as the multi-threaded RAM [21,
23]) offers an alternative, as it captures asynchrony
in a conceptually simple way, and it has gained fur-
ther acceptance from being embodied in several paral-
lel programming environments, e.g., see [2, 12, 22, 28,
35, 36, 37]. In the fork-join model, a dynamic set of
threads shares a common memory of potentially un-
bounded size, with each thread comprising a sequential
computation that can perform standard RAM instruc-
tions expressed in a program stored in memory. Each
thread may also issue a fork instruction, which spawns
k child threads (for a parameter k ≥ 2) that immedi-
ately begin executing in parallel, and which, in turn,
may spawn own child threads by issuing their own fork

instructions. For every fork instruction, there is a cor-
responding join instruction, which acts as a barrier syn-
chronization for all threads spawned by the associated
fork instruction.1 The performance of an algorithm in
the fork-join model is measured by its work and span .
We will define these terms formally in Section 2, but,
informally, work is equal to the total number of instruc-
tions and span is the length of a sequence of instructions
that are always executed in serial, and is hence a lower
bound on the parallel execution time, even if there are
infinitely many processors.

One important detail, which is too often reduced
to footnotes, is how threads are allowed to access the
shared memory. In one version of the fork-join model,
which we refer to as the atomic fork-join model,
threads are allowed to read or write memory cells arbi-
trarily in the shared memory, with the assumption that
the model supports some type of atomic memory-access
primitive, which manages potential concurrent accesses
to the same memory cell. For example, a test-and-set

(TS) operation atomically tests whether a memory cell
is 0 and, if so, sets it to 1 and returns true; otherwise, it
returns false [1]. A compare-and-set (CAS) operation,
which is also known as compare-and-swap, atomically

1The recent work by Blelloch et al. [9] demonstrates that
some algorithms don’t need the join operations and their forking
model doesn’t even implement this instruction.

Copyright c© 2021
Copyright for this paper is retained by authors

mailto:goodrich@uci.edu
mailto:rikj@itu.dk
mailto:nodari@hawaii.edu

tests a memory location against a value, x, and up-
dates this value to another value, y, if it was equal to x,
e.g., see [32], Blelloch et al. [9] demonstrate that these
atomic operations provide the threads with an ability
to detect (and if needed impose) a specific order during
concurrent write accesses.

In another version of the fork-join model, which
we call the nonatomic fork-join model, there are no
atomic memory access primitives, e.g., see [38, 21]. A
thread in the nonatomic fork-join model may only write
to memory cells that will not be read or written by a
non-descendent thread, under any scheduling [3, 10, 13,
14, 11] of the threads.

Another consideration for the fork-join model is
its fanout. In the binary fork-join model, a fork
operation always creates exactly two child threads, i.e.,
k = 2, which better captures real-world constraints,
e.g., see [9, 38, 37]. Indeed, it is easy to see that
if k can be as large as the number of processors, p,
then we can simulate a p-processor CREW PRAM2

algorithm that runs in time T and work W in the
nonatomic fork-join model with span O(T) and work
O(W). Namely, for every step i, fork p child threads
and have each thread perform step i for one processor
and halt. Thus, if we allow arbitrary fanout, we
might as well be working in the CREW PRAM model.
Furthermore, if we also allow atomic operations, then
by the same simulation approach, we can simulate any
CRCW PRAM algorithm that runs in time T and work
W in the atomic fork-join model with span O(T) and
work O(W) [9]. Therefore, we focus on the binary fork-
join model in this paper.

Much in the same way that CRCW PRAM
model [6, 29, 30] imposes stronger hardware require-
ments on a parallel system than EREW PRAM
model [18, 31], the atomic fork-join model imposes
stronger requirements on the memory hardware and
scheduling mechanisms than the nonatomic fork-join
model does, e.g., see [10]. And a natural question is
whether there is any substantive difference between the
atomic and nonatomic versions of the binary fork-join
model in terms of the performance and efficiency of the
algorithms designed in these variants. The atomic bi-
nary fork-join model certainly seems more powerful, but
are there any (natural) problems for which the atomic
binary fork-join model has provably more efficient so-
lutions than what is possible for the nonatomic binary
fork-join model?

2The three variants of the PRAM model – Exclusive Read
Exclusive Write (EREW), Concurrent Read Exclusive Write
(CREW) and Concurrent Read Concurrent Write (CRCW) –

differentiate if and what type of concurrent accesses are allowed
in the algorithms designed in the respective model.

1.1 Prior Related Work. Duda and
Czachórski [25] study several versions of fork-join
synchronization primitives, including their visualiza-
tion using computation DAGs. Mellor-Crummey [38]
studies detecting data races in programs with nested
fork-join parallelism, and also introduces the com-
putation DAG concept for visualizing computations
in the fork-join model. Bender et al. [7] also study
data race detection for programs in the fork-join
model, designing an on-the-fly method for maintaining
dynamic computation DAGs.

Cole and Ramachandran explore the problem of
false sharing [16, 17] in the fork-join model, where the
local copy of a variable can become stale because of
updates done by another thread, and they also pro-
vide a number of algorithms in the nonatomic fork-
join model to deal with the problem. In particular,
they present a sorting algorithm with O(log n log log n)
span [19] and observe that the O(n log n)-work algo-
rithm of Frigo et al. [27] exhibits O(log n log log n) span
when implemented in the nonatomic binary fork-join
model [16]. Blelloch et al. [10] study properties related
to the nonatomic fork-join model, showing that if a mul-
tithreaded parallel computation in the fork-join model
is race free, write-after-read conflict free, and has work
W and span S, a scheduler can guarantee a time bound
of roughly O(W/p+S) parallel time using p processors,
even in the presence of faults.

Blelloch et al. [8] give several algorithms in the
atomic fork-join model based on the CAS primitive,
Dhulipala et al. [23] present a number of parallel graph
algorithms in the atomic fork-join model, using the TS
atomic primitive, and Blelloch et al. [9] give additional
combinatorial algorithms in the atomic binary fork-
join model, also using the TS primitive, including a
randomized sorting algorithm with span O(log n) w.h.p.
The elegance and efficiency of these algorithms for the
atomic fork-join model therefore motivates the question
we asked earlier, namely, whether there is a substantive
difference between the atomic and nonatomic versions
of the binary fork-join model in terms of performance
and efficiency.

1.2 Our Results. The main result of this paper is
a separation result that shows that the atomic version
of the binary fork-join model is indeed more power-
ful than the nonatomic version in terms of its perfor-
mance and efficiency for a well-known, natural com-
putational problem. In particular, we show that any
nonatomic binary fork-join implementation of an algo-
rithm whose dependency graph contains a depth-k FFT
graph, also known as a butterfly network and defined
precisely in Section 2.3, requires a span of Ω(k log k).

Copyright c© 2021
Copyright for this paper is retained by authors

This result immediately implies Ω(log n log log n) lower
bound for the span of the Cooley-Tukey algorithm for
computing Fast Fourier Transforms (FFT) [20] and the
merging step in the Batcher’s odd-even mergesort and
bitonic mergesort [5]. Our lower bound implies that
the O(log n log log n) span for computing FFT in the
nonatomic binary fork-join model, as observed by Cole
and Ramachandran [16], is asymptotically optimal.

To demonstrate the separation between the atomic
and nonatomic binary fork-join models, we also show
that the computation of FFT in the atomic binary fork-
join model requires only O(log n) span.

2 Preliminaries

Throughout the paper all our logarithms are binary,
i.e., log x = log2 x, and we use the convention 0 log 0 =
limx→0+ x log x = 0. We use the following standard
graph-theoretic definitions: (a) in a directed acyclic
graph (DAG), a source is a vertex with in-degree 0 and
a sink is a vertex with out-degree 0; (b) G[S] denotes a
subgraph ofG = (V,E) induced by the subset of vertices
S ⊆ V .

2.1 Computation and circuit graphs. To prove
the lower bound for computing FFT in the nonatomic
binary-fork-join model, we will view the FFT computa-
tion as a circuit graph.

A circuit graph is a directed acyclic graph H =
(V,E), where the source vertices V (0) ⊆ V represent
the input values for the computation and the remaining
vertices V \ V (0) represent operations of the computa-
tion. An edge (u, v) ∈ E indicates that the operation
represented by v takes the output of u as input. The
output of the whole computation is produced by the
sink vertices.

To analyze the complexity of a parallel computation
in a specific model M, it is often convenient to view
its implementation in that model via its computation
DAG (cDAG). A cDAG in some model M is a
directed acyclic graph GM = (V,E), where for each
operation there is a dedicated vertex v ∈ V that
represents this operation, and there is an edge (u, v) ∈ E
iff the operation represented by u is programmed to be
executed directly before the operation represented by
v. The precedence in the execution order can be, for
example, because the two operations are programmed
to be executed on a single (sequential) computing
unit or due to a communication or synchronization
requirement.

For simplicity, we will assume that every computa-
tion is defined via only elementary operations that take
O(1) time to execute, i.e., all complex operations are

broken down into a sequence of elementary operations.3

Then the complexity of a computation described by GM
is defined by two metrics:

• work is the number of vertices in GM, and

• span is the length of the longest path in GM.

Clearly, every cDAG GM must satisfy the con-
straints of model M in which the computation is being
implemented. For example, the cDAG of an implemen-
tation in any sequential model must be a linked list,
while every connected subgraph of the cDAG of an im-
plementation in a p-processor PRAM model must have
a vertex separator of size at most p. In Section 2.2 we
will describe the properties of cDAGs for computations
in the nonatomic fork-join model.

Given a computation described by a circuit graph
H, we can analyze its implementation in some compu-
tational modelM by first defining a valid embedding of
H into a cDAG GM and then analyzing the work and
span of GM.

Definition 2.1. For a circuit graph H = (V,E) and
cDAG GM = (V ′, E′), an embedding σ : V → V ′ is
called valid if:

1. Every input (source) vertex u ∈ V (0) of H is
mapped to the global source s of GM, i.e., σ(u) = s.

2. No two non-input vertices of H are mapped to the
same vertex of GM.

3. For every pair of vertices u, v ∈ V : if there is a
path from u to v in H, then there is a path from
σ(u) to σ(v) in GM.

In what follows, we can always add the global
source s to GM and map all source vertices V (0) to it.
Therefore, we will not explicitly mention this mapping.
Finally, we will omit the subscript M, if the model of
GM is clear from the context.

2.2 Fork-join graphs. We will refer to the cDAGs
that satisfy the constraints of the nonatomic binary
fork-join model as binary fork-join (BFJ) graphs:4

Definition 2.2. A binary fork-join (BFJ) graph
is a DAG Gs,t = (V,E) with dedicated source and sink
vertices s, t ∈ V , iff

3Alternatively, the definition can be extended to weighted
graphs, but it unnecessarily complicates the exposition.

4This definition can be easily generalized to the arbitrary-
fanout fork-join model, but to keep the discussion focused, we
only present the binary version here.

Copyright c© 2021
Copyright for this paper is retained by authors

• s = t = v and Gs,t = Gv,v = ({v}, ∅), i.e., a single
vertex v = s = t is a BFJ graph;

• Gs,t = (V1 ∪ V2, E1 ∪ E2 ∪ {(t1, s2)}) is a series
composition of two BFJ graphs G′s,t1 = (V1, E1)
and G′′s2,t = (V2, E2);

• Gs,t = (V1 ∪ V2 ∪ {s, t}, E1 ∪ E2 ∪
{(s, s1), (s, s2), (t1, t), (t2, t)}) is a parallel
composition of two BFJ graphs G′s1,t2 = (V1, E1)
and G′′s2,t2 = (V2, E2).

The two additional vertices s and t in the parallel
composition correspond to the fork and join opera-
tions, respectively, and are the only ones in the BFJ
graph with out- and in-degree of more than 1.

To reduce the clutter we will use G instead of Gs,t
when describing BFJ graphs, if the omission of the
subscripts does not affect the clarity of exposition.

Each BFJ graph G admits a natural recursive
decomposition, which can be represented as a rooted
binary tree TG. The root node of TG represents the
whole BFJ graph G. Every internal node u of TG is
either an S-node, or a P -node. An S-node u represents
a subgraph Gu of G, which is a series composition
of the subgraphs represented by the children of u.
The left-to-right order of the children of u defines the
order, in which the series composition is applied. A
P -node u represents a subgraph Gu of G, which is a
parallel composition of the subgraphs represented by the
children of u. Finally, at the base case, the leaves of TG
represent individual vertices of G. Such decomposition
tree allows for a recursive computation of the span
of any BFJ graph G, which follows directly from the
definition of BFJ graphs:

Lemma 2.1. The span of any BFJ subgraph Gu repre-
sented by a node u of the decomposition tree TG is:

• 1, if u is a leaf;

• the sum of the spans of the subgraphs of the two
children of u, if u is an S-node; and

• 2 plus the maximum of the spans of the subgraphs
of the two children of u, if u is a P-node.

The BFJ graphs are a special case of the series-
parallel graphs [26] and the above decomposition tree
is related to the sp-tree [15], which has been used to
study the property of series-parallel graphs.5 However,
the generality of series-parallel graphs and sp-trees un-
necessarily complicates the computation of the span for
cDAGs and, consequently, our exposition in Section 4.

5sp-trees are a special case of SPQR trees [24], which have been
used to study the properties of biconnected graphs.

The following definition of convexity for a subset
of vertices of a DAG is central to our lower bound proof.

Definition 2.3. (Convex vertex subset) In a
DAG G = (V,E), a subset of vertices S ⊆ V is convex
if for every pair of vertices u, v ∈ S, every vertex w on
a directed path from u to v in G is also in S.6

Lemma 2.2. Let σ be an arbitrary valid embedding of a
DAG H = (V ′, E′) into a BFJ graph G = (V,E), TG
be the decomposition tree of G, and for every node x of
TG, let Gx = (Vx, Ex) be the subgraph of G represented
by x and Sx := {v ∈ V ′ : σ(v) ∈ Vx}, i.e., Sx be the
subset of vertices of H embedded into Gx. Then Vx is
convex in G and Sx is convex in H.

Proof. Convexity of Vx follows from a straightforward
induction on the height of x in TG. To prove the
convexity of Sx, for the sake of contradiction, let w ∈
V ′ \ Sx be a vertex on some path pu v from u ∈ Sx to
v ∈ Sx. Because σ is a valid embedding, by Property 3
of Definition 2.1, there must be paths pσ(u) σ(w) and
pσ(w) σ(v) in G. Since Vx is convex, by the definition
of convexity σ(w) ∈ Vx, i.e., w is embedded into Gx.
Consequently, by the definition of Sx, w must be in Sx,
which contradicts the assumption that w ∈ V ′ \ Sx.

2.3 FFT Graphs. In Section 4 we show a lower
bound on the span of the BFJ graph G if the circuit
graph H that it embeds contains an FFT graph . FFT
graphs are defined in various ways, therefore, before we
proceed let us present a concrete definition of the FFT
graph, so we can refer to various terms throughout our
exposition (see Figure 1 for an illustration).

Definition 2.4. An FFT graph of order k, for a
non-negative integer k, is a directed acyclic graph F k =
(V,E) defined recursively as follows.

• k = 0: F 0 is a single vertex, i.e., V = {u} and
E = {}.

• k ≥ 0: Let F k−1A = (VA, EA) and F k−1B =
(VB , EB) be two FFT graphs of order k − 1, each
with m sources and m sinks {u0, . . . , um−1} ⊆
VA and {um, . . . , u2m−1} ⊆ VB, respectively. Let
VC = {v0, . . . , v2m−1} be a set of 2m additional
vertices. Then V = VA ∪ VB ∪ VC and E =
(EA∪EB)

⋃
0≤i≤m−1

(ui, vi)∪(um+i, vi)∪(ui, vm+i)∪

(um+i, vm+i).

6Our definition of convexity differs from the definition in the
metric graph theory (defined on undirected graphs), where convex

subgraph contains the vertices of only the shortest paths between
every pair of vertices [4].

Copyright c© 2021
Copyright for this paper is retained by authors

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4

A

B

C

Figure 1: An example of F 4 as a composition of a pair
of F 3 (A and B), followed by 24 additional vertices (C)
that become the sinks of F 4. The vertices on level 0
are of different shape to indicate that they perform no
computation.

Observe that the subgraph induced by every
quadruplet of vertices ui, um+i, vi, and vm+i in the
above definition is an FFT graph of order 1. We call
the pair of non-source vertices vi and vm+i in the above
definition the companion vertices.

Clearly, FFT graph is a circuit graph. FFT graphs
appear as subgraphs of circuit implementations of var-
ious algorithms. The companion vertices in these im-
plementations typically compute complimentary opera-
tions. For example:

• In the radix-2 Cooley-Tukey algorithm for comput-
ing the Fast Fourier Transform [20] (this is how
FFT graph gets its name) the companion vertices
implement either an addition or a subtraction of
the two input values, one of which is scaled by the
complex root of unity (the so-called “twiddle” fac-
tor).

• In the merge step of Batcher’s bitonic mergesort
and odd-even mergesort networks [5] the compan-
ion vertices compute the minimum and the max-
imum of the two input values. Typically, de-
scriptions of these networks combine every pair of
companion vertices into a single compare-and-
exchange gate.

Observe that requiring that the companion vertices

are executed together as a single gate is (slightly) more
restrictive. However, our lower bound in Section 4
assumes no such restrictions, as long as the execution
satisfies the dependencies defined by the edges of the
FFT graph. Therefore, it immediately implies the
Ω(log n log log n) lower bound for the implementations
of the above algorithms in the nonatomic binary fork-
join model. At the same time, in Section 3 we will show
a matching upper bound for implementing these more
restrictive algorithms in the nonatomic binary fork-join
model.

2.3.1 Visualizing FFT graphs. It is easy to show
by induction that F k consists of 2k ·2k edges and (k+1)·
2k vertices, of which 2k are sources and 2k are sinks, and
that every non-source vertex has two incoming edges
and every non-sink vertex has two outgoing edges.

It is often convenient to visualize F k as in Figure 1,
namely, being embedded on a 2k × (k + 1) grid in
the plane, placing the 2k sinks in the k-th column, on
rows 0, . . . , 2k − 1, and the two FFT graphs of order
k − 1 embedded recursively in columns 0, . . . , k−1: one
on rows 0, . . . , 2k−1 − 1 and the other one on rows
2k−1, . . . , 2k − 1. Let ij denote an integer, such that
|i − ij | = 2j , i.e., the binary representations of i and
ij differ precisely in the j-th least significant bit. Then
we can define a canonical label vi,j for each vertex in
the i-th row and j-th column of the grid, and for each
0 ≤ i < 2k and 0 ≤ j < k, there is a pair of directed
edges (vi,j , vi,j+1) and (vij ,j , vi,j+1).

Such visualization makes it obvious how to imple-
ment any algorithm, whose circuit graph is an FFT
graph F k, in the EREW PRAM model using m = 2k

processors in O(k) parallel time in-place: given an in-
put stored in an array A[0..(m − 1)], in the j-th step,
0 ≤ j < k, the processor pi reads A[i] and A[ij] as the
operands to the operation defined by the vertex vi,j+1

and writes the result back to A[i]. Therefore, we say j
is the level of vi,j and denote all vertices of F k on level
j by V (j).

3 Upper Bounds

We start with some simple upper bounds.
It has been noted before that the algorithm of Frigo

et al. [27] computes FFT on n values in the nonatomic
binary fork-join model in span O(log n log log n). The
following is a slightly simplified description of their
algorithm and highlights the structure of the FFT graph
that guided us in our discovery of the lower bound
presented in Section 4.

Given an FFT graph F k, consider the first
b(k + 1)/2c levels of F k. These levels define 2dk/2e

independent instances of F bk/2c, each of which can

Copyright c© 2021
Copyright for this paper is retained by authors

be solved recursively in parallel. Similarly, the last
k − b(k + 1)/2c = dk/2e levels of F k, plus the out-
puts of the preceding level, define 2bk/2c independent
instances of F dk/2e, each of which can also be solved
recursively in parallel. Using a complete binary tree of
forks and joins it takes O(k) span to spawn and termi-
nate so many parallel recursive calls in the nonatomic
binary fork-join model. Thus, if we let n = 2k, the
span of such an implementation is defined by the re-
currence T (n) = 2T (

√
n) + O(log n), which solves to

O(log n log log n) = O(k log k).
As mentioned earlier, in some applications the com-

panion vertices of the FFT graph need to be imple-
mented together as a single operation (or at least im-
mediately after each other). We call such variation of
the FFT graph a comparator-FFT graph:

Definition 3.1. The comparator-FFT graph of
order k is an FFT graph F k, where each pair of the
non-source companion vertices are united into a single
two-input and two-output comparator gate. The two
operations of each comparator gate are always executed
serially (resulting in span 2).

Observe that in the above recursive decomposition
of F k, every pair of companion vertices is assigned to
the same instance of F bk/2c or F dk/2e. Thus, if we stop
the recursion when the base case consists of F 1, the
above algorithm can be applied to the comparator-FFT
graphs too, leading us to the following result.

Theorem 3.1. For k ≥ 1, the comparator-FFT graph
of order k can be implemented with span O(k log k) in
the nonatomic binary fork-join model.

In contrast, in the atomic binary fork-join model we
can achieve a better span:

Theorem 3.2. For k ≥ 1, the comparator-FFT graph
of order k can be implemented with span O(k) in the
atomic binary fork-join model.

Proof. For each comparator gate g, create two memory
cells x1,g and x2,g, as well as a control variable cg
initialized to 0. The cells x1,g and x2,g will be used
to store the two input values for gate g as they become
available.

The computation starts by spawning 2k threads, as
a complete binary tree of fork operations in span k.
Each thread starts by reading a distinct input value,
represented by the sources of the comparator-FFT
graph and proceeds by following the edges of the
comparator-FFT graph to the next gate. When a thread
reaches g, it writes the value it holds to either x1,g or
x2,g, depending on whether it holds the first (z = 1) or

the second (z = 2) input value for g. Then using an
atomic operation (either CAS or TS) the thread checks
if cg = 0 and sets it to 1. If this assignment succeeds,
it indicates that the thread was the first of the two to
reach g and the thread is done. If the assignment fails
(because cg 6= 0), it indicates that the thread is second
to reach g. Therefore, it reads the other input value
from the appropriate xz,g, executes the operation of g
and forks two child threads, providing them with the
output values of g (one for each thread). The newly
spawned threads will proceed along the two out-edges
of g. At the last level, all threads are terminated by
issuing join operations in a binary tree fashion. This
requires span O(log(k2k)) = O(k), since we issued a bi-
nary fork for each gate in the comparator-FFT graph.

Since the comparator-FFT graphs are more restric-
tive than FFT graphs, the above results imply that we
can also implement any n-inputs, O(log n)-depth FFT
graph in the atomic binary fork-join model with span
O(log n) and in the nonatomic binary fork-join model
with span O(log n log log n).

4 Lower Bound

The main contribution of this paper is a matching
lower bound for the nonatomic binary fork-join model.
However, before we proceed, we need to define some
terms and prove several simple, but important technical
lemmas.

4.1 Technical Lemmas.

Definition 4.1. (Cut) Given a DAG G = (V,E) and
a subset S ⊆ V , a cut-edge of G[S] is a directed
edge (u, v) ∈ E, such that u /∈ S and v ∈ S. The
set CG[S] of cut-edges is called the cut and its cardinality
|CG[S]| is called the cut size.

Observe that the cut size of the set of all computing
(non-source) vertices of an FFT graph F k of order k is
|CFk[V \V (0)]| = 2 · 2k.

Lemma 4.1. (Monotonicity of cut sizes) Let
F k = (V,E) be an FFT graph of order k. For any
pair of convex vertex subsets S ⊆ Q ⊆ V \ V (0):
|CFk[S]| ≤ |CFk[Q]|.

Proof. For every edge e = (vi,j , vi′,j+1) ∈ F k[Q] we
define a predecessor edge

eπ =

{
(vi,j−1, vi,j) if i′ = i
(vij−1,j−1, vi,j) if i′ = ij

For each cut-edge e ∈ CFk[S], let µ(e) ∈ CFk[Q]

be the first cut-edge of F k[Q] reached by following the

Copyright c© 2021
Copyright for this paper is retained by authors

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4

A

B

C

Figure 2: An illustration for the proof of Lemma 4.2.
The vertices of SA, SB , and SC are red, green and blue,
respectively. The colored solid edges are the cut edges of
CA and CB , and colored dashed edges are the cut edges
CAC and CBC .

predecessor edges starting from e. µ(e) exists because
S ⊆ Q and Q contains no source vertices. The set of
edges visited during such a traversal defines a directed
path p from µ(e) to e in F k. Since S is convex, e is the
only cut-edge of F k[S] in p. Moreover, our definition of
the predecessor ensures that no two edges in F k[Q] share
a predecessor. Therefore, all such paths from CFk[Q] to
CFk[S] are edge disjoint, i.e, µ(e) is unique to each e ∈ S.
Hence, the mapping µ : CFk[S] → CFk[Q] is injective and
we can conclude that |CFk[S]| ≤ |CFk[Q]|.

Lemma 4.2. (Density Lemma) Given an FFT graph
F k = (V,E), for every convex vertex subset S ⊆ V \V (0)

of size |S| = n and cut size |CFk[S]| = m, we have
n ≤ f (m) = (m/2) logm.

Proof. Let F kmin be the smallest FFT graph that is a
supergraph of F k[S]. By the recursive definition of
the FFT graph, the supergraph F kmin decomposes into
two FFT graphs, F kmin−1

A = (VA, EA) and F kmin−1
B =

(VB , EB), 2kmin sink vertices VC , and 2 · 2kmin edges
EC connecting vertices of VA and VB to vertices of VC
(see Figure 2 for an illustration). Let SA = S ∩ VA,
SB = S ∩ VB , SC = S ∩ VC , and for the simplicity of
exposition define nA = |SA|, nB = |SB |, nC = |SC |,
mA = |CFk−1[SA]|, and mB = |CFk−1[SB]|. Observe that

there are no edges between VA and VB in F k, and the

three subsets SA, SB , and SC define a partition of S,
i.e., |S| = n = nA + nB + nC .

The proof is by induction on kmin. Assume induc-
tively that the lemma holds for every positive k′ < kmin,
i.e., nA ≤ f (mA) and nB ≤ f (mB).

Since every cut-edge of CFk[S] ends at a vertex
of either SA, SB or SC , it defines a natural partition
of CFk[S] into subsets CA, CB , and CC . Every cut-
edge of CC starts at a vertex from either VA or VB .
Thus, we can further partition CC into CAC and CBC .
Let m′A = |CA| + |CAC | and m′B = |CB | + |CBC |. Then
m = |CFk[S]| = |CA|+ |CB |+

(∣∣CAC ∣∣+
∣∣CBC ∣∣) = m′A+m′B .

W.l.o.g. assume m′A ≤ m′B , i.e., 0 ≤ m′A ≤ m/2.

Claim 4.1. nC = |SC | ≤ min{|CA| +
|CAC |, |CB |+ |CBC |} = min{m′A,m′B} = m′A

Proof. Let S′A ⊆ SA and V ′A ⊆ VA \SA be two
subsets of vertices of VA that are neighbors of
SC . Since every vertex of SC has a unique
neighbor from VA, nC = |SC | = |S′A| + |V ′A|.
Clearly, the edges from V ′A to SC are cut-edges
of F kmin [S], i.e., |V ′A| = |CAC |. Thus, all that
remains to show is that |S′A| ≤ |CA|.

Since all vertices of S′A are on the same
(last) level of F kmin−1, clearly, |S′A| ≤
|CFkmin−1[S′A]|. Observe that both S′A and SA
are convex vertex subsets and since S′A ⊆
SA ⊆ S ⊆ V \ V (0), by Lemma 4.1
|CFkmin−1[S′A]| ≤ |CFkmin−1[SA]|. Finally, ob-
serve that CFkmin−1[SA] = CFk[SA] = CA be-
cause there are no edges between VA and VB
in F kmin .

Thus, using the inductive hypothesis, we can bound
n = nA + nB + nC ≤ f (mA) + f (mB) + m′A. The
absence of edges between VA and VB in F kmin implies
that mA ≤ m′A and mB ≤ m′B , and since the function
f (x) is convex, we get:

n ≤ f (m′A)+f (m′B)+m′A = f (m′A)+f (m−m′A)+m′A

The right hand side is a convex function with
respect to m′A in the range m′A ∈ [0,m/2]. Therefore,
it is maximized at either boundary of this range. The
case m′A = 0 is the statement of the lemma, and the
case m′A = m/2 results in the inequality:

n ≤ f (m/2) + f (m/2) +m/2 =
m

2
log

m

2
+
m

2

=
m

2
logm = f (m)

Finally, in the base case (kmin = 0), F 0 consists
of a single vertex. Since S ⊆ V \ V (0), i.e., contains
no vertices of level 0, S must be empty (n = 0 and
m = 0) and the base case follows from the convention
0 log 0 = 0.

Copyright c© 2021
Copyright for this paper is retained by authors

4.2 FFT Lower Bound. We are ready to prove the
lower bound on the span of the BFJ graph G for any
embedding of an FFT graph F k into G. We proceed
by first defining the binary fork-join lower-bound
property and showing that any function φ satisfying
this property bounds the span of G from below. Then
we present a concrete φ and show that when applied to
F k, the value of this φ is bounded by Ω(k log k).

Definition 4.2. A function φ : N+ × N+ → N+, has
the binary fork-join lower-bound property if it
fulfills the following three conditions:

Base Case: φ(2, 1) ≤ 1.

Parallel Decomposition: For every 2 ≤ m ≤ 2n and
any 1 < x < m − 1, 1 ≤ y ≤ n − 1 such that
1 < x ≤ 2y, we have max{φ(x, y), φ(m − x, n −
y)} ≥ φ(m,n)− 1.

Serial Decomposition: For every m and n, such that
2 ≤ m ≤ 2n ≤ m logm, and every x, y, and x̃,
such that 1 ≤ y ≤ n − 1, 2 ≤ x ≤ min{2y,m},
max{2,m − x} ≤ x̃ ≤ min{2(m − y),m}, we have
φ(x, y) + φ(x̃, n− y) ≥ φ(m,n).

Lemma 4.3. Let F k = (V,E) be an FFT graph of
order k ≥ 1, let G be a BFJ graph into which F k is
embedded, and let φ be a function with the binary fork-
join lower bound property. Then, the span of G is at
least φ(2 · 2k, k · 2k).

Proof. Let TG be the decomposition tree of G and for
every node u of TG, let Gu be the subgraph of G that
is represented by u, Vu ⊆ V \ V (0) be the set of vertices
of F k being embedded into Gu, let nu = |Vu|, and
mu = |CFk[Vu]|. We will show that for every node
u of TG, such that Gu embeds at least one vertex of
V \ V (0), the span span(Gu) ≥ φ(mu, nu). This will
imply that span(G) = span(Groot) ≥ φ(mroot, nroot) =
φ(2 · 2k, k · 2k), because the root represents the whole
graph G, which embeds the set Vroot = V \ V (0) of
F k, which is of size nroot = k · 2k, and has cut size
mroot = 2 · 2k.

First, let us derive the bounds on nu and mu. Since
every Gu embeds at least one non-source vertex of F k,
there are at least 2 cut edges in F k[Vu], i.e., mu ≥ 2.
On the other hand, every vertex of F k has 2 incoming
edges, therefore, mu ≤ 2nu. Finally, by Lemma 2.2, Vu
is convex subset of V , so we can apply Lemma 4.2 to Vu
to obtain the final inequality:

2 ≤ mu ≤ 2nu ≤ mu logmu(4.1)

The rest of the proof is by induction on the height of
u. At the base case, u is a leaf and Gu embeds a single

vertex (nu = 1) of F k. Since Gu is non-empty, its span
is span(Gu) ≥ 1, and since the cut size of any single
vertex in V \ V (0) is mu = 2 and φ has the binary fork-
join lower-bound property, 1 ≥ φ(2, 1) = φ(mu, nu).

Now consider an arbitrary internal node u with two
children v and w. Assume inductively that span(Gv) ≥
φ(mv, nv) and span(Gw) ≥ φ(mw, nw). First, observe
that if either |Vv| = 0 or |Vw| = 0, then span(Gu) ≥
φ(mu, nu). In particular, without loss of generality
assume |Vv| = 0, i.e., Gv embeds no vertices of V \V (0).
Then nu = nw and mu = mw. By Lemma 2.1,
span(Gu) ≥ max{span(Gv), span(Gw)}. Therefore,
span(Gu) ≥ span(Gw) ≥ φ(mw, nw) = φ(mu, nu),
where the last inequality is the inductive hypothesis.

Thus, for the rest of the proof we can assume that
both Vv and Vw are non-empty. Moreover, they form a
partition of Vu, i.e., nu = nv + nw and 1 ≤ nv ≤ nu − 1
and, consequently, CFk[Vu] ⊆ CFk[Vv] ∪ CFk[Vw], i.e.,
mu ≤ mv +mw.

There are two cases to consider:

1. Node u is a parallel composition. By
Lemma 2.1 and the inductive hypothesis:
span(Gu) = 2 + max{span(Gv), span(Gw)} ≥
2 + max{φ(mv, nv), φ(mw, nw)}. Since Gu is a
parallel composition of Gv and Gw, all operations
of Gv and Gw can be computed independent of
each other, i.e., there are no edge between Gv and
Gw and, consequently, each cut edge of F k[Vv] or
F k[Vw] is also a cut edge of F k[Vu]. Therefore,
mu = mv + mw and, using inequalities (4.1), we
get 2 ≤ mv ≤ mu − 2. Thus, we can use that φ
has the binary fork-join lower-bound property to
obtain a lower bound on the span of Gu:

span(Gu) ≥ 2 + max

{
φ(mv, nv),
φ(mu −mv, nu − nv)

}
≥ 1 + φ(mu, nu) ≥ φ(mu, nu)

2. Node u is a serial composition. By Lemma 2.1
and the inductive hypothesis: span(Gu) =
span(Gv)+span(Gw) ≥ φ(mv, nv)+φ(mw, nw). By
Lemma 2.2, Vv and Vw are convex in F k, and since
Vv ⊆ Vu and Vw ⊆ Vu, by Lemma 4.1, mv ≤ mu

and mw ≤ mu. And we have already established
that mv +mw ≥ mu. Thus, we can use that φ has
the binary fork-join lower-bound property to lower
bound the span of u:

Su ≥ φ(mv, nv) + φ(mw, nu − nv) ≥ φ(mu, nu)

Theorem 4.1. Every implementation of an algorithm
whose circuit graph contains an FFT graph with m input

Copyright c© 2021
Copyright for this paper is retained by authors

vertices requires a span of at least Ω((1 + log logm) ·
logm) in the nonatomic binary fork-join model.

Proof. An FFT graph with m input vertices is of order
k = logm. Consider the following function:

φ(m,n) = 2 + logm+ τ(m,n),

where τ(m,n) = 2n
m log 2n

m . In the rest of this paper
we will show that φ(m,n) exhibits the binary fork-join
lower-bound property. Then by Lemma 4.3, the span of
G is at least

φ (2m,m logm) = 2 + log(2m) +
2m logm

2m
log

2m logm

2m
= 3 + (1 + log logm) · logm

≥ (1 + log logm) · logm.

So all that remains is to prove that φ(m,n) exhibits
the binary fork-join lower-bound property. Clearly, this
function satisfies the Base Case condition. Since we
will be using Calculus to lower bound φ, we will prove
that φ(x, y) fulfills the Parallel Decomposition and the
Serial Decomposition conditions for any positive real
arguments, i.e., for any x, y ∈ R+. Then clearly φ(m,n)
will satisfy these properties for m,n ∈ N+ as well.

A note on Calculus notation. For the sake of
clarity, let us define the notation we use. Given a
function f on two variables, we denote the partial
derivative with respect to each variable as functions
D1f and D2f . Then we can use the notation
Dif(a, b) as the value of the partial derivative with
respect to the i-th variable evaluated at the point
(a, b). Finally, if the arguments to function f can
be expressed as functions of a single variable x, e.g.
g1(x) and g2(x), then the value of the derivative df

dx
at the point (g1(x), g2(x)) is defined via the chain
rule as follows:

d

dx
f(g1(x), g2(x)) = D1f(g1(x), g2(x)) · d

dx
g1(x)

+D2f(g1(x), g2(x)) · d
dx
g2(x).

The partial derivatives of φ with respect to the
two arguments are (the derivations can be found in the
Appendix):

D1φ(x, y) = −
(
τ(x, y)

x
+

2y − x
x2 ln 2

)
(4.2)

D2φ(x, y) =
τ(x, y)

y
+

2

x ln 2
(4.3)

Observe that if D2φ(x, y) 6= 0, we can define

g(x, y) =
D1φ(x, y)

D2φ(x, y)
=

1

2
·

(
1

ln 2y
x + 1

− 2y

x

)
(4.4)

Lemma 4.4. For any 1 < x ≤ 2y the partial derivatives
D1φ(x, y) ≤ 0 and D2φ(x, y) > 0, where the equality
holds when x = 2y.

Proof. Follows from the condition 1 < x ≤ 2y.

The next two lemmas prove that φ(x, y) fulfills the
last two conditions of the binary fork-join lower-bound
property.

Lemma 4.5. (Parallel Decomposition Condition)
For every 2 ≤ m ≤ 2n and any 1 < x < m − 1,
1 ≤ y ≤ n− 1 such that 1 < x ≤ 2y:

max{φ(x, y), φ(m− x, n− y)} ≥ φ(m,n)− 1.

Proof. Fix arbitrary m,n, that satisfy the condition
1 < m ≤ 2n. Throughout the proof we will use the
shorthand notation x̃ = m− x and ỹ = n− y.

First observe that for x = x̃ = m/2 and y = ỹ =
n/2

max{φ(x, y), φ(x̃, ỹ)} = φ(m/2, n/2) = φ(m,n)− 1

It remains to show that this choice of x and y is minimal.
Observe that since φ(x, y) is a monotonic func-

tion in both parameters and the domain is convex, it
is sufficient to consider the situation when φ(x, y) =
φ(x̃, ỹ) (otherwise, we could adjust one of the parame-
ters slightly inwards—e.g. move y towards ỹ—and re-
duce the maximum). To this end for the rest of the
proof we consider the manifold defined by the constraint
φ(x, y) = φ(x̃, ỹ). Since m and n are fixed, x̃ and ỹ are
functions of x and y, respectively, i.e., x̃ = x̃(x) and
ỹ = ỹ(y); and the manifold is defined by only two vari-
ables: x and y. Moreover, since φ is monotone in y, y
can be expressed as a function of x, i.e., y = y(x), and,
consequently, ỹ = ỹ(y(x)). Finally, since φ is differen-
tiable, so is y(x). Let us denote its derivative evaluated
at x by y′(x).

Thus, we can compute the derivatives of φ(x, y(x))
and φ(x̃(x), ỹ(y(x))) using the chain rule:

d

dx
φ(x, y(x)) = D1φ(x, y) +D2φ(x, y) · y′(x)(4.5)

d

dx
φ(x̃(x), ỹ(y(x)))(4.6)

= −D1φ(x̃, ỹ)−D2φ(x̃, ỹ) · y′(x)

Copyright c© 2021
Copyright for this paper is retained by authors

Since we are considering the function on the manifold
φ(x, y) = φ(x̃, ỹ), we can conclude that the right-hand
sides of the above equations are equal to each other,
giving us:

y′(x) = −D1φ(x, y) +D1φ(x̃, ỹ)

D2φ(x, y) +D2φ(x̃, ỹ)

And plugging it into Equation (4.5) we get:

d

dx
φ(x,y(x))

= D1φ(x, y)−D2φ(x, y) · D1φ(x, y) +D1φ(x̃, ỹ)

D2φ(x, y) +D2φ(x̃, ỹ)

=
D1φ(x, y) ·D2φ(x̃, ỹ)−D1φ(x̃, ỹ) ·D2φ(x, y)

D2φ(x, y) +D2φ(x̃, ỹ)

By Lemma 4.4 the denominator is always positive
for any 1 < x ≤ 2y. Therefore, d

dxφ(x, y(x)) = 0 iff

D1φ(x, y) ·D2φ(x̃, ỹ) = D1φ(x̃, ỹ) ·D2φ(x, y)

One solution to this equation is x = x̃ = m/2 and
y = ỹ = n/2. To show that there are no other solutions,
we will show that for all 1 < x < m/2 the derivative
d
dxφ(x, y(x)) on the manifold is negative, and for all

m/2 < x < m − 1 the derivative d
dxφ(x, y(x)) on the

manifold is positive.

d

dx
φ(x, y(x))

=
D2φ(x, y) ·D2φ(x̃, ỹ) ·

(
D1φ(x,y)
D2φ(x,y)

− D1φ(x̃,ỹ)
D2φ(x̃,ỹ)

)
D2φ(x, y) +D2φ(x̃, ỹ)

=
D2φ(x, y) ·D2φ(x̃, ỹ)

D2φ(x, y) +D2φ(x̃, ỹ)
·
(
D1φ(x, y)

D2φ(x, y)
− D1φ(x̃, ỹ)

D2φ(x̃, ỹ)

)
=

D2φ(x, y) ·D2φ(x̃, ỹ)

D2φ(x, y) +D2φ(x̃, ỹ)
· (g(x, y)− g(x̃, ỹ))

Because D2φ(x, y) > 0 and D2φ(x̃, ỹ) > 0 for any
1 < x ≤ 2y, the sign of d

dxφ(x, y(x)) depends only on
the sign of the difference g(x, y)− g(x̃, ỹ).

Let h(t) = 1
2 ·
(

1
1+ln t − t

)
and observe that

g(x, y) =
D1φ(x, y)

D2φ(x, y)
=
−
(
τ(x1,x2)

x + 2y−x
x2 ln 2

)
τ(x1,x2)

y + 2
x ln 2

= −y
x
· τ(x1, x2) · x ln 2 + 2y − x

τ(x1, x2) · x ln 2 + 2y

= −y
x
·

2y
x log 2y

x · x ln 2 + 2y − x
2y
x log 2y

x · x ln 2 + 2y

= −
2y
x ln 2y

x + 2y
x − 1

2 ln 2y
x + 2

= −y
x

+
1

2 ln 2y
x + 2

=
1

2
·

(
1

ln 2y
x + 1

− 2y

x

)

= h

(
2y

x

)
Therefore, the sign of d

dxφ(x, y(x)) is the same as

the sign of h
(
2y
x

)
−h

(
2ỹ
x̃

)
= h

(
2y
x

)
−h

(
2(n−y)
m−x

)
. Since

h(t) is a monotonically decreasing function the lemma
will follow once we prove the following claim.

Claim 4.2. For every 1 < x < m − 1 on
the manifold φ(x, y) = φ(x̃, ỹ), 2y

x > 2ỹ
x̃ if and

only if x < m/2.

Proof. Assume 1 < x < m/2 or, equivalently,
1 < x < x̃ (the case m/2 < x < m is sym-
metric). Since f(t) = log t is a monotonically
increasing function, log x < log x̃. Moreover,
since φ(x, y) = φ(x̃, ỹ), we know that:

2y

x
log

2y

x
= φ(x, y)− log x

> φ(x̃, ỹ)− log x̃ =
2ỹ

x̃
log

2ỹ

x̃

And the claim follows because the function
f(t) = t log t is monotonically increasing.

This completes the proof of Lemma 4.5.

Lemma 4.6. (Serial Decomposition Condition)
For every m and n, such that 2 ≤ m ≤ 2n ≤ m logm,
and every x, y, and x̃, such that 1 ≤ y ≤ n−1, 2 ≤ x ≤
min{2y,m}, max{2,m− x} ≤ x̃ ≤ min{2(n− y),m}:

φ(x, y) + φ(x̃, n− y) ≥ φ(m,n).

Copyright c© 2021
Copyright for this paper is retained by authors

Proof. For x = x̃ = m and y = n− y = n/2 we have

φ(x, y) + φ(x̃, n− y) = 4 + 2 logm+
2n

m
log

2n

2m

=

(
2 + logm+

2n

m
log

2n

m

)
+

(
2 + logm− 2n

m

)
≥ φ(m,n),

where the inequality follows from the constraint 2n ≤
m logm.

It remains to show that no other x and y yield a
lower value. By Lemma 4.4 we know that D1φ(x1, x2) <
0 for any 1 < x1 ≤ 2x2, i.e., the function φ(x1, x2) is
strictly decreasing with x1 and is minimized when x1 =
xmax, the largest value that the first parameter can take.
Let xmax = min{2y,m} and x̃max = min{2(n− y),m}.
Then

φ(x, y) + φ(x̃, n− y) ≥ φ(xmax, y) + φ(x̃max, n− y)

Without loss of generality, let us assume 2y ≤
2(n − y), i.e., y ≤ n/2; the proof for the other case
is symmetric. There are three cases to consider:
Case 1. m ≤ 2y ≤ 2(n− y):

Then xmax = x̃max = m and we get

φ(x, y) + φ(x̃, n− y)

≥ φ(m, y) + φ(m,n− y)

=

(
2 + logm+

2y

m
log

2y

m

)
+

(
2 + logm+

2(n− y)

m
log

2(n− y)

m

)
= 4 + 2 logm+

2

m
(y log y + (n− y) log(n− y) + n)

− 2n

m
logm

≥ 4 + 2 logm+
2

m
(n log(n/2) + n)− 2n

m
logm

= 4 + 2 logm+
2n

m
log

n

m

=

(
2 + logm+

2n

m
log

2n

m

)
+

(
2 + logm− 2n

m

)
≥ φ(m,n),

where, the second inequality follows from the fact that
function f(t) = t log t + (n − t) log(n − t) is minimized
at t = n/2 and the last inequality follows from the
condition 2n ≤ m logm.
Case 2. 2y ≤ m ≤ 2(n− y):

Then xmax = 2y and x̃max = m and we get

φ(x, y) + φ(x̃,n− y)

≥ φ(2y, y) + φ(m,n− y)

= 2 + log(2y) + φ(m,n− y)

Observe that the derivative of φ(x1, x2) with respect to

the second argument, D2φ(x1, x2) = τ(x1,x2)
x2

+ 2
x1 ln 2 =

2 log(2ex2/x1)
x1

, is a monotonically increasing function
with respect to the second argument. Therefore, it
achieves its maximum value, let’s call it Dmax

2 , at the
largest x2 of the parameter range, i.e., x2 = n and

Dmax
2 = D2φ(m,n) = 2 log(2en/m)

m . Then for any non-
negative ∆ ≤ n− 1:

φ(m,n−∆) + ∆ ·Dmax
2 ≥ φ(m,n)

Thus, to prove that φ(x, y) +φ(x̃, n− y) ≥ φ(m,n),
it is sufficient to prove that

1 + log(2y) ≥ y ·Dmax
2 = y · 2 log(2en/m)

m

or, equivalently, that 1+log(2y)
y ≥ 2 log(2en/m)

m .

First, observe that 1+log(2y)
y is minimized at the

maximum value of y, i.e., at y = m/2. Thus,

1 + log(2y)

y
≥ 1 + logm

m/2
=

2 log(2m)

m

Since 2n ≤ m logm and logm ≤ 2m/e for any
m ≥ 2, we get:

2 log(2m)

m
≥ 2 log(4n/ logm)

m
≥ 2 log(2en/m)

m

Case 3. 2y ≤ 2(n− y) < m:
In this case, xmax = 2y and x̃max = 2(n− y). And

we get

φ(x, y)+φ(x̃, n− y)

≥ φ(2y, y) + φ(2(n− y), n− y)

= (2 + log(2y)) + (2 + log(2(n− y)))

≥ 4 + log 2n,

where the last inequality follows from the fact that
log a+ log b = log(ab) ≥ log(a+ b) for any 2 ≤ a ≤ b.

Finally, since 2y ≤ 2(n − y) < m, we conclude
that 2m > 2y + 2(n − y) = 2n, i.e., m > n and
φ(n,m) < 2 + logm+ 2n

n log 2n
n < 4 + logm. Thus,

φ(x, y) + φ(x̃, n− y) ≥ 5 + logm > φ(m,n).

5 Conclusion

The main result of this paper is a lower bound of
Ω(log n log log n) for the span for implementing a depth-
O(log n) FFT graph in the nonatomic binary fork-
join model, which provides a separation result with

Copyright c© 2021
Copyright for this paper is retained by authors

respect to the atomic binary fork-join model, for which
simulating a depth-O(log n) FFT graph is easily done
with O(log n) span. Our work should not be viewed as
saying that the atomic version of the fork-join model
is superior to the nonatomic version, or vice versa,
however. Instead, our results show there is a clear
trade-off: namely, that algorithms in the atomic fork-
join model can achieve smaller spans, but this comes at a
cost of requiring some kind of atomic memory primitive,
such as test-and-set or compare-and-set.

References

[1] Yehuda Afek, Eli Gafni, John Tromp, and Paul MB
Vitányi. Wait-free test-and-set. In Proceedings of
the International Workshop on Distributed Algorithms
(WDAG), pages 85–94. Springer, 1992. doi:10.1007/

3-540-56188-9_6.
[2] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha.

Helper locks for fork-join parallel programming. ACM
Sigplan Notices, 45(5):245–256, 2010. doi:10.1145/

1837853.1693487.
[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plax-

ton. Thread scheduling for multiprogrammed multi-
processors. Theory of Computing Systems, 34(2):115–
144, 2001. doi:10.1007/s00224-001-0004-z.

[4] Hans-Jürgen Bandelt and Victor Chepoi. Metric graph
theory and geometry: a survey. In Jacob E. Goodman,
János Pach, and Richard Pollack, editors, Surveys
on Discrete and Computational Geometry: Twenty
Years Later, volume 453 of Contemporary Mathemat-
ics, pages 49–86. AMS, 2008.

[5] K. E. Batcher. Sorting networks and their applications.
In Proceedings of the ACM Spring Joint Computer
Conference, AFIPS ’68 (Spring), pages 307–314, 1968.
doi:10.1145/1468075.1468121.

[6] Paul Beame and Johan Hastad. Optimal bounds for
decision problems on the CRCW PRAM. Journal of
the ACM, 36(3):643–670, 1989. doi:10.1145/65950.

65958.
[7] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert,

and Charles E. Leiserson. On-the-fly maintenance of
series-parallel relationships in fork-join multithreaded
programs. In Proceedings of the 16th ACM Sympo-
sium on Parallelism in Algorithms and Architectures
(SPAA), pages 133–144, 2004. doi:10.1145/1007912.
1007933.

[8] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gib-
bons, and Julian Shun. Internally deterministic paral-
lel algorithms can be fast. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP), pages 181–192,
2012. doi:10.1145/2145816.2145840.

[9] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and
Yihan Sun. Optimal parallel algorithms in the binary-
forking model. In Proceedings of the 32nd ACM Sym-
posium on Parallelism in Algorithms and Architectures

(SPAA), pages 89–102, 2020. doi:10.1145/3350755.

3400227.
[10] Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles

McGuffey, and Julian Shun. The parallel persistent
memory model. In Proceedings of the 30th Sympo-
sium on Parallelism in Algorithms and Architectures
(SPAA), pages 247–258, 2018. doi:10.1145/3210377.
3210381.

[11] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias.
Provably efficient scheduling for languages with fine-
grained parallelism. Journal of the ACM, 46(2):281–
321, 1999. doi:10.1145/301970.301974.

[12] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed
Computing, 37(1):55–69, 1996. doi:10.1006/jpdc.

1996.0107.
[13] Robert D. Blumofe and Charles E. Leiserson. Space-

efficient scheduling of multithreaded computations.
SIAM Journal on Computing, 27(1):202–229, 1998.
doi:10.1137/S0097539793259471.

[14] Robert D. Blumofe and Charles E. Leiserson. Schedul-
ing multithreaded computations by work stealing.
Journal of the ACM, 46(5):720–748, 1999. doi:10.

1145/324133.324234.
[15] Hans L. Bodlaender and Babette van Antwerpen-

de Fluiter. Parallel algorithms for series parallel
graphs and graphs with treewidth two. Algorithmica,
29(4):534–559, 2001. doi:10.1007/s004530010070.

[16] R. Cole and V. Ramachandran. Efficient resource
oblivious algorithms for multicores with false sharing.
In Proceedings of the 26th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages
201–214, May 2012. doi:10.1109/IPDPS.2012.28.

[17] R. Cole and V. Ramachandran. Analysis of random-
ized work stealing with false sharing. In Proceedigns
of the 27th IEEE International Symposium on Paral-
lel and Distributed Processing (IPDPS), pages 985–998,
May 2013. doi:10.1109/IPDPS.2013.86.

[18] Richard Cole and Michael T. Goodrich. Optimal
parallel algorithms for point-set and polygon prob-
lems. Algorithmica, 7(1):3–23, 1992. doi:10.1007/

BF01758749.
[19] Richard Cole and Vijaya Ramachandran. Resource

oblivious sorting on multicores. ACM Trans. Parallel
Comput., 3(4), 2017. doi:10.1145/3040221.

[20] James W. Cooley and John W. Tukey. An algorithm
for the machine calculation of complex fourier series.
Mathematics of Computation, 19(90):297–301, 1965.
doi:10.2307/2003354.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
MIT press, 3rd edition, 2009.

[22] Leonardo Dagum and Ramesh Menon. OpenMP: an
industry standard API for shared-memory program-
ming. IEEE Computational Science and Engineering,
5(1):46–55, 1998. doi:10.1109/99.660313.

Copyright c© 2021
Copyright for this paper is retained by authors

http://dx.doi.org/10.1007/3-540-56188-9_6
http://dx.doi.org/10.1007/3-540-56188-9_6
http://dx.doi.org/10.1145/1837853.1693487
http://dx.doi.org/10.1145/1837853.1693487
http://dx.doi.org/10.1007/s00224-001-0004-z
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/65950.65958
http://dx.doi.org/10.1145/65950.65958
http://dx.doi.org/10.1145/1007912.1007933
http://dx.doi.org/10.1145/1007912.1007933
http://dx.doi.org/10.1145/2145816.2145840
http://dx.doi.org/10.1145/3350755.3400227
http://dx.doi.org/10.1145/3350755.3400227
http://dx.doi.org/10.1145/3210377.3210381
http://dx.doi.org/10.1145/3210377.3210381
http://dx.doi.org/10.1145/301970.301974
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1137/S0097539793259471
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1007/s004530010070
http://dx.doi.org/10.1109/IPDPS.2012.28
http://dx.doi.org/10.1109/IPDPS.2013.86
http://dx.doi.org/10.1007/BF01758749
http://dx.doi.org/10.1007/BF01758749
http://dx.doi.org/10.1145/3040221
http://dx.doi.org/10.2307/2003354
http://dx.doi.org/10.1109/99.660313

[23] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun.
Theoretically efficient parallel graph algorithms can
be fast and scalable. In Proceedings of the 30th
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 393–404. ACM, 2018.
doi:10.1145/3210377.3210414.

[24] G. Di Battista and R. Tamassia. Incremental planarity
testing. In Proceedings of the 30th Annual Symposium
on Foundations of Computer Science (FOCS), pages
436–441, 1989. doi:10.1109/SFCS.1989.63515.

[25] Andrzej Duda and Tadeusz Czachórski. Performance
evaluation of fork and join synchronization primitives.
Acta Informatica, 24(5):525–553, 1987.

[26] David Eppstein. Parallel recognition of series-parallel
graphs. Information and Computation, 98(1):41–55,
1992. doi:10.1016/0890-5401(92)90041-D.

[27] Matteo Frigo, Charles E Leiserson, Harald Prokop, and
Sridhar Ramachandran. Cache-Oblivious Algorithms.
ACM Transactions on Algorithms, 8(1):4:1–4:22, 2012.
doi:10.1145/2071379.2071383.

[28] Matteo Frigo, Charles E. Leiserson, and Keith H. Ran-
dall. The implementation of the Cilk-5 multithreaded
language. ACM SIGPLAN Notices, 33(5):212–223,
May 1998. doi:10.1145/277652.277725.

[29] Michael T. Goodrich. Using approximation algorithms
to design parallel algorithms that may ignore proces-
sor allocation. In Proceedings of the 32nd IEEE Sym-
posium of Foundations of Computer Science (FOCS),
pages 711–722. IEEE, 1991. doi:10.1109/SFCS.1991.

185439.
[30] Michael T Goodrich, Yossi Matias, and Uzi Vishkin.

Optimal parallel approximation for prefix sums and
integer sorting. In Proceedings of the 5th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
241–250, 1994.

[31] Torben Hagerup and Christine Rüb. Optimal merg-
ing and sorting on the EREW PRAM. Information
Processing Letters, 33(4):181–185, 1989. doi:10.1016/
0020-0190(89)90138-5.

[32] Maurice Herlihy and Victor Luchangco. Distributed
computing and the multicore revolution. ACM
SIGACT News, 39(1):62–72, 2008. doi:10.1145/

1360443.1360458.
[33] Joseph JáJá. An Introduction to Parallel Algorithms.

Addison-Wesley, 1992.
[34] Richard M. Karp and Vijaya Ramachandran. Parallel

algorithms for shared-memory machines. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, pages 869–941. Elsevier, 1990. doi:10.1016/

B978-0-444-88071-0.50022-9.
[35] Doug Lea. A Java fork/join framework. In Proceedings

of the ACM Conference on Java Grande, pages 36–43,
2000. doi:10.1145/337449.337465.

[36] Charles E. Leiserson. Cilk. In David Padua, edi-
tor, Encyclopedia of Parallel Computing, pages 273–
288. Springer US, Boston, MA, 2011. doi:10.1007/

978-0-387-09766-4_289.
[37] Xavier Martorell, Eduard Ayguadé, Nacho Navarro,

Julita Corbalán, Marc González, and Jesús Labarta.
Thread fork/join techniques for multi-level parallelism
exploitation in NUMA multiprocessors. In Proceedings
of the 13th International Conference on Supercomput-
ing (ICS), pages 294–301, 1999. doi:10.1145/305138.
305206.

[38] John Mellor-Crummey. On-the-fly detection of data
races for programs with nested fork-join parallelism.
In Proceedings of the ACM/IEEE Conference on Su-
percomputing (SC), pages 24–33. IEEE, 1991. doi:

10.1145/125826.125861.

A Derivation of Equations (4.2)-(4.3)

Deriving partial derivatives in Equations (4.2)-(4.3) is
a simple application of Calculus. However, we present
the details of the derivation here for completeness and
to help the reviewers verify the details if they so wish.

D1τ(x, y) =
∂

∂x

(
2y

x
log

2y

x

)
=
d

dx

2y

x
· log

2y

x
+

2y

x
· d
dx

log
2y

x

=− 2y

x2
log

2y

x
+

2y

x
· 1

2y
x ln 2

· d
dx

2y

x

=−
(
τ(x, y)

x
+

2y

x2 ln 2

)
D2τ(x, y) =

∂

∂y

(
2y

x
log

2y

x

)
=
d

dy

2y

x
· log

2y

x
+

2y

x
· d
dy

log
2y

x

=
2

x
log

2y

x
+

2y

x
· 1

2y
x ln 2

· d
dy

2y

x

=
τ(x, y)

y
+

2

x ln 2

D1φ(x, y) =
∂φ(x, y)

∂x
=

d

dx
log x+D1τ

=
1

x ln 2
−
(
τ(x, y)

x
+

2y

x2 ln 2

)
= −

(
τ(x, y)

x
+

2y − x
x2 ln 2

)
D2φ(x, y) =

∂φ(x, y)

∂y
=

d

dy
log x+D2τ

=
τ(x, y)

y
+

2

x ln 2

Copyright c© 2021
Copyright for this paper is retained by authors

http://dx.doi.org/10.1145/3210377.3210414
http://dx.doi.org/10.1109/SFCS.1989.63515
http://dx.doi.org/10.1016/0890-5401(92)90041-D
http://dx.doi.org/10.1145/2071379.2071383
http://dx.doi.org/10.1145/277652.277725
http://dx.doi.org/10.1109/SFCS.1991.185439
http://dx.doi.org/10.1109/SFCS.1991.185439
http://dx.doi.org/10.1016/0020-0190(89)90138-5
http://dx.doi.org/10.1016/0020-0190(89)90138-5
http://dx.doi.org/10.1145/1360443.1360458
http://dx.doi.org/10.1145/1360443.1360458
http://dx.doi.org/10.1016/B978-0-444-88071-0.50022-9
http://dx.doi.org/10.1016/B978-0-444-88071-0.50022-9
http://dx.doi.org/10.1145/337449.337465
http://dx.doi.org/10.1007/978-0-387-09766-4_289
http://dx.doi.org/10.1007/978-0-387-09766-4_289
http://dx.doi.org/10.1145/305138.305206
http://dx.doi.org/10.1145/305138.305206
http://dx.doi.org/10.1145/125826.125861
http://dx.doi.org/10.1145/125826.125861

	Introduction
	Prior Related Work.
	Our Results.

	Preliminaries
	Computation and circuit graphs.
	Fork-join graphs.
	FFT Graphs.
	Visualizing FFT graphs.

	Upper Bounds
	Lower Bound
	Technical Lemmas.
	FFT Lower Bound.

	Conclusion
	Derivation of Equations (4.2)-(4.3)

