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Abstract

Eye-tracking data from reading provides a structured signal with a fine-grained

temporal resolution which closely follows the sequential structure of the text. It is

highly correlated with the cognitive load associated with different stages of human,

cognitive text processing. While eye-tracking data has been extensively studied to

understand human cognition, it has only recently been considered for Natural Language

Processing (NLP). In this review, we provide a comprehensive overview of how gaze

data is being used in data-driven NLP, in particular for sequence labelling and sequence

classification tasks. We argue that eye-tracking may effectively counter one of the core

challenges of machine-learning-based NLP: the scarcity of annotated data. We outline

the recent advances in gaze-augmented NLP to discuss how the gaze signal from human

readers can be leveraged while also considering the potentials and limitations of this

data source.

Keywords: eye tracking, gaze, natural language processing, natural reading,

human text processing, sequence labelling, sequence classification
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Sequence Labelling and Sequence Classification with Gaze: Novel Uses of Eye-Tracking

Data for Natural Language Processing

Introduction

During normal, skilled reading, the eyes move sequentially through the text,

fixating one word at a time. In numerous, controlled psycholinguistic studies,

word-based eye movement metrics have proven to be strongly correlated with high-level

text processing, such as syntactic and semantic structures (Rayner, Sereno, Morris,

Schmauder, & Clifton Jr, 1989).

Natural Language Processing (NLP) is an interdisciplinary field of linguistics and

computer science that, e.g., tries to solve sequence labelling and sequence classification

tasks. Such tasks are largely accessed automatically when humans read, e.g., named

entity recognition and syntactic analysis. Recently, NLP has started to discover the

potentials of gaze data for improving the performance of machine learning models. Such

data is referred to as fortuitous data by Plank (2016b). This term covers “non-obvious

data that is hitherto neglected, hidden in plain sight or raw data that needs to be

refined” and is suggested to be leveraged when annotated resources are scarce.

This review is divided into four sections. We will first introduce basic concepts

concerning eye-tracking data. Then, it provides a summary of the largest available gaze

resources of naturalistic reading in English. The main part of the article is a

comprehensive overview of recent advances in NLP concerning sequence labelling and

sequence classification using gaze data. Finally, we will summarise observations across

the studies of the survey on how to include eye movements in NLP and discuss the

potentials and limitations of the data source.

Scope

The scope of this review is data-driven NLP, limited to sequence labelling and

sequence classification tasks on English text using eye movements from adults

performing naturalistic reading. Naturalistic reading denotes reading of naturally
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occurring text without time constraints, task solving1 or other reading constraints, such

as limiting the preview of the following word. Therefore, we do not cover the fairly large

body of work on annotators’ eye movements (see review by Mishra and Bhattacharyya

(2018)).

We will focus on studies where an actual evaluation of an NLP sequence labelling

or sequence classification task has taken place. At the beginning of each section, we will

present and discuss the experimental or large-scale psycholinguistic studies that describe

correlations between eye movements and the linguistic phenomena under consideration.

This review will not cover dialogue, studies modelling reader attributes from eye

movements, or information retrieval studies.

A Very Brief Introduction to Eye Movements

Contrary to the perceived experience, the reader’s eyes do not glide smoothly

across the lines of the text while reading. Instead, the eye movements alternate between

fixating regions of the text and performing rapid, ballistic movements, named saccades.

The fixations last on average 200-250ms, with large temporal variations. Conversely,

saccades are much shorter, lasting around 20-40ms and typically move the eyes 7-9

characters forward. During saccades, the eye does not take in information. In the

course of normal reading, around 10% of the saccades, often unconscious to the reader,

move back to a previously read part of the text for further processing, and possibly

re-processing. These movements are called regressions. Eye movements thereby allow

studying early and late cognitive processing separately using a range of well-established

word-based metrics. Eye movements represent therefore one of the richest behavioural

data source for human text processing during reading. The section “Other Human Data

Sources” presents a comparison to other behavioural measures in NLP.

Moreover, it is useful to differentiate between low- and high-level factors both

influencing how the eyes act during reading. Low-level processing accounts for how the

eyes perceive and decode text. High-level processes encompass syntactic and semantic
1In some studies, subjects may answer comprehension questions or solve other tasks after reading,

but when this is separated from the reading process, we still consider it naturalistic reading.
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processing, which are of interest to NLP. However, the interaction between low and

high-level factors should be included in NLP models.

Low-Level Processing

Due to the anatomy of the eye, readers can only see a small part of the text

during each fixation. This asymmetric area extends, for a skilled reader of an alphabetic

language arranged from left to right, 3-4 characters to the left of the fixation point and

14-15 characters to its right (Rayner, Well, & Pollatsek, 1980). In practice, words are

identified in an even smaller area extending merely 7-8 characters to the right of the

fixation point, called the perceptual span (McConkie & Rayner, 1976). The saccade

distance and the size of the perceptual span vary as a function of text difficulty and

reading skill.

High-Level processing

Fixation durations are shorter if a word is easy to identify and understand

(Clifton, Staub, & Rayner, 2007). “Easy to identify and understand” extends over a

large range of high-level effects, e.g., predictability from context (Inhoff, 1984), age of

acquisition (Kemper & Liu, 2007), familiarity (Juhasz & Rayner, 2003; Williams &

Morris, 2004), and morphology (Hyönä, Bertram, & Pollatsek, 2004). One of the most

studied effects is the influence of word frequency on fixation durations. It has been

observed that readers tend to look longer at infrequent words and/or long words

(Rayner, 1977). Nearly 70% of the variance in mean fixation duration can be explained

by word length and word frequency (Just & Carpenter, 1980).

What can be learned from the basic understanding of eye movements?

When not in a controlled experimental setup, one challenge about eye movements

is that they reflect cognitive processing, but not which process. Hence, gaze is an

indirect measure of cognitive processing. It will, therefore, help machine learning models

to identify the signal in the eye movements if confounding high- and low-level effects are

also included. Due to spill-over and preview effects, it is also useful to provide
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information about the previous and subsequent words and fixations when using a model

where this is not already accounted for.

Large, English Eye-Tracking Corpora

The text stimulus used in most psycholinguistic studies consists of constructed

sentences that occur infrequently in natural text and that are often read out of context.

This is not favourable for NLP purposes that generally favour large quantities of

naturally occurring text.

An overview of the available, large (>2000 words), English corpora of naturalistic

reading of naturally occurring text by native speakers is provided in Table 1. Some

corpora, such as the Dundee Corpus (Kennedy, Hill, & Pynte, 2003) and the GECO

corpus (Cop, Dirix, Drieghe, & Duyck, 2017) also contained data in another language or

read by non-native subjects. These data are omitted from the table.

Using Gaze for Sequence Labelling and Sequence Classification

This section is thematically ordered according to NLP topics, where relevant work

on sequence labelling and sequence classification tasks using gaze data has been

accomplished. Each subsection will begin with a summary of psycholinguistic findings,

relevant to the considered topic, both experimental and on larger quantities of

naturalistic reading data.

Text Complexity

Text complexity covers a range of textual features on global, syntactic and word

level. It applies to well-edited text as well as irregularities. Furthermore it interact with

reading skill, thereby linking it to text comprehension. Text comprehension has been

thoroughly studied using eye movements (Rayner, Chace, Slattery, & Ashby, 2006;

Vasishth, von der Malsburg, & Engelmann, 2013). Processing difficulties have an

impact on regressions, saccade distance, and fixation durations. The psycholinguistic

studies on text comprehension have motivated the use in NLP of gaze for the evaluation

of text complexity. For example, gaze has been employed for scoring the readability,
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grammaticality or acceptability on its own or in the context of evaluating the output

from automatic systems.

Diverse machine learning approaches have allowed leveraging the correlation of

fixation duration-based metrics and readability. Mathias et al. (2018) improved text

quality evaluation by using gaze features to represent words. Specifically, they predicted

text quality attributes (organization, coherence, cohesion, and quality) from fixation

and regression features, as well as from textual features using a single-layer feed-forward

neural network. Their best model combined gaze features with textual features. While

directly using gaze as word-based features is the most straight-forward input method, it

requires also the most eye-tracking data. The study by Mathias et al. (2018), therefore,

required a study-specific data collection. Singh, Mehta, Husain, and Rajakrishnan

(2016) used instead predicted gaze metrics learned from human reading as features to

predict the readability, hence alleviating the need to collect new data for each

application. A system was first trained on the Dundee Corpus (Kennedy et al., 2003)

and used to predict gaze features on the target text. The predicted gaze features were

then used as features in a logistic regression classifier to predict sentence complexity.

Multitask learning (Caruana, 1997) represents another method that alleviates the need

for gaze data on the target text. González-Garduño and Søgaard (2017) showed that

multitask sentence-level text readability classification performed better than a

single-task setup. Their best model was a multi-layer perceptron where readability and

averaged total fixation duration were predicted simultaneously.

Evaluating the Complexity of Automatically Generated Text. Human

evaluation is commonly used as a reference when exploring how to best evaluate the

output from automatic systems (Chaganty, Mussmann, & Liang, 2018; Resnik & Lin,

2010). This is, however, very expensive. As a proxy, the reader’s eye movements have

been used instead as a signal to evaluate the quality of texts generated by computer

systems, e.g., machine translations and automatic summarisations. In this context, gaze

can be considered as noisy, human annotations. Results suggest that the eye movements

reveal the location of machine translation errors (Bremin et al., 2010; Doherty &
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O’Brien, 2009) and that in some cases gaze metrics may even help distinguish the type

of error (Stymne et al., 2012). Klerke, Castilho, Barrett, and Søgaard (2015) found that

reading metrics were better proxies for the usability of translated text than the

standard metric, i.e., bilingual evaluation understudy score (Papineni, Roukos, Ward, &

Zhu, 2002).

Klerke, Alonso, and Søgaard (2015) used gaze to evaluate the output of an

automatic sentence compression system; grammatical as well as ungrammatical. The

original, uncompressed sentence and a human-made compressed version of the sentences

were included as references. They found that the reading speed and regression features

were the most informative gaze features for detecting ungrammaticality in the

automatically compressed sentences. In a multitask learning setup, including a gaze

feature as an auxiliary task, improved the performance of a sentence compression

system (Klerke, Goldberg, & Søgaard, 2016).

Scanpath Metrics. The scanpath is the trajectory of the eyes through the text.

The scanpath over a text sequence has also been summarised in quantitative metrics,

mainly for its expressivity of text comprehension problems. Scasim is a sentence-level

score that was used to detect irregularities in the scanpath during reading

(von der Malsburg & Vasishth, 2011). Mishra, Kanojia, Nagar, Dey, and Bhattacharyya

(2017) defined another scanpath metric, scanpath complexity, that correlated with

different measures of lexical and syntactic complexity as well as standard readability

metrics. Though the task is framed as modelling reading effort, it is relevant for text

complexity evaluation as well. Wallot, O’Brien, Coey, and Kelty-Stephen (2015) also

showed that the degree of power-law scaling in raw eye movements was predictive of

text comprehension.

Part-of-Speech

There is not a lot of literature concerning how the cognitive processing of word

classes is reflected in the eye movements. But Carpenter and Just (1983) noted that

38% of function words are fixated and 83% of content words are fixated. There is,
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however, evidence that the probability of a word class given the preceding context is

negatively correlated with the fixation duration/probability (Bauman, 2013; Demberg &

Keller, 2008; Pynte & Kennedy, 2007). For French, the gaze time on a target word

depended on the degree of semantic relatedness to two nouns/adjectives/verbs

belonging to a prior part of the sentence and located at varying distances. Only verbs

were found to have an effect for the longest distance which suggest that nouns and

adjectives exert their influence at a local level, and verbs at a more distant level (Pynte,

New, & Kennedy, 2009). None of the above-mentioned studies tried to distinguish or

characterise the reading of a broad range of part-of-speech (POS) classes, but they all

showed that the processing of word classes is dependent on the context.

Results from NLP suggest that eye movements can disambiguate some word

classes when gaze features were used as features in a supervised POS tagger (Barrett &

Søgaard, 2015a). The tagger was a Perceptron-based model with dropout. Gaze

features were used as multi-dimensional, continuous representations of each word type

similarly to word embeddings. Similar representations were also useful for POS tagging

when employed in an unsupervised sequence induction algorithm, i.e., a hidden Markov

model (Barrett, Bingel, Keller, & Søgaard, 2016). A similar architecture was employed

in Barrett, Keller, and Søgaard (2016) where results suggest that such gaze correlations

may transfer across related languages. Here, English gaze data was used to improve

POS induction for French. Klerke and Plank (2019) also found that predicting a gaze

feature as an auxiliary task may help POS tagging a multitask learning setup.

Syntax

Clifton et al. (2007) presented an exhaustive survey over higher-level effects in

psycholinguistic studies of human reading. Here, all four studies on syntactic complexity

in sentences without syntactic ambiguity found an effect of syntactic complexity on

early gaze measures (Hyönä & Vainio, 2001; Rayner, Sereno, et al., 1989; Staub,

Clifton Jr, & Frazier, 2006; Vainio, Hyönä, & Pajunen, 2003). This was also supported

by results from a large-scale study: Demberg and Keller (2008) found that a measure of
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syntactic complexity, namely integration cost (Gibson, 2000), was positively correlated

with fixation duration for nouns. Hence, intervening grammatical structures between

the head and the dependant slowed down the parsing of the sentence during reading.

In the field of NLP, Barrett and Søgaard (2015b) showed that token-based eye

movement features could, to some extent, disambiguate four syntactic roles for nouns

using a logistic regression classifier. They also demonstrated that word-type-based gaze

features helped supervised dependency parsing better than pre-trained word

embeddings. Barrett, González-Garduño, Frermann, and Søgaard (2018) used gaze

features combined with prosodic features on word-type level in an unsupervised

sequence labelling algorithm, a hidden Markov model, for syntactic chunking. This

representation was also found to be better than pre-trained word embeddings. Strzyz,

Vilares, and Gómez-Rodríguez (2019a) combined many of the elements from these

studies in a multitask recurrent neural network for dependency parsing using

hard-parameter sharing. Here, dependency parsing was, rather unconventionally,

treated as a sequence labelling problem for a recurrent neural network to model.

Following Strzyz, Vilares, and Gómez-Rodríguez (2019b), they predicted two main

tasks; the index of the head and the relation between the head and the dependent. The

auxiliary task was also a sequence labelling problem of predicting one or more of 12

discretised gaze features (up to four at a time). An auxiliary task for each feature was

instantiated. They experimented both with joint and disjoint data for the main task

and the auxiliary task and found small, but consistent improvements for both setups.

The best feature(s) varied on the test and the development set but overall mean fixation

duration and context features (fixation duration/probability on the word before or after

the target word) were most helpful.

Pragmatics: Sarcasm Detection

Inferring pragmatics from eye movements may depend on internal attributes of

the reader, such as social knowledge, mental state and attentiveness to a higher degree

than, e.g., syntactic processing. We nevertheless include this line of work, assuming
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that the main objective of sarcasm detection is to learn attributes of the text and not

the reader. There are several, conflicting cognitive hypotheses and evidence concerning

the processing of irony, some saying that irony is always processed twice, and hence

slower (Grice, 1975) and some saying that only in specific cases, irony is processed

slower (Filik, Leuthold, Wallington, & Page, 2014; Gibbs Jr, 1994; Gibbs, 1986; Ivanko

& Pexman, 2003).

There is evidence that eye movements can help to predict whether a reader caught

the sarcastic meaning of a sentence or not. Most approaches explore the type of sarcasm

that is related to incongruity with the context. For example, Mishra, Kanojia, and

Bhattacharyya (2016), Mishra, Kanojia, Nagar, Dey, and Bhattacharyya (2016a) used a

set of scanpath-based features on sentence-level for binary sarcasm classification, and

show improvements over non-gaze features by supervised machine learning algorithms.

The best model used gaze features along with textual features. All approaches relied,

however, on manual feature engineering. To overcome the problem of manual feature

engineering, features from the scanpath were used to train a convolutional neural

network for sarcasm classification (as well as sentiment classification)(Mishra, Dey, &

Bhattacharyya, 2017). The learned features outperformed the manually engineered gaze

features used by Joshi, Sharma, and Bhattacharyya (2015), Mishra et al. (2016a), and a

baseline convolutional neural network which only relied on the textual input.

Named Entity Recognition and Relations in Text

There are various pieces of evidence in favour of using eye-tracking data for named

entity recognition (NER): word familiarity and predictability had a negative effect on

fixation duration. Additionally, reading patterns contain indications of syntactical

categories (see the section “Part-of-Speech”). This indicates that the reading of

unfamiliar proper nouns (such as names for persons, organisations and locations, i.e.

named entities) may have a distinct reading pattern. Tokunaga, Nishikawa, and

Iwakura (2017) analysed eye tracking signals during the annotation of named entities in

order to extract useful features for NER. Their work shows that humans took a broad
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context into account to identify named entities, including predicate-argument structure.

This hints to the usefulness of eye tracking recordings of full sentences for this task.

Hollenstein and Zhang (2019) leveraged eye movement data from three gaze

corpora and concatenated character, word and gaze feature vectors as input to a

recurrent neural network for named entity recognition.

Gaze may also be used to detect relations in text: results from the statistical

analysis of Jaffe, Shain, and Schuler (2018) suggested that gaze might assist co-reference

resolution because entities with more mentions are processed faster. Moreover Yaneva,

Evans, Mitkov, et al. (2018) showed that eye movements were useful for classifying

referential and non-referential uses of it and Cheri, Mishra, and Bhattacharyya (2016)

showed that regression features specifically could improve coreference classifiers.

Multiword Expressions

Multiword expressions vary in their linguistic properties but they are perceived as

highly conventional by native speakers (Siyanova-Chanturia, 2013). They pose

challenges for, e.g., machine translation and it is, therefore, useful to detect them

automatically. Multiword expressions are an example of eye movement processing on

the super-word level. In behavioural eye-tracking experiments, the entire multiword

expression was found to have a processing advantage over novel strings of language

(Schmitt & Underwood, 2004; Yaneva, Taslimipoor, Rohanian, et al., 2017). Rohanian,

Taslimipoor, Yaneva, and Ha (2017) found that multiword expressions could be

predicted by a conditional random field from gaze features from both native and second

language speakers equally, where late processing measures achieved better results than

early measures.

Sentiment Classification and Other Sequence Classification Tasks

Detecting semantic characteristics of sentences and contextual connotations of

words from eye movements is dependent on the subjectivity and general knowledge of a

reader. Nevertheless, not only could eye- tracking features be used to improve sentiment

analysis on the sentence level (Mishra, Kanojia, Nagar, Dey, & Bhattacharyya, 2016b),
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but eye-tracking features could be learned directly from scanpaths (Mishra, Dey, &

Bhattacharyya, 2017)2. Barrett, Bingel, Hollenstein, Rei, and Søgaard (2018), Long,

Lu, Xiang, Li, and Huang (2017), Long, Xiang, Lu, Huang, and Li (2019) used gaze to

weigh which words (and for the two former: also sentences) got more attention by a

recurrent neural network classifier for sentiment classification. Barrett, Bingel,

Hollenstein, et al. (2018) also showed that this approach worked for grammatical error

detection and hate speech detection.

How to Use Gaze for NLP

This section contains an examination on how to use gaze for NLP based on

observations across the NLP studies from the survey above.

Which Gaze Features?

All NLP studies that represent gaze as word representations use several gaze

features. In this exhaustive survey, the reviewed studies which directly incorporate gaze

as multidimensional, continuous features, use between 4 and 34 features.

Several NLP studies tried to identify the best combination of gaze features by

systematically grouping them. In most studies, the best results were obtained by using

all the gaze features, e.g., for multiword expression prediction (Rohanian et al., 2017),

named entity recognition (Hollenstein & Zhang, 2019) and POS induction (Barrett,

Bingel, Keller, & Søgaard, 2016). When studying the contribution of individual gaze

features, Barrett and Søgaard (2015a, 2015b), Mishra et al. (2016b) found that the

signal is distributed over many eye movement features for classification of POS,

grammatical function, sentiment, and sarcasm. The optimal eye-tracking features

depend on the task but for complex phenomena, the cognitive processing seems to be

distributed over a wide range of word-level, eye-tracking features.

In all studies that did not use deep neural architectures, the eye movement

features were always combined with textual features. The textual features appear to

supplement eye movements, thus improving the performance of the model. Mishra et al.
2This approach is already introduced in the section “Sarcasm”
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(2016b) systematically combined eye movement features with sentiment, sarcasm, irony,

and thwarting related features, and features related to reading difficulty. They find that

combining all feature groups overall improve the prediction of sarcasm and sentiment.

Similarly, Yaneva, Evans, Mitkov, et al. (2018) increased the accuracy for classifying

referential uses of it by combining eye movements combined with linguistic features.

The best model in Barrett, González-Garduño, et al. (2018) for POS induction used

pre-trained word embeddings combined with eye movement features.

Deep recurrent neural architectures automatically learn the textual feature

weights, so for these models, manually engineered textual features are not required

(e.g., Hollenstein and Zhang (2019), Strzyz et al. (2019a)).

Mishra, Dey, and Bhattacharyya (2017) presented a promising approach where

the gaze representation is learned in a convolutional neural network from the raw

scanpath instead of – as all the remaining studies in the survey – relying on manually

selected gaze features. This approach yielded better performance for sentiment and

sarcasm detection than using manually selected features.

How to Include Gaze Features for Training and Testing

There are several ways to include eye movements in NLP models, some of which

also alleviate the need to have gaze features at test time. Currently, limited amounts of

available eye-tracking data restrict the training and evaluation of NLP models.

The gaze features can simply be added to the word-based features as

multi-dimensional vectors representing each word (Barrett & Søgaard, 2015a; Rohanian

et al., 2017; Yaneva, Evans, Mitkov, et al., 2018). However, this approach would also

require gaze features for the test set which does not scale well to real-world

applications. Barrett, Bingel, Keller, and Søgaard (2016), Barrett, Keller, and Søgaard

(2016) showed that word-type averages of gaze features helped POS induction better

than token-level features. Klerke and Plank (2019) found that word-type variance was

better than less aggregated gaze features. Using word-type gaze features does not

require gaze at test time. The features can be used similarly to word embeddings and
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several studies also successfully concatenated type-level gaze features with pretrained

word embeddings for a richer representation (Barrett, González-Garduño, et al., 2018;

Hollenstein & Zhang, 2019; Mathias et al., 2018).

There are reliable rule-based reader models predicting eye movement behaviour,

e.g., Reichle, Pollatsek, Fisher, and Rayner (1998). But the following studies each

trained a machine-learning-based reader model to get predicted gaze-annotation for the

task data without performing a new data collection (Long, Lu, et al., 2017; Long,

Xiang, et al., 2019; Singh et al., 2016).

Multitask learning combines what is learned about the main task with what is

learned from the gaze signal using parameter sharing between the tasks. Predicting

gaze as an auxiliary task in a multitask learning setup is yet another approach that

leverages the gaze signal without needing gaze-annotation of the main task data

(González-Garduño & Søgaard, 2017; Klerke, Goldberg, & Søgaard, 2016; Klerke &

Plank, 2019; Strzyz et al., 2019a). These studies employ a multitask learning setup for

text compression, readability prediction, syntactic tagging, and dependency parsing

respectively, while also learning to predict one or more gaze features. Only Strzyz et al.

(2019a) employed several auxiliary tasks in the same model. Their best model predicted

4 gaze features: fixation duration and fixation probability of the previous and next word.

A similar approach consists in regularising the attention with gaze during the

training of a recurrent neural network. Not all words are equally important for sequence

classification and gaze durations may give cues about which words are more important.

Long, Lu, et al. (2017), Long, Xiang, et al. (2019) directly distributed the attention

from the (predicted) gaze durations. Barrett, Bingel, Hollenstein, et al. (2018) is in

practice related to multitask learning since they performed alternate training. The main

task batches were used to update the main parameters of the model and the gaze

batches were used to update the attention weights of a recurrent neural network.

Therefore, the gaze-annotated data and the task data were disjoint but the two tasks

were trained in parallel, much like multitask learning.
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Potentials for gaze in NLP

Even though many studies in this survey use eye movements in supervised models

on more or less canonical text, we believe that the biggest potential for this data source

is elsewhere. We attribute the use of canonical text to the scarcity of large

gaze-annotated resources and we credit the use of supervised models to the fact that

companionship between eye movements and NLP is fairly new. We agree with Plank

(2016b) that there is unused potential in fortuitous data, such as gaze data, for

non-canonical language as well as for low-resource languages.

There are more than 7000 languages in the world3, and only a few of them have

annotated resources to train supervised models (Plank, 2016b). It is faster and cheaper

to have skilled native speakers read a text than professional annotators to annotate it.

Furthermore, trained annotators may be hard to find for some low-resource languages.

Eye trackers are increasingly available at a lower cost which seems promising for the

availability of larger quantities of eye-tracking data (Krafka et al., 2016; San Agustin

et al., 2010). This survey contains evidence that eye movements from skilled readers

contain traces of human cognitive processing of linguistic phenomena that NLP models

struggle to learn. The signal can also be leveraged by unsupervised algorithms; alone

(Barrett, Bingel, Keller, & Søgaard, 2016; Barrett, Keller, & Søgaard, 2016) or

combined with word embeddings or other accessible human text processing features

(Barrett, González-Garduño, et al., 2018).

Other Human Data Sources

Other human data sources capturing cognitive processing have proven useful for

improving NLP. This section will provide a brief overview of the attempts to improve

NLP with other human data sources and compare them to eye movements.

Self-paced reading times are shallow and cheaper alternatives to eye movements.

Enochson and Culbertson (2015) found that crowd-sourced reading times were

comparable in quality to reading times recorded in a laboratory making this an
3https://www.ethnologue.com/
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affordable and promising data source. Decision times, keystroke metrics, and speech can

also – opposed to eye-tracking data – be collected with current consumer technology

and have also shown useful for NLP, though not across as many tasks as NLP. Also,

their link to the cognitive processing of text is less documented than it is for

eye-tracking data. For instance, Plank (2016a) used keystroke logs to aid parsing and

shallow parsing and Barrett, González-Garduño, et al. (2018), Pate and Goldwater

(2011, 2013) used acoustic cues/prosodic features for parsing/syntactic chunking.

Direct measures of brain activity have been employed to improve NLP, especially

neuroimaging techniques such as electroencephalography (EEG) and functional

magnetic resonance imaging (fMRI). There are still very few EEG datasets which are

usable for NLP. The ZuCo corpus (Hollenstein, Rotsztejn, et al., 2018) is an exception

and provides simultaneous eye-tracking and EEG recordings. fMRI data has been used

more widely than EEG: Wehbe, Vaswani, Knight, and Mitchell (2014) recorded data

from subjects reading stories and aligned statistical language models with brain activity

and Bingel, Barrett, and Søgaard (2016) extracted token-level signals of syntactic

processing from fMRI for POS induction. Although the spatial accuracy of

neuroimaging data sources might be beneficial, they are noisier, more expensive and

more cumbersome to acquire. Moreover, while eye-tracking and EEG data easily allow

for word-level data recordings in natural reading, this is less trivial for the low temporal

resolution of other neuroimaging techniques, such as fMRI. Hence, the potentials of

eye-tracking data, in addition to their accurate representation of many linguistic

features, also lie in their relative effortless recording method and their higher

signal-to-noise ratio.

Conclusion

Many of the tasks that NLP systems try to learn are largely accessed

automatically when humans read. The cognitive processing of text has been studied

carefully via eye movements. We presented an overview of recent NLP applications for

sequence labelling and sequence classification that harness human cognition through the
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use of eye movement features. The usages span over a range of NLP tasks: semantic,

syntactic, POS, and relational.

The expected increase of availability of eye-tracking data should further encourage

the usage of gaze data in NLP and will allow for researching additional methods on how

to include it in machine learning algorithms. The biggest prospects are in non-canonical

language and low-resource languages. One of the potentials includes investigating

further how the data bottleneck of machine learning can be alleviated.
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