
Evolving Software Products, the Design
of a Water-Related Modeling Software

Ecosystem

Konstantinos Manikas1,2(B)

1 DHI Group, Hørsholm, Denmark
kman@dhigroup.com

2 Computer Science Department, IT University of Copenhagen,

Copenhagen, Denmark

Abstract. Software product evolution by means of improving their
architecture, tools, or development methodologies are rather common
in the lifetime of a software product. Especially if the product is in the
domain of engineering where some of the basic calculation principles
were established in some cases more than 50 years ago. However, a radi-
cal change of software products to evolve both in the software engineering
as much as the organizational and business aspects in a disruptive man-
ner are rather rare.

In this paper, we report on the transformation of one of the market
leader product series in water-related calculation and modeling from a
traditional business-as-usual series of products to an evolutionary soft-
ware ecosystem. We do so by relying on existing concepts on software
ecosystem analysis to analyze the future ecosystem. We report and elab-
orate on the main focus points necessary for this transition. We argue for
the generalization of our focus points to the transition from traditional
business-as-usual software products to software ecosystems.

Keywords: Software ecosystems · Ecosystem design · Product
modernization

1 Introduction

Software ecosystems have been gaining in popularity in the past decade. We have
noticed an increasing number of software systems and products being either con-
verted from an existing system to an ecosystem or designed from the beginning
to support the ecosystem approach [1]. The field of software ecosystems arguably
appeared around the previous decade. Since then, the field has been shaped by
a number of publications such as several literature studies [2–5] as much as a
number of influential studies proposing, among other, means of analysis or cate-
gorizing software ecosystems [6–9]. Software ecosystems arguably come with sev-
eral advantages such as increased level of innovation, better quality of software
products, accelerated development, or reduced time to market. However not all

ecosystems have been equally successful or effective in achieving the advantages
that are promised with this approach. This the ecosystem design with respect
to success has been a focus of both research and academia.

In related work, [10] follow the transition of a software product line to a soft-
ware ecosystem with the parallel transition from waterfall development processes
to agile. [11] follow a similar transition of a proprietary platform but to an open
source software ecosystem. In a somewhat different approach [12,13] describe
the steps of analyzing and designing a software ecosystem around the telemed-
ical services of the Danish healthcare. As noted form these studies, software
ecosystems can mainly emerge from a successful software product (or system,
company). However, the telemedicine ecosystem is an example the design of an
ecosystem by identifying a need for an ecosystem rather than evolving from an
existing platform. The steps towards the design of an ecosystem are elaborated
more in [14]. One of the methods for analyzing and designing software ecosystems
from a wide perspectives is the concept of “software ecosystem architecture” that
we are using in this study [12]. The concept proposes that a software ecosystem
can be analyzed by three different perspectives using three structures:

Software structure. That contains the different software elements of an ecosys-
tem as much as their relationships (including software interaction). In some cases
it helpful to separate between the common software infrastructure, i.e. the plat-
form of the ecosystem, and the software extensions, i.e. contributions on top of
the infrastructure.

Organizational structure. The different organizational elements of the ecosys-
tem, such as the different actors that are involved in the ecosystem, their roles,
and relationships.

Business structure. The different business elements of the ecosystem such as
the incentives that motivate the actor activity in the ecosystem.

In this paper we focus on the design of a software ecosystem and report on the
analysis of one of the market-leader suites of products in water-related modeling
and prediction. Our case focuses in designing the evolution of the development
and distribution from traditional means to a software ecosystem with utter aim
to “solve the worlds toughest challenges in water environments” [15].

2 Approach

The studied systems are a set of software systems that, among other, perform
complex calculation and modeling scenarios in a wide variety of water resource
problems. These systems have been evolved and improved over the years with
the first calculation algorithms dating back to the 1960’s. The architecture of the
different products includes high level or reuse and conceptual separation. The
organization developing the systems is part of a wider non-profit organization
of more than 1000 employees world-wide with main business water resources
engineering expertise. The organization’s products include project development
and consultancy, software products, and knowledge distribution.

In the following section we discuss the result of analysis of the ecosystem
to-be. We do so, in a generic manner so to be applicable in wider domains. We
use the three structures of the software ecosystem architecture.

2.1 Software Structure

The transition to a software ecosystem poses a number of requirements to the
software structure. This structure includes both the ecosystem platform, i.e. the
software infrastructure that forms the core of the ecosystem where extensions
are build upon, and the software extensions, i.e. plug-inns or apps that provide
additional functionality or services to the ecosystem by extending the platform.
Bellow we elaborate on the main aspects that the software structure of the
ecosystem should cover.

Modularity and Independence. The clear separation of the (software and
logical) components of an ecosystem is essential to the well-functioning and
prosperity of the ecosystem. The better each logical (and thus software) entity
is defined and separated from the rest, the more probable it is for the system
to be to keep faithful to the architectural design. This is especially relevant to
existing systems transitioning to an ecosystem as the effort of re-designing and
refactoring is arguably greater than design from scratch. In such cases apart
from re-designing, analysis of architectural evolution and specifically architec-
tural drift and decay is very relevant as much as information on the initial archi-
tectural decisions and trade-offs. The proposed architectural smells [16] can be
an relevant starting point. Today there is a number of architectural patterns
and tactics that can facilitate this transitions, e.g. the use of service oriented
architecture and microservices, as much as different tools.

Independent and Continuous Release. One positive effect of an optimal
modularity in a system is that this logical structuring allows for releasing mod-
ules independently from each other. Independent release of modules is essential
for the (rapid) evolution of large and complex systems as (a) it enforces com-
plete control of dependencies - otherwise the system fails at runtime, (b) better
supports the actor extension development as it allows the actors to focus only
on the module(s) that are relevant, (c) allows for organizational independence,
i.e. different organizations (or teams) can limit their scope easier. Apart from
the platform, independent release and release roadmapping should also be a
requirement for extensions that are reused by other components.

Standardization of Platform and Extension. In order to facilitate the
rapid and proper extension development, the aspects of this development should
be standardized to the extent possible. In that respect, the ecosystem should
provide and enforce standardized means of development, deployment, and test-
ing/quality assurance. Standardization could be included in following ways:

Documentation and Support. The ecosystem orchestrators should facilitate
the ecosystem extension by “flattening” the learning curve of ecosystem contrib-
utors and establishing and communicating official “ways of doing”. Examples
here include good guides and documentation on how to create extension or stan-
dard functions e.g. user interface, logging, or error-handling. This should already
by considered by design time by including relevant system architectural qualities,
e.g. buildability.

Enforcement and Control. Some of the standardized procedures, might be
imperative to be followed e.g. procedures dealing with authentication, autho-
rization, or privacy. In those cases, apart from communication and support,
there should also exist means of enforcement and control of the proper design
and implementation. Depending on the governance the ecosystem is following,
different ways of enforcement can be applied. Practices can vary from auto-
mated controls (e.g. during commit/deployment or binary controls), to manual
and resource-demanding controls e.g. it is common approach to establish com-
pliance and certification organizations or auditing procedures for systems with
high requirements in quality assurance.

Coordination, Plan Communication, and Roadmapping. Development
both internally in the platform and externally in the extensions can be rather
distributed and independent. This can cause several issues related to the dis-
tributed work, e.g. extensions being build on a platform component/service that
changed, or platform releasing similar functionality to what an external actor was
building in an extension. This kind of issues can be arguably prevented by set-
ting requirement for communicating changes and roadmaps of system evolution
that other actors can align with. In some cases, a special organizational entity or
automated system can be responsible for the communication and co-ordination
of the software interaction.

2.2 Business Structure

The transition to a software ecosystem arguably has a great impact to the busi-
ness structure. Below we elaborate on some of the aspects that should be covered:

2.3 Disruption and Business Development

Transitioning to an ecosystem potentially includes a disruption to the “business-
as-usual” model that an organization might have established. Identifying the
new business models and incentives both for the (orchestrating) organization
itself but also for potential external organizations is essential for this transition.
Aspects in this work include challenging the existing and identifying new: (i)
value propositions, (ii) customer segments, (iii) revenue streams, (iv) strategic
alliances.

Business and Software Structure Alignment. Similar to a single organi-
zation, the alignment of the business and the software is essential. Naturally,
in the ecosystem perspective the complexity is of higher magnitude. The plat-
form should reflect the business and the business should support the operation
and evolution of the software structures. A proper set of value propositions and
incentives both for the orchestrator - organization opening the platform and the
software extension organizations is equally important (if not more) with a proper
software structure. Means of designing the business structure moves towards tra-
ditional business development. Moreover the alignment of software and business
structures can arguably be facilitated by theories and frameworks in the enter-
prise architecture. Naturally, these frameworks should also be extended to the
ecosystem views.

2.4 Organizational Structure

Internal Organization. The transition to an ecosystem implies challenges to
the internal organization that would take the role of the ecosystem orchestrator.
A radical restructuring of the software and business in an organization should be
followed by restructuring in the organization itself. A relevant example is, assum-
ing that “Conway’s law” [17] is valid, the platform would reflect the structure
of the organization and the pattern of communication. Thus, the structure of
the organization should be evaluated in this light. Moreover, the software and
business structure aliment should also be reflected here.

External Organization. The structuring of the external to the orchestrator
organizations could potentially include implications that need to be addressed.

Actor Involvement Model. How external actors are to be included is an
important aspect on an ecosystem. If the ecosystem is very open to external
actors/organizations, there might appear issues with high extension competition
that might have a negative effect to the ecosystem. Moreover, the more the
ecosystem contributions scale, the more challenging it might be to control and
maintain quality. On the other hand, if an ecosystem is to limiting to external
actor inclusion, the ecosystem might not be able to obtain and maintain a critical
mass for the ecosystem to evolve and eventually survive.

Defining Internal and External. Transition to an ecosystem also implies
that external organizations might be occupied with aspects of a systems that
was previously internal. It might be necessary to define and make explicit the
borders of each system and the responsibilities of each actor in a more formal way
to avoid organizational and legal frictions. Moreover, in cases of privacy and risk
of leak of important information, employees should have guidance on the right
level of communication and the privacy level of information. This is something
that is implemented in many organizations today. The challenge increases with
the increase in complexity, e.g. more actors in different privacy levels.

3 Conclusion and Future Work

In this paper we report on the transition of a software product suite to a soft-
ware ecosystem. We rely on the concept of software ecosystem architecture and
analyze the current systems. Our work results in a set of focus points that are
necessary for the transformation to an arguably healthy ecosystem.

Plans for future work include the evaluation of the focus points and the
detailed design of the aspects that the focus points identify. We argue that the
identified points can be developed further to a generalized method for evolving
from traditional software systems to software ecosystems.

References

1. Manikas, K.: Supporting the evolution of research in software ecosystems: review-
ing the empirical literature. In: Maglyas, A., Lamprecht, A.-L. (eds.) Soft-
ware Business. LNBIP, vol. 240, pp. 63–78. Springer, Cham (2016). doi:10.1007/
978-3-319-40515-5 5

2. Hanssen, G.K., Dyb̊a, T.: Theoretical foundations of software ecosystems. In:
Jansen, S., Bosch, J., Alves, C. (eds.) Proceedings of the Forth International
Workshop on Software Ecosystems, Cambridge, vol. 879, pp. 6–17, 18 June 2012.
http://CEUR-WS.org

3. Barbosa, O., Santos, R.P., Alves, C., Werner, C., Jansen, S.: In: Software Ecosys-
tems - Analyzing and Managing Business Networks in the Software Industry.
Edward Elgar, Cheltenham (2013)

4. Manikas, K., Hansen, K.M.: Software ecosystems - a systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

5. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature
study. Syst. Softw. 117, 84–103 (2016)

6. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference SPLC 2009. Carnegie
Mellon University, Pittsburgh, pp. 111–119 (2009)

7. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering - Companion, vol. 2009, pp. 187–190. ICSE-Companion, May 2009

8. Knodel, J., Manikas, K.: Towards a typification of software ecosystems. In: Fer-
nandes, J.M., Machado, R.J., Wnuk, K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp.
60–65. Springer, Cham (2015). doi:10.1007/978-3-319-19593-3 5

9. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems - a
conceptual framework proposal. In: Proceedings of the 5th International Work-
shop on Software Ecosystems, Potsdam, vol. 987, pp. 33–44, 11 June 2013.
http://CEUR-WS.org

10. Hanssen, G.K.: A longitudinal case study of an emerging software ecosystem: impli-
cations for practice and theory. J. Syst. Softw. 85(7), 1455–1466 (2011)

11. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open
source-growing an open source ecosystem. J. Syst. Softw. 85(7), 1467–1478 (2012)

12. Christensen, H.B., Hansen, K.M., Kyng, M., Manikas, K.: Analysis and design
of software ecosystem architectures - towards the 4s telemedicine ecosystem. Inf.
Softw. Technol. 56(11), 1476–1492 (2014)

http://dx.doi.org/10.1007/978-3-319-40515-5_5
http://dx.doi.org/10.1007/978-3-319-40515-5_5
http://CEUR-WS.org
http://dx.doi.org/10.1007/978-3-319-19593-3_5
http://CEUR-WS.org

13. Manikas, K.: Analyzing, Modelling, and Designing Software Ecosystems - Towards
the Danish Telemedicine Software Ecosystem. PhD thesis, Department of Com-
puter Science, University of Copenhagen, Denmark (2015)

14. Manikas, K., Hämäläinen, M., Tyrväinen, P.: Designing, developing, and imple-
menting software ecosystems: towards a step-wise guide. In: The 8th International
Workshop on Software Ecosystems (2016)

15. DHI Group: Our foundamentals. Accessed 23 Feb 2017. https://www.dhigroup.
com/about-us/corporate-social-responsibility/our-fundamentals

16. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural bad
smells. In: 2009 13th European Conference on Software Maintenance and Reengi-
neering, pp. 255–258, March 2009

17. Conway, M.E.: How do committees invent. Datamation 14(4), 28–31 (1968)

https://www.dhigroup.com/about-us/corporate-social-responsibility/our-fundamentals
https://www.dhigroup.com/about-us/corporate-social-responsibility/our-fundamentals

	Evolving Software Products, the Design of a Water-Related Modeling Software Ecosystem
	1 Introduction
	2 Approach
	2.1 Software Structure
	2.2 Business Structure
	2.3 Disruption and Business Development
	2.4 Organizational Structure

	3 Conclusion and Future Work
	References

