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Abstract
We systematically investigate the complexity of counting subgraph patterns modulo fixed integers.
For example, it is known that the parity of the number of k-matchings can be determined in
polynomial time by a simple reduction to the determinant. We generalize this to an nf(t,s)-time
algorithm to compute modulo 2t the number of subgraph occurrences of patterns that are s vertices
away from being matchings. This shows that the known polynomial-time cases of subgraph detection
(Jansen and Marx, SODA 2015) carry over into the setting of counting modulo 2t. Complementing
our algorithm, we also give a simple and self-contained proof that counting k-matchings modulo
odd integers q is ModqW[1]-complete and prove that counting k-paths modulo 2 is ⊕W[1]-complete,
answering an open question by Björklund, Dell, and Husfeldt (ICALP 2015).
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1 Introduction

The last two decades have seen the development of several complexity dichotomies for pattern
counting problems in graphs, including full classifications for counting subgraphs, induced
subgraphs, and homomorphisms from fixed computable pattern classes H. The input to such
problems is a pattern graph H ∈ H and an unrestricted host graph G; the task is to count
the relevant occurrences of H in G. Depending on H, these problems are known to be either
polynomial-time solvable or #W[1]-hard when parameterized by |V (H)|. The latter rules
out polynomial-time algorithms under the complexity assumption FPT ̸= #W[1].

In this paper, we focus on counting subgraphs from any fixed graph class H. On the
positive side, given a pattern graph H ∈ H whose smallest vertex-cover has size vc(H) and
an n-vertex host graph G, there are known O(nvc(H)+1) time algorithms [40, 29, 9] to count
subgraphs of G that are isomorphic to H: First, find a minimum vertex-cover C of H using
exhaustive search. Then, iterate over all possible embeddings f of H[C] into G and count
the possible extensions of G[f(C)] to a full copy of H. Complementing this algorithm, an
almost matching running time lower bound of nΩ(vc(H)/ log vc(H)) under the exponential-time
hypothesis (ETH) is also known [8]. Thus, assuming ETH or FPT ̸= #W[1], the problem
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34:2 Modular Counting of Subgraphs

#Sub(H) of counting subgraphs from a fixed class H is polynomial-time solvable if and only
if the vertex-cover numbers (or equivalently, the maximum matching sizes) of the graphs
in H are bounded by a constant. The rightmost column of Figure 1 visualizes this situation.

Turning from counting to the problem Sub(H) of detecting subgraphs from fixed classes H,
the picture is less clear. Evidence points at three strata of complexity: Define the matching-
split number of H to be the minimum number of vertices whose deletion turns H into a
matching, that is, a graph of maximum degree 1. Jansen and Marx [25] show that, if this
number is bounded in a graph class H, then Sub(H) is polynomial-time solvable. For classes H
of bounded tree-width, it is known [34, 1, 19] that the problem Sub(H) is fixed-parameter
tractable when parameterized by |V (H)|. For pattern classes H of unbounded tree-width, it
is conjectured that Sub(H) is W[1]-hard – so far, this hardness has only been established
for cliques, bicliques [30], grids [6], and less natural graph classes. The leftmost column of
Figure 1 visualizes the situation.

We propose to study an intermediate setting between decision and counting, namely,
counting subgraph patterns modulo fixed integers q ∈ N. Modular counting has a tradition
in classical complexity theory, where the complexity classes ModqP for q ∈ N capture
problems that ask to count accepting paths of polynomially time-bounded non-deterministic
Turing machines modulo q. In particular, the class Mod2P (better known as ⊕P) plays a
central role in the proof of Toda’s theorem [38]. Several (partial) classification results for
frameworks of modular counting problems are known; this includes homomorphisms to fixed
graphs [16, 20, 21, 26, 18], constraint satisfaction problems [15, 22], and Holant problems [11].

Figure 1 summarizes our understanding. If the vertex-cover number is bounded, the
polynomial-time algorithms (regions 7 and 8) follow from the algorithm for #Sub(H) described
above and require no further attention. Our paper is concerned with the remaining regions 1–6.

As argued above, matchings play a central role in decision and counting, so it is natural
that they reprise their role in modular subgraph counting: On the positive side, there are
known polynomial-time algorithms for counting matchings of a given size modulo fixed
powers of two. (For bipartite graphs and counting modulo 2, this essentially follows from the
fact that determinant and permanent coincide modulo 2.) On the negative side, if q is not a
power of two, counting matchings modulo q is known to be ModpP-complete for any odd
prime p dividing q. We establish a parameterized analogue of this fact: Let ModqW[1] be
the class of parameterized problems that are fpt-reducible to counting k-cliques modulo q.
We show that counting k-matchings (that is, sets of k pairwise disjoint edges) in graphs
modulo fixed odd primes q ∈ N is ModqW[1]-hard. In our proof, modular counting allows us
to sidestep the algebraic machinery from previous works [9, 7, 8], resulting in a surprisingly
simple and self-contained argument.

▶ Theorem 1. For any integer q ∈ N containing an odd prime factor p, counting k-
matchings modulo q is ModpW[1]-hard under Turing fpt-reductions and admits no no(k/ log k)

time algorithm under ETH.

Known arguments from Ramsey theory (see [10, Section 5]) extend Theorem 1 from
matchings to #Sub(H) mod q for any hereditary class H of unbounded vertex-cover number.
This suggests that modular subgraph counting may only become tractable when the modulus
is a power of two. Indeed, we show that patterns of matching-split number s can be counted
modulo q = 2t in time nO(t4s). To prove this, we follow the general idea of the bounded vertex-
cover number algorithm for Sub(H) outlined before, and we reduce to counting matchings
modulo powers of two. This however requires us to overcome technical complications to
avoid unwanted cancellations. Overall, we obtain:
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Figure 1 An overview over known results and our new results. The columns correspond, from left
to right, to the problem types Sub(H), #Sub(H) mod 2t, #Sub(H) mod q for q ̸= 2t, or #Sub(H);
our results are depicted in the two middle columns. The rows correspond, from bottom to top,
to requiring H to have bounded vertex-cover number, matching-split number, tree-width, or no
requirement at all. The complexity along each row is monotone: By Lemma 4, decision is no harder
than modular counting, and modular counting trivially is no harder than counting. Our results
are depicted in the middle two columns: Regions 1 and 2 are Lemma 5. Region 5 is Theorem 2.
Regions 7 and 8 already follow from [40]. The point in region 6 is Theorem 1, and the point in
region 3 is Theorem 3. We view the hardness of these points as evidence to conjecture their enclosing
regions to be hard, see Conjecture 14.

▶ Theorem 2. There is an algorithm that, given a graph H of matching-split number s ∈ N
and an n-vertex graph G, computes the number of H-isomorphic subgraphs of G modulo 2t

in time nO(t4s).

We complement this result in two ways: First, we observe that ⊕Sub(H) is ⊕W[1]-complete
for pattern classes H of unbounded tree-width; this follows directly from previous hardness
proofs for #Sub(H). More interestingly, we establish the ⊕W[1]-completeness of counting
k-paths modulo 2 in undirected graphs, thus solving an open problem from [3], where this
problem was considered in the context of Hamiltonian cycle detection, following [4].

▶ Theorem 3. Counting k-paths modulo 2 is ⊕W[1]-complete.

This result adds to a rich range of previous work on the k-path problem, and is of interest
outside our framework. Bodlaender [5] and Monien [32] showed that finding a k-path is
fixed-parameter tractable. In contrast, Flum and Grohe [17] showed that exactly counting
k-paths is #W[1]-hard. Nevertheless, Arvind and Raman [2] showed that approximately
counting k-paths, which corresponds to computing the most significant bit(s) of the number
of k-paths, is fixed-parameter tractable. Our Theorem 3 suggests that the least significant
bit of the number of k-paths is hard to compute. This is surprising, because some of the
most influential fpt-algorithms for finding a k-path work over characteristic 2, based on the
group algebra framework introduced by Koutis [28].

Let us conclude with a general remark on the techniques used in this paper: Recent
works successfully exploited a connection between subgraph counts and (linear combinations
of) homomorphism counts to obtain algorithms and hardness results [8, 35, 14, 36, 37]. For
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34:4 Modular Counting of Subgraphs

example, the number of k-matchings in a graph G is a linear combination of homomorphism
counts from f(k) fixed graphs. Insights on the complexity of counting the homomorphisms
occurring in this linear combination then lead to complexity results for counting k-matchings.
This connection however does not readily transfer to modular counting, as the relevant linear
combinations (which involve rational coefficients) may be undefined modulo p. We therefore
prove Theorems 1–3 using more combinatorial approaches.

2 Preliminaries

Unless otherwise stated, we consider finite, undirected, simple graphs without self-loops.

Subgraph problems

A homomorphism from graph H to graph G is a mapping φ : V (H) → V (G) such that
{φ(u), φ(v)} ∈ E(G) for each {u, v} ∈ E(H). An embedding is an injective homomorphism,
and we let Emb(H, G) denote the set of embeddings from H to G. An isomorphism is a
bijective homomorphism, and an automorphism is an isomorphism from H to itself. The set
of all automorphisms of H is called Aut(H), and forms a group when endowed with function
composition ◦.

We let Sub(H, G) be the set of all H-subgraphs of G, that is, the set of all H ′ with
V (H ′) ⊆ V (G) and E(H ′) ⊆ E(G) such that H ′ is isomorphic to H. This terminology fixes
the possible confusion about isomorphic copies of subgraphs: For example, there is exactly
one Kk-subgraph in Kk, but there are k! embeddings. The subgraph problem Sub is given
a pair (H, G) to decide whether G has at least one H-subgraph. The subgraph counting
problem #Sub is given a pair (H, G) to determine the number of H-subgraphs in G.

For a graph class H, we write #Sub(H) for the restricted problem where the input
(H, G) is promised to satisfy H ∈ H. For q ∈ Z≥2, the modular subgraph counting problem
#Sub(H) mod q is the problem to compute the number of H-subgraphs modulo q. In the
special case with q = 2, we write ⊕Sub.

It will be useful to consider colorful subgraph problems, where G is H-colored, that is,
there is a given homomorphism c : V (G) → V (H). Due to the homomorphism property,
we allow edges {u, v} ∈ E(G) only if the corresponding colors satisfy {c(u), c(v)} ∈ E(H).
A subgraph H ′ of an H-colored graph G is vertex-colorful if c is bijective on V (H ′). Let
VertexColorfulSub(H, G) be the set of vertex-colorful subgraphs H ′ for which c is an isomor-
phism from H ′ to H. The corresponding computational problems are defined analogously to
the uncolored case; the input consists of a graph G together with an H-coloring c.

Background from complexity theory

A parameterized counting problem is a pair (f, κ) of functions f, κ : {0, 1}∗ → N where κ

is computable. A parsimonious fpt-reduction from a parameterized counting problem (f, κ)
to a parameterized counting problem (g, ι) is a function R with the following properties:
(i) f(x) = g(R(x)) for all x ∈ {0, 1}∗, (ii) ι(R(x)) is bounded by a computable function
in κ(x), and (iii) the reduction is computable in time h(κ(x)) poly(|x|) for some computable
function h. A Turing fpt-reduction may query the oracle multiple times for instances whose
parameter is bounded by a function of the input parameter, and combine the query answers
in fpt-time to produce the correct output. Moreover, reductions can also be randomized, in
which case we require that their error probability is bounded by a small constant.
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The exponential-time hypothesis (ETH) postulates the existence of some ε > 0 such
that no algorithm solves n-variable 3-CNF formulas in time O(2εn). We write for short
that 3-CNF-SAT does not have 2o(n)-time algorithms, and we also disallow bounded-error
randomized algorithms.

Modular counting

For our purposes, we define the class ModqW[1] as the class of all parameterized problems
(f, κ) with f : Σ∗ → {0, . . . , q − 1} such that (f, κ) has a parsimonious fpt-reduction to the
problem of counting k-cliques modulo q. For q = 2, it was shown in [3] that all problems in
W[1] admit randomized fpt-reductions to problems in ⊕W[1]. Another result [39, Lemma 2.1]
yields the corresponding generalization for all q > 2. We use the following analogous
proposition for the vertex-colorful subgraph problem, proven in the full version.

▶ Lemma 4. For any integer q ≥ 2, there is a randomized Turing fpt-reduction from the
problem VertexColorfulSub to the problem #VertexColorfulSub mod q. On input (H, G), the
reduction only queries instances with the same pattern H.

Our work relies on the following hardness result for parameterized modular subgraph
counting, which follows easily from known results on the colorful subgraph decision prob-
lem [13, 31]. See the full version for a proof.

▶ Lemma 5. Let H be a graph family of unbounded tree-width and let q be an integer with
q ≥ 2. Then #VertexColorfulSub(H) mod q parameterized by k = |E(H)| is ModqW[1]-hard
under parsimonious fpt-reductions. Moreover, if ETH is true, then the problem does not have
an algorithm running in time no(k/ log k), where n = |V (G)|.

3 Hardness of counting k-matchings

In this section, we prove Theorem 1. We first establish ModqW[1]-hardness of the problem
#ColMatch mod q for odd q ≥ 3: Given a graph G with an edge-coloring c : E(G) → C for
some set of colors C with |C| = k, this problem asks to count modulo q the edge-colorful
matchings in G. These are the matchings that use each color in C exactly once.

▶ Lemma 6. For any fixed integer p with odd prime factor q, the problem #ColMatch mod p

is ModqW[1]-hard under parsimonious fpt-reductions and has no no(k/ log k) time algorithm
under ETH.

Proof. The class H of all 3-regular graphs has unbounded tree-width, and hence by Lemma 5,
the problem #VertexColorfulSub(H) mod q is ModqW[1]-hard and hard under ETH. We
reduce it to #ColMatch mod q, implying the hardness of #ColMatch mod p. Let H ∈ H
and G be the input for the reduction with k = |V (H)| and H-colored G, and let { Va : a ∈
V (H) } be the color classes of G, with edge-sets Ea,b(G) for ab ∈ E(H). Using the gadgets
from Figure 2, we construct a graph G′:
1. Each vertex u ∈ V (G) is replaced by three vertices u1, u2, and u3. We insert a consistency

gadget Qu at these vertices by adding q gadget vertices, connecting u2 and u3 to all
gadget vertices, and u1 to the first (q + 1)/2 gadget vertices. For S ⊆ {u1, u2, u3}, let
mS count the matchings in Qu that match precisely S; it can be checked that

mS ≡q

{
1 if S is ∅ or {u1, u2, u3},
0 if S is {u2}, {u3}, or {u2, u3}.

(1)

We explicitly ignore the other three cases for S, as they will not be relevant.
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q − 2

ui vj

q − 2

(a) The AND-gadget, shown here for q = 5.
In general, the upper ui, vj-path always
has 3 edges; both external vertices ui

and vj have q − 2 neighboring leaves. If ex-
actly 0 or 1 external vertices are removed,
this graph has 0 edges modulo q; if both
vertices are removed, the graph has 1 edge.

u1 u2

u3

q

(b) The consistency gadget contains q
gadget vertices, shown here for q = 5.
The number of matchings of size 0 and 3
equals 1 modulo q, and if u1 is deleted, the
number of non-empty edge-colorful match-
ings equals 0 modulo q.

Figure 2 The two gadgets used in the proof of Lemma 6.

2. For {a, b} ∈ E(H), suppose that a is the jth vertex incident to b, and that b is the ith
vertex incident to a. For each edge {u, v} ∈ Ea,b(G) with u ∈ Va and v ∈ Vb, we insert
an AND-gadget Auv at {ui, vj}. Then for any set S ⊊ {ui, vj}, the number of edges in
Auv − S is divisible by q, whereas Auv − {ui, vj} has exactly one edge.

3. The edge-colors of G′ are defined as follows: For u ∈ Va with a ∈ V (H), we assign color
(CONS, a, i) to all edges of Qu incident to vertex ui, for i ∈ {1, 2, 3}. For each ab ∈ E(H),
we assign color (AND, ab) to all edges in AND-gadgets between edges in Ea,b(G). Overall,
we have k′ = 3k + 3k/2 colors.

Every H-copy F in G induces a set MF of colorful matchings in G′. We describe this set
in the following, show that |MF | ≡q 1, and that MF and MF ′ are disjoint for F ̸= F ′.

For each v ∈ V (F ), match all of {v1, v2, v3} within Qv. For fixed v, the number of possible
matchings in Qv is m{v1,v2,v3} ≡q 1 by (1). Let QF denote the set of all matchings that
can be obtained by the previous step. Since matchings can be chosen independently for
distinct Qv, we obtain |QF | ≡q 1|V (F )| ≡q 1.
Any M ∈ QF can be extended to several colorful matchings by choosing one edge from
each color (AND, ab) for {a, b} ∈ E(H). For each {u, v} ∈ E(F ), the AND-gadget Auv has
exactly one such edge, while the other AND-gadgets of color (AND, ab) have 0 such edges
modulo q. Hence, the number edges of color (AND, ab) that can extend M is 1 modulo
q. This implies that the overall number rM of matchings extending M into a colorful
matching is also rM ≡q 1|E(F )| ≡q 1.

Overall, every H-copy F induces
∑

M∈QF
rM ≡q

∑
M∈MF

1 ≡q 1 colorful matchings, so
we indeed have |MF | ≡q 1. We also observe from the construction that MF ∩ MF ′ = ∅ for
distinct H-copies F and F ′. In the full version, we use properties of the gadgets to prove
that colorful matchings M /∈

⋃
F MF cancel modulo q.

▷ Claim 7. The number of colorful matchings M that are not contained in MF for any
H-copy F is divisible by q.

Overall, we have shown that the number of H-copies in G and the number of colorful
matchings in G′ agree modulo q. As G′ can be computed in polynomial time and the
parameter is increased only by a constant factor, the claimed hardness results follow. ◀

To prove Theorem 1, it suffices to give an fpt-reduction from #ColMatch mod q to
counting k-matchings modulo q. This is achieved by a standard inclusion-exclusion argument
that can be found in the full version.
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4 Counting matching-splittable subgraphs modulo 2t

In this section, we prove Theorem 2 by describing an nO(t4s)-time algorithm for counting
modulo 2t the subgraphs of matching-split number s. Our algorithm builds upon known
algorithms for the decision and counting versions of subgraph problems; we first review their
underlying ideas and sketch our algorithm for Theorem 2.

Counting subgraphs of bounded vertex-cover number
The basic structure of our algorithm is similar to a known O(ns+1) time algorithm [40, 29, 9]
for counting embeddings from H to G if H has a vertex-cover S ⊆ V (H) of size s ∈ N.
Counting embeddings is sufficient for counting subgraph copies, as we can first compute the
number #Aut(H) of automorphisms on H as #Emb(H, H), and then use

#Sub(H, G) = #Emb(H, G)
#Aut(H) . (2)

Given (H, G) with h = |V (H)| and n = |V (G)|, the algorithm for computing #Emb(H, G)
first finds a minimum vertex-cover S of H in time hO(s); then I := V (H)\S is an independent
set. Then the algorithm enumerates all partial embeddings f from H[S] to G, which takes
time at most nO(s). Finally, for each f , it remains to count all functions g : I → V (G) that
extend f to a full embedding from H to G. We observe that g extends f to a full embedding
if and only if every vertex u ∈ I maps via g to a vertex v = g(u) ∈ V (G) \ f(S) that satisfies
the neighborhood constraint NG(v) ∩ f(S) ⊇ f(NH(u)). Counting functions g with this
property can be achieved (in a not completely obvious way) with dynamic programming; we
only need to know the number of vertices v ∈ V (G) \ f(S) that have a specific neighborhood
NG(v) ∩ f(S), and for each f , there are at most 2s different possible such neighborhoods.
Overall, in nO(s) time, we can compute the number #Emb(H, G).

Detecting subgraphs of bounded matching-split number
Jansen and Marx [25] extend the above approach and obtain an nO(s) time algorithm for the
decision problem Sub(H, G) when H has matching-split number s. In this case, we consider
a splitting set S of size s instead of a vertex-cover, that is, the graph M = H − S may have
isolated edges besides isolated vertices. Now the idea is to not only classify the vertices
v ∈ V (G) \ f(S) by their neighborhoods Nv = NG(v) ∩ f(S), but to also classify the edges
{u, v} ∈ E(G − f(S)) by their neighborhoods {Nu, Nv}. It then remains to find a matching
in G − f(S) that has as many isolated vertices and isolated edges as H − S, such that these
vertices and edges satisfy the neighborhood constraints in f(S). Jansen and Marx achieve
this by reduction to a colored matching problem.

Our algorithm
In our algorithm for Theorem 2, we need to overcome two challenges:
(a) Since counting embeddings is algorithmically more straight-forward than counting sub-

graphs, we would like to count embeddings and divide by the number of automorphisms
#Aut(H) as in Equation (2). However, since we are counting modulo 2t, the number
#Aut(H) mod 2t may be 0, and so the division in Equation (2) is impossible. (In fact,
even even numbers #Aut(H) have no inverse modulo 2t.)

(b) When mimicking Jansen and Marx’s detection algorithm, we cannot just count the
relevant matchings in G − f(S), since counting perfect matchings is #P-hard.

ESA 2021



34:8 Modular Counting of Subgraphs

Most of our effort focuses on overcoming (a): In Section 4.1, we show that every graph H

of matching-split number s has a splitting set R of size O(s2) that remains rigid under
automorphisms, i.e., any automorphism f of H must satisfy f(R) = R. In Section 4.2, we
show how to compute #Sub(H, G) if such a rigid splitting set R for H is given. Rather than
counting H-embeddings and attempting a division by #Aut(H), we use the rigidity of R to
keep track of the automorphisms of H in a more explicit way.

To overcome (b), we use a determinant-based algorithm [23] to compute the Hafnian over
a polynomial ring modulo 2t. We then reduce our constrained matching counting problem to
computing such Hafnians. This part of the algorithm can be found in the full version.

4.1 Rigidizing the splitting set
Let H be a graph with a splitting set S of size s, and let M = H − S be the remaining
graph of maximum degree 1; we speak of M as a matching, even though it may contain
isolated vertices. An automorphism f of H may map a vertex v ∈ S in the splitting set to
f(v) /∈ S. We show that if a splitting set of size s exists then there is also a rigid splitting
set R of size O(s2), i.e., such that every f ∈ Aut(H) satisfies f(R) = R. In fact, the following
algorithm can find such a set R.

Algorithm Rigidize(H) Given a graph H of matching-split number s, this algorithm computes
a rigid splitting set R ⊆ V (H) of size O(s2).
R1 (Find small splitting set.) Using brute-force, compute a set S ⊆ V (H) of size s such that

H − S is a matching.
R2 (Extend it to neighbors of low-degree vertices.) Let D ⊆ V (H) be the set of all vertices

whose degree in H is at most s + 1. Set T := S. While there is an edge {u, v} with
u ∈ T ∩ D and v ∈ T , add v to T .

R3 (Refine it.) Set R := T . For each component C of H[T ∩ D] with at most two vertices,
remove V (C) from R.

The following lemma captures useful properties of Rigidize. See the full version for a proof.

▶ Lemma 8. The algorithm Rigidize runs in time hO(s) where h = |V (H)|, and the output
set R ⊆ V (H) has the properties that |R| ≤ O(s2), that H − R is a matching, and that every
f ∈ Aut(H) satisfies f(R) = R.

4.2 Counting subgraphs with rigid splitting sets
We use the rigid splitting set R from Lemma 8 to compute the number of times H occurs
as a subgraph modulo a power of two. As a subroutine, we use an algorithm for counting
colored matchings modulo a power of two in a setting involving particular “color demands”.

▶ Definition 9. Let G be a graph, let C be a finite set of colors, and let c : V (G)∪E(G) → 2C

be a function that labels each vertex and edge with a subset of C. For any matching M , let
I(M) be the set of its isolated vertices. For a coloring cM : I(M) ∪ E(M) → C, the colored
matching (M, cM ) is permissible if cM (t) ∈ c(t) holds for all t ∈ I(M) ∪ E(M).

Color demands are functions DI , DE : C → N. The pair (M, cM ) satisfies the de-
mands DI , DE if, for each i ∈ C, the graph M contains exactly DI(i) isolated vertices v with
cM (v) = i and exactly DE(i) edges with cM (e) = i. Let M(G, c, DI , DE) be the set of all
permissible matchings (M, cM ) that satisfy the demand D.

As shown in the full version, we obtain the following algorithm as a corollary to Hirai
and Namba’s algorithm [23] for computing the Hafnian over polynomial rings modulo 2t.
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▶ Lemma 10. Given a graph G, permissible colors c : V (G) ∪ E(G) → 2C , color de-
mands DI , DE : C → N, and t ∈ N≥1, there is an algorithm that computes the number
|M(G, c, DI , DE)| mod 2t in time nO(t|C|).

Before we state the main algorithm, we introduce some basic group-theoretic notation.
Let R be a splitting set of H that satisfies f(R) = R for all f ∈ Aut(H). Let G be a graph
and let S ⊆ V (G) be a set with |S| = |R|. For an embedding σ ∈ Emb(H[R], G[S]) and
an automorphism φ ∈ Aut(H), we note that the function σ ◦ (φ↾R) is again an embedding
in Emb(H[R], G[S]). Indeed, we view this operation as a right-action of the group Aut(H)
on the set Emb(H[R], G[S]). We call two embeddings σ, σ′ ∈ Emb(H[R], G[S]) equivalent
if there exists φ ∈ Aut(H) such that σ′ = σ ◦ (φ↾R); this clearly defines an equivalence
relation. The equivalence class σAut(H) is called the orbit of σ under Aut(H). All orbits
have the same size. Let ES be a set of representatives for each orbit, that is, a maximal set
of mutually non-equivalent embeddings in Emb(H[R], G[S]).

We are ready to state the modular counting algorithm for s-matching-splittable subgraphs.

Algorithm ModCount(H, G, t) Given an s-matching-splittable graph H, a host graph G, and
an integer t ≥ 2, this algorithm computes the number #Sub(H, G) mod 2t.
C1 (Compute rigid splitting set.) Call Rigidize(H) to compute the set R.
C2 (Reduce to counting colored matchings.) For each S ⊆ V (G) with |S| = |R| (that is,

a possible image of R) and each representative embedding σ ∈ ES from H[R] to G[S],
we construct an instance (G − S, cσ, DI , DE) of colored matching with demands and use
Lemma 10 to obtain the number |M(G − S, cσ, DI , DE)| mod 2t:
a. (Set permitted colors.) Let C = 2R ∪

(2R

1
)

∪
(2R

2
)
. For each vertex v ∈ V (G) \ S, let

Nv ⊆ R be the vertices of R that hit NG(v)∩S under σ, that is, Nv = σ−1(NG(v)∩S).
Define cσ(v) = { N : N ⊆ Nv }. Moreover, for each {u, v} ∈ E(G − S), define
cσ({u, v}) = { {N, N ′} : N ⊆ Nu, N ′ ⊆ Nv }.

b. (Make demands.) The demands DI , DE : C → N depend only on H and R. For each
N ⊆ R, we let DI(N) be the number of isolated vertices v in H−R whose neighborhood
in H satisfies NH(v) ∩ R = N . Moreover, for all N, N ′ ⊆ R, we let D({N, N ′}) be the
number of edges {u, v} ∈ E(H − R) with {NH(u) ∩ R, NH(v) ∩ R} = {N, N ′}.

C3 (Sum up.) Output the sum modulo 2t of all integers returned by the queries in C2.

In the full version, we prove that ModCount satisfies the properties stated in Theorem 2.

5 Hardness of counting paths modulo two

In this section, we prove Theorem 3, that counting k-paths modulo 2 is ⊕W[1]-hard. We
first formally introduce this and some intermediate problems.

The length of a path is the number of its edges. For a graph G and vertices s, t ∈ V (G), an
s, t-path is a simple path from s to t. For a computable, strictly increasing function f : N → N,
we define f -Flexible Path to be the problem that is given (G, s, t, k) to decide whether there
exists any s, t-path in G whose length ℓ satisfies k ≤ ℓ ≤ f(k). When id denotes the identity
function, then Path (also known as k-Path or Longest Path) is defined as id-Flexible Path.
We similarly define Directed f -Flexible Path and Directed Path for directed graphs, and we
define the counting and parity versions of these problems in the canonical manner.

We start our reduction at the vertex-colorful subgraph problem ⊕VertexColorfulSub(H)
for a class H of unbounded tree-width, which is ⊕W[1]-hard by Lemma 5. The class we
choose consists of connected, almost 4-regular graphs without non-trivial automorphisms;
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V5

G[V1 ∪ V2]

M0

s t

M1 Mk

G[V2 ∪ V3]

Figure 3 The construction of the graph G′ from the graphs H and G. The homomorphism from
G to H is indicated by colors. A colorful H-subgraph H ′ in G and the canonical path corresponding
to H ′ in G′ are highlighted in turquoise. Gadget edges are hinted at as semi-transparent curves.
Except for (half of the) gadget edges, all edges are oriented from left to right.

here, we say that a graph is almost 4-regular if it can be obtained from a 4-regular graph
by deleting one edge. The core part of the reduction is in Lemma 11, where we reduce to
counting paths of somewhat flexible length in a directed graph (modulo 2). From there, we
reduce to the familiar k-path problem in undirected graphs using standard tricks.

▶ Lemma 11. For any class H of connected, almost 4-regular graphs without non-trivial
automorphisms, there is a computable, strictly increasing function f such that there is
parsimonious polynomial-time fpt-reduction from ⊕VertexColorfulSub(H) to ⊕Directed f -
Flexible Path.

Proof. Let H ∈ H and G be the undirected graphs that are given as input, where G is given
with disjoint color classes Vu for u ∈ V (H). Let k = |E(H)|. Since H is connected and almost
4-regular, it has an Eulerian path u0, u1, . . . , uk−1, uk such that E(H) = { {ui, ui+1} : i ∈
{0, . . . , k − 1} }. Every vertex of H appears exactly twice on the Eulerian path, and u0
and uk are the two different degree-3 vertices of H. Our goal is to construct a directed
graph G′, such that ⊕VertexColorfulSub(H, G) = ⊕Directed f -Flexible Path(G′) holds for
a suitable f .

Intuitively, the graph G′ “visits” every color class Vui of G two times according to the
Eulerian path in H. Before we give a formal construction, we give an overview; see also
Figure 3. Essentially, the graph G′ is a sequence of directed bipartite graphs B0, . . . , Bℓ whose
edges are all directed from left to right. For a bipartite graph B, we write L(B) and R(B) for
its left and right part, respectively. We have R(Bj) = L(Bj+1) for all j ∈ {0, . . . , ℓ−1}. Each
Bj is either a perfect matching Mi or a graph Gi that is a directed copy of G[Vui−1 ∪ Vui

].
(Note that Gi is indeed bipartite, since G is H-colored and H contains no self-loops.)
Pictorially, the sequence of bipartite graphs is M0G1M1 . . . Mk−1GkMk. We also add some
additional gadget edges between all Mi and Mj with i ̸= j and ui = uj ; note that every Mi is
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paired with exactly one Mj in this way, because the Eulerian path visits every vertex exactly
twice. The gadget edges are the only edges that may be directed from right to left and that
connect non-adjacent layers.

The paths p in G that we wish to count modulo two should correspond to the colourful
H-subgraphs of G. The path p is supposed to run from left to right through G′; intuitively,
the edge that the path picks at layer Mi corresponds to the vertex of Vui ⊆ V (G) that
ui ∈ V (H) is mapped to in the subgraph embedding, and the edge that the path picks at
layer Gi corresponds to the edge of G that ui−1ui ∈ E(H) is mapped to in the subgraph
embedding. The gadget edges ensure that those paths cancel modulo two that do not
consistently select the “same” vertex in Vui

and Vuj
when ui = uj .

We now describe the construction of G′ in detail.
1. Graph edges. For each i ∈ {1, . . . , k}, let Gi be a fresh copy of G[Vui−1 ∪ Vui

], renamed
so that L(Gi) = {i} × Vui−1 and R(Gi) = {i} × Vui , and directed from left to right.

2. Matching edges. For each i ∈ {0, . . . , k}, let Mi be the canonical perfect matching
between L(Mi) = {i} × Vui and R(Mi) = {i + 1} × Vui , and directed from left to right.
Note that L(Mi) = R(Gi) holds for i ∈ {1, . . . , k} and R(Mi) = L(Gi+1) holds for
i ∈ {0, . . . , k − 1}.

3. Gadget edges. For all i, j ∈ {1, . . . , k} with i < j and ui = uj , note that L(Mi) =
{i} × Vui

and L(Mj) = {j} × Vui
. We add the canonical bidirected perfect matching

between L(Mi) and L(Mj). Similarly, we add the canonical bidirected perfect matching
between R(Mi) and R(Mj).

4. Source/sink. Let s be a new vertex and add all edges (s, v) for v ∈ L(M0). Let t be a
new vertex and add all edges (v, t) for v ∈ R(Mk+1).

5. Parameters. Finally, we set k′ = 2k + 2 and f(k′) = 6k + 3 so that we are counting all
s, t-paths whose length is between k′ and f(k′).

This finishes the construction of G′. Note that G′ \ {s, t} is indeed a sequence B0 . . . Bℓ of
bipartite graphs with some additional gadget edges, where ℓ = 2k. We define the j-th layer
of G′ as the set Lj = L(Bj) for j ≤ ℓ and Lℓ+1 = R(Bℓ). Recall that Lj = R(Bj−1) holds
for j > 0.

We describe the canonical solutions in the output of the reduction.
To this end, let H ′ be an H-subgraph of G that is colorful. This means that H is

isomorphic to H ′ and that the “coloring” homomorphism c : V (G) → V (H) is bijective
on V (H ′). Moreover, c restricted to V (H ′) is in fact an isomorphism: It must map non-edges
to non-edges because E(H) and E(H ′) have the same size. Let ϕ : V (H) → V (H ′) be the
inverse of c restricted to V (H ′) and note that ϕ is an isomorphism from H to H ′. Moreover,
because H has non-trivial automorphisms, this isomorphism ϕ is unique for H ′.

We define the canonical s, t-path spt in G′ corresponding to H ′: The path p visits exactly
one vertex from each layer from left to right; each layer has the form Lj = {i} × Vu for some
i and u, and p chooses the vertex (i, ϕ(u)) ∈ Lj in this layer. Note that this determines all
vertices of p. We claim that V (p) indeed induces a path on the graph and matching edges.

To show that p is a path, let j ∈ {0, . . . , ℓ}. We claim that the two vertices in V (p)∩V (Bj)
are adjacent in Bj . If Bj is one of the matching graphs, then L(Bj) = {i} × Vui

and
R(Bj) = {i + 1} × Vui

for some i. Since the perfect matching is canonical, there is indeed
an edge from (i, ϕ(ui)) to (i + 1, ϕ(ui)) in Bj . Otherwise, Bj is one of the graph copies,
say L(Bj) = {i} × Vui−1 and R(Bj) = {i} × Vui

. Recall that ui−1ui is part of the Eulerian
path and thus an edge of H. Since ϕ is a graph homomorphism from H to G respecting the
coloring, we have that ϕ(ui−1)ϕ(ui) is an edge in G[Vui−1 ∪ Vui

]. Since Bj was a copy of this
graph by construction, there is an edge from (i, ϕ(ui−1)) to (i, ϕ(ui)). Overall, we get that
spt is an s, t-path in G′, and its length is ℓ + 2 = 2k + 2 = k′; this is the canonical path
corresponding to H ′.
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Mi Mj

Figure 4 The left drawing shows the local configuration around the four vertices of G′ that
represent a vertex x ∈ Vu from G. These four vertices are contained in two matchings Mi and Mj

for ui = uj = u. Thick edges are contained in Mi or Mj while light edges are gadget edges. Note
that (i, x) and (j, x) have only the depicted outgoing edges in the entire graph G′, and (i + 1, x) and
(j + 1, x) have only the depicted incoming edges. The four drawings on the right depict (up to the
symmetry of exchanging i and j) all different ways in which paths might not be canonical: Either
they illegally use the gadget edges to jump from Mi to Mj as in (J1) or (J2) and continue from
there, or they do not consistently visit the corresponding edges in Mi and Mj , which allows them to
use the gadget edges to either take (B2) or not take (B1) a short detour from Mi to Mj .

In summary, every vertex-colorful H-subgraph H ′ in G defines a unique canonical s, t-
path in G′, which implies that the number of canonical paths is equal to the number of
H-subgraphs. We now characterize canonical paths slightly differently: Let p be any s, t-path
in G′ that picks exactly one vertex of each layer from left to right with the additional
property that it consistently picks the “same” vertex from each color class. That is, whenever
p picks (i, x) in layer {i} × Vu and (j, y) in a layer {j} × Vu (with the same Vu), then x = y.
Such a path p describes a set of |V (H)| vertices and k edges in G that make up a colorful
H-subgraph H ′ of G, which means that every such path is canonical.

Let P be the set of all s, t-paths whose length r satisfies k′ ≤ r ≤ f(k′). The central claim
is that the number of non-canonical paths in P is even. For this, we construct a fixed-point
free involution π on non-canonical paths.

First we focus on paths that are jumpy (cf. Figure 4): Let i, j ∈ {0, . . . , k} with i ̸= j and
ui = uj . By construction, we added gadget edges between Mi and Mj . Recall that vertices
have the form

(i, x) ∈ L(Mi), (i + 1, x) ∈ R(Mi), (j, x) ∈ L(Mj), (j + 1, x) ∈ R(Mj).

A path p ∈ P is jumpy at i, j, x if
(J1) p uses the edge from (i, x) to (j, x) but not the edge from (j + 1, x) to (i + 1, x), or
(J2) p uses the edge from (i + 1, x) to (j + 1, x) but not the edge from (j, x) to (i, x).

If p is jumpy (for some choice of i, j, x), we define π(p) as follows: First we identify the
lexicographically first position i, j, x where p is jumpy. Then we exchange state (J1) with
state (J2) at that position. Note that (J1) implies that p uses the Mj-edge from (j, x) to
(j + 1, x), since (j, x) has no other outgoing edges, and (J2) implies that p uses the Mi-edge
from (i, x) to (i + 1, x), because (i + 1, x) has no other incoming edges; we swap these edges
from Mi and Mj too when applying π. Now π is a fixed-point free involution on jumpy
paths, and note that π(p) has the same length as p.

Since jumpy paths will cancel out when counting modulo two, we can focus on non-
canonical paths that are not jumpy. Paths p that are not jumpy have the following property:
A gadget edge from (i, x) on the left side of Mi to (j, x) on the left side of Mj is used by p if
and only if the corresponding edge from (j + 1, x) to (i + 1, x) on the right side is used.
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Next we consider paths that are bad (again, cf. Figure 4): A path p ∈ P is bad at i, j, x

with ui = uj if
(B1) p uses the Mi-edge from (i, x) to (i + 1, x) but not the Mj-edge from (j, x) to (j + 1, x),

or
(B2) p does not use the Mi-edge from (i, x) to (i + 1, x) but does use the Mj-edge from

(j, x) to (j + 1, x).
We define π(p) for a bad path p by finding the first position i, j, x at which p is bad, and
switching between these two states. Say, p was in state (B1) at i, j, x as depicted in the
figure, then π(p) is in state (B2) at i, j, x, and π(p) is exactly two edges longer than p.

We claim that all bad paths that are not jumpy pair up in this manner, without having
to consider arbitrarily long paths. Indeed, since p is not jumpy, when we look at the vertices
that p traverses, we are for the most part traversing the layers in a monotone order, except
for potential short two-vertex detours in bad positions as depicted in the figure as (B2). More
precisely, for every vertex v on p, if v ∈ Lj for j < ℓ, then either the next vertex is in Lj+1
or the third vertex after it is in Lj+1. This means that the path moves to the right by one
layer at least once every 3 vertices, and thus paths that are not jumpy have length at most
3ℓ + 3 = 6k + 3 = f(k′), accounting for ℓ + 1 matching or graph edges and up to 2ℓ gadget
edges that p might take in the short detours, and the two edges at the source and sink.

Finally, if an s, t-path is neither jumpy nor bad, then it does not use any gadget edges,
and thus is canonical. Since all jumpy or bad paths cancel, the number of s, t-paths of length
between k′ and f(k′) in G′ is the number of canonical paths modulo two. ◀

For completeness, we include two simple reductions: First from the flexible-length to the
fixed-length problem in directed graphs, then from the directed to undirected problem.

▶ Lemma 12. Let f : N → N be computable and strictly increasing. There is a parsimonious
polynomial-time fpt-reduction from #Directed f -Flexible Paths to #Directed Paths.

▶ Lemma 13. #Directed Paths admits a parsimonious poly-time fpt-reduction to #Paths.

With all these prerequisites collected, we can complete the proof.

Proof of Theorem 3. Let H be the class of all graphs H that are connected, almost 4-regular,
and whose automorphism group has size one. We use the probabilistic method to argue
that the tree-width of graphs in H is not bounded. With probability 1 − o(1) as h → ∞,
random 4-regular graphs with h vertices are connected [41, Theorem 2.10], they have no
nontrivial automorphisms [27], and they are almost Ramanujan [24, Theorem 7.10], that is,
their second-largest eigenvalue in absolute value satisfies λ ≤ 2

√
3 + o(1) < 3.5. By a union

bound, H has all three properties simultaneously with probability 1 − o(1). By Cheeger’s
inequality [24, Theorem 4.11], we have

min
S⊆V (H),|S|≤ 1

2 h

|E(S, S)|
|S|

≥ 1
2(4 − λ) > 0.1 ,

that is, the edge expansion is bounded away from zero, which implies that the tree-width
of H is at least linear in h (see, e.g., [12, Exercise 7.34]). Now, if we remove an arbitrary
edge e from H, we obtain an almost 4-regular graph that remains connected (since H is
Eulerian) and whose tree-width has decreased by at most 1. Moreover, suppose that π is
an automorphism of H − e. Since π preserves degrees, it has to map the vertex set e to e.
But then π is an automorphism of H, too, which implies that π is the trivial automorphism
and the automorphism group of H − e has size one as required. Thus, H contains graphs of
arbitrarily large tree-width.
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By Lemma 5, ⊕VertexColorfulSub(H) is ⊕W[1]-hard under parsimonious fpt-reductions.
If there is a parsimonious fpt-reduction from problem #A to problem #B then in particular
the parity version ⊕A reduces to ⊕B. Writing ⊕A ≤ ⊕B we can summarize the chain of
reductions in Lemmas 11–13 as

⊕VertexColorfulSub(H) ≤ ⊕Directed f -Flexible Paths ≤ ⊕Directed Paths ≤ ⊕Paths .

This proves the ⊕W[1]-hardness of ⊕Paths. The containment follows from the standard
fpt-reduction from #Paths to #Clique, which is parsimonious. Overall, the claim follows. ◀

6 Conclusion

We conducted an initial investigation of modular subgraph counting, leading to the partial
classification depicted in Figure 1. To obtain a complete picture, the following conjecture
needs to be addressed.

▶ Conjecture 14. For any computable pattern class H:
If H has unbounded matching-split number, then the problem ⊕Sub(H) is ⊕W[1]-complete.
If H has unbounded vertex-cover number, then #Sub(H) mod q for fixed q ∈ N is
ModpW[1]-complete for any odd divisor p of q.

An appropriate transfer of the subgraph-homomorphism framework to modular counting
is likely to help in settling this conjecture. Partial results towards this have been obtained
by Peyerimhoff et al. [33].
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