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Abstract—Cellular Automata (CA) are a remarkable example
of morphogenetic system, where cells grow and self-organise
through local interactions. CA have been used as abstractions
of biological development and artificial life. Such systems
have been able to show properties that are often desirable but
difficult to achieve in engineered systems, e.g. morphogenesis
and replication of regular patterns without any form of
centralised coordination. However, cellular systems are hard
to program (i.e. evolve) and control, especially when the
number of cell states and neighbourhood increase.

In this paper, we propose a new principle of mor-
phogenesis based on Compositional Pattern Producing Net-
works (CPPNs), an abstraction of development that has
been able to produce complex structural motifs without
local interactions. CPPNs are used as Cellular Automata
genotypes and evolved with a NeuroEvolution of Augmenting
Topologies (NEAT) algorithm. This allows complexification
of genomes throughout evolution with phenotypes emerging
from self-organisation through development based on local
interactions. In this paper, the problems of 2D pattern
morphogenesis and replication are investigated. Results show
that CA-NEAT is an appropriate means of approaching
cellular systems engineering, especially for future applica-
tions where natural levels of complexity are targeted. We
argue that CA-NEAT could provide a valuable mapping for
morphogenetic systems, beyond cellular automata systems,
where development through local interactions is desired.

Index Terms—Cellular Automata, Compositional Pattern
Producing Network (CPPN), NeuroEvolution of Augmenting
Topologies (NEAT), EvoDevo, Artificial Life.

1. Introduction

Complex self-architecturing systems are difficult to
program, i.e. by top-down engineering. Kowaliw and
Banzhaf [1], [2] argue that the bottom-up methodol-
ogy of artificial development is an appropriate means
of approaching complex systems engineering. However,
achieving some sort of self-architecturing properties, e.g.
morphogenesis or self-replication, is not trivial. One way
of ”programming” such developmental systems is through
artificial evolution, i.e. an evolutionary and developmental
approach (EvoDevo) [3]. Searching for a solution for an
artificial EvoDevo system that targets levels of complexity

found in nature can be intractable, e.g. a cellular au-
tomata system with hundreds of cellular states and large
neighbourhoods or a deep neural network with millions of
nodes and weights. An appropriate mapping which scales
well and at the same time allows solutions to be evolved
incrementally, starting with a solution encoded into a
small genome that is gradually complexified by adding
new degrees of freedom, is desired. However, exploring a
high-dimensional space in search for a solution can take
prohibitively long time, regardless of the encoding [4].

In this work a cellular system is used as test bed of
morphogenetic engineering. A traditional CA table-based
encoding is replaced by a Compositional Pattern Produc-
ing Networks (CPPNs) mapping, a developmental encod-
ing often used in systems without local interactions. In
our work CPPN is used as developmental encoding based
on local interactions, i.e. a true morphogenetic cellular
system. The cellular automata CPPNs are evolved through
a NeuroEvolution of Augmenting Topologies (NEAT) al-
gorithm, a method that evolves increasingly complex net-
works. The approach is termed CA-NEAT. All cells in
the systems are uniform, i.e. they share the same genome
network. Two benchmark problems are investigated: 2D
morphogenesis and replication of structures of increasing
complexities.

The paper is organised as follows: Section 2 gives
background information on CA, CPPNs and NEAT, to-
gether with a motivation for using them together in a
morphogenetic engineering system. Section 3 describes
the investigated problems and the experimental setup. Sec-
tion 4 presents the results of the experiments, which are
further discussed in Section 5. Finally, Section 6 describes
some possible directions for future work and Section 7
concludes the paper. Appendix A contains some graph-
ical visualisations of the solutions found in the outlined
experiments.

2. Background and Motivation

2.1. Cellular Automata

Cellular Automata (CA) were first studied in the
1940s by von Neumann and Ulam [5]. CA were inspired
by biological organisms, and introduced as models that
could emulate some of these organisms’ interesting and



remarkable properties, such as multi-cellular development
(e.g. embryogenesis), reproduction (clonal or sexual) and
robustness (e.g. self-repair).

CA have been extensively studied, in particular within
the field of artificial life [6]. Michael J. Flynn has spec-
ulated that CA and cellular computing might be the
path forward [7] for novel bio-inspired computational
machines. Matthew Cook proved that a CA of a certain
type, e.g. Rule 110, can be Turing complete [8].

A CA consists of a grid of very simple units called
cells. A cell can be in one out of a finite set of states. Sip-
per [9] described the three core principles of the cellular
computing paradigm:

• Simplicity: a cell is simple and can do very little
by itself.

• Vast Parallelism: the number of cells is very
large, much larger than the number of processors
in a conventional parallel computer.

• Locality: all interactions between cells take place
on a purely local basis. No cell knows or controls
the entire system.

The cells in a CA use the information available from
their neighbours and a set of rules to transition from one
state to the next, i.e. CA transition function. Depending
on the starting state of the whole system and the transition
function, it is possible to observe interesting emergent
or self-organising behaviour over time and space, e.g.
ordered, periodic, chaotic patterns. These interesting CA
often enter an attractor [10], [11]. If a sequence of states
repeats periodically it is referred to as cyclic attractor,
and if the CA stabilises into a permanent state it is called
a point attractor.

2.1.1. Transition Functions. Langton [6] formally de-
scribes finite CA as consisting of a finite set of cell
states Σ of size K = |Σ|, a finite input alphabet α,
and a transition function ∆. Each cell has a N -sized
neighbourhood. The number of possible neighbourhoods
can be expressed by equation (1).

|α| = |ΣN | = KN (1)

The transition function for a CA must thus encode
a mapping of |α| different inputs to one of K states.
The number of possible unique transition functions is thus
K(KN ).

Traditionally ∆ has been encoded as a complete map-
ping ∆ : ΣN → Σ, which can be implemented as a
lookup table. When working with non-trivial CA where
both K and N can be relatively large numbers, it becomes
a problem to store the mapping ∆ in an efficient way, and
the space of possible ∆ becomes too large to be explored
by exhaustive enumeration.

Elementary CA transition functions have been studied
extensively, and it has been reported that most rules lead
to ”uninteresting” behaviour, either falling into an ”order”
which is either static or repeating periodically, or into
chaos, where all useful information is quickly lost in noise.
It has been speculated that it is in the critical border region
between these behaviours where interesting computations
can occur [6]. In order to find these ”interesting” ∆, smart
heuristic searches are often applied [12], e.g. evolutionary
computation.

(a) (b)

Figure 1: An example composition of the sigmoid, si-
nusoid and hyperbolic tangent functions. The discrete
coordinates of (b) are first normalised to [−1.0, 1.0] and
then mapped to various output values through the CPPN
(a).

2.2. CPPNs

Artificial Neural Networks (ANNs) [13, Chapter 1]
have been used in many different applications related to
artificial life and intelligence, such as robotics or machine
learning. An ANN is a directed graph structure, with
vertices (referred to as neurons) and edges (referred to
as connections). This is inspired by neuroscience, with
the brain consisting of neurons and synapse connections.
ANNs are useful because they consists of many discrete
parts that can be individually or collectively tuned by
some adaptive process, and are easily expanded. The
universal approximation theorem [14] states that relatively
simple ANNs can approximate a wide variety of functions,
and the field of deep learning [15] shows that a large
complex structure with enough tuning can perform very
complex tasks, such as image classification [16] or natural
language processing [17]. A Compositional Pattern Pro-
ducing Network (CPPN), which was introduced by Stanley
in 2007 [18], is a special type of ANN that is employed
as an artificial development encoding. Like an ANN, a
CPPN consists of a set of nodes with activation functions,
weights and biases, as well as weighted connections be-
tween nodes. Likewise, external values are input to the
first layer, then undergo transformation by weights and
activation functions before being output by the final layer.

In contrast to ANNs, which are usually structured
with neurons of the same activation functions arranged
in layers, the CPPN has few such restrictions on topology
and layer-wise heterogeneity and often employs a vari-
ety of different activation functions. Different activation
functions are included to capture specific patterns seen in
natural development, such as a Gaussian function to create
symmetric patterns, or sine functions to create repeating
patterns.

Additionally, CPPNs are normally applied across a
broader range of possible inputs than ANNs. For example,
Figure 1 shows a CPPN and its output when mapped
over a 2D Cartesian grid. The particular composition of
functions in the CPPN produces a particular pattern, hence



the name. A CPPN is able to produce a pattern without
multiple steps of development, in contrast to a CA, where
local interactions and time is required. CPPNs have been
used both to produce patterns for the sake of the patterns,
e.g. as evolutionary art [19], [20], three-dimensional forms
[21], musical accompaniments [22], or artificial flowers
[23], but also to create the neural connectivity patterns
of larger ANNs for agent [24], [25], [26], [27] and robot
control tasks [28], [29], [30].

2.3. Artificial Evolution and Development

The bio-inspired design methods of artificial evolution
and artificial development take principles from the natural
processes of evolution [31], exploration and adaption of
populations to environmental conditions, and develop-
ment [32], the processes enabling a multicellular organism
to emerge by growth and differentiation from a single
cell. Artificial development and artificial evolution take
inspiration from biology’s EvoDevo process in order to
explore and handle large and complex solution spaces.

Algorithms for artificial evolution, e.g. Genetic Al-
gorithms (GAs) [33] or Genetic Programming [34], are
based on populations of candidate solutions (genotypes),
starting with a random generated initial population, each
candidate is evaluated and assigned a fitness. A selection
process picks individuals from the population that get to
reproduce. This selection process is often stochastic, with
a bias towards picking the individuals with the highest
fitness, but some chance of picking a less fit individuals.
Individuals that are selected for reproduction are paired
up. Genotypes of the pair are combined in some fashion to
create a new genotype. Random mutations are applied in
order to produce new features not present in either parent.
Repeating this generational algorithm the search space,
i.e. the space of all solutions the genotypes can represent,
is explored and exploited toward novel genotypes that
encode good solution to the problem at hand.

Artificial development is an indirect mapping process.
In contrast, in a direct mapping the genotype encodes
the entire information of each candidate solution i.e.
phenotype [29]. Such indirect mappings can be inspired
by biological development where an initial unit, a cell,
holds the complete building plan (DNA) for an organism.
It is important to note that this plan is generative, it
describes how to build the system, not what the system
will look like. The indirect mapping process maps genetic
information in the genotype to a phenotype that expresses
structure behaviour and function [3]. In a system including
a developmental mapping, the role of the genome is
radically changed, from a system where the genome is
considered a description to a system where the genome
may be viewed as information on how to build the system.
The ”build” process can be based on self-organisation gov-
erned by rules given in the genotype, e.g. gene regulation
[35]. As such the phenotype is an emerging structure.
Therefore, the genome size may not reflect the size or
complexity of the phenotype and opens for systems that
can generate very large-scale repetitive structures [36], or
even structure of arbitrary size [37]. Further, a develop-
mental mapping is not a process that is ”turned off” when
the finalised adult stage is reached. The process is working
on the organism/artefact throughout its lifetime. In [38],

(a) Genotype (b) Phenotype

Figure 2: An example NEAT genotype and corresponding
phenotype. This example only shows the topology that the
genotype encodes, leaving out the weights and activation
functions.

Banzhaf and Miller discuss the ”challenge of complexity”
in evolving systems and argue that Nature solved such
challenge by ”inventing” developmental processes.

2.3.1. NEAT.

NeuroEvolution of Augmenting Topologies (NEAT) is
a genetic algorithm variant introduced by Stanley and
Miikkulainen in 2002 [39], designed specifically to evolve
ANNs. Because CPPNs are special variants of ANNs, they
can also be evolved with the NEAT algorithm [18]. NEAT
has been applied successful to a variety of complex control
tasks [40], [41].

A NEAT genome consists of genes that encode nodes
and connections between them. Figure 2 shows an exam-
ple genotype to phenotype mapping. NEAT starts with an
initial population of very simple networks, typically with
just the input and output nodes and connections between
them. Over generations, more nodes and vertices are
added or disabled, activation functions are changed, and
weights are adjusted. The process of gradually expanding
the genome is called complexification, and reflects how
life on earth is believed to have started with simple organ-
isms and gradually evolved into more complex creatures
[42], [43].

The genes that make up a NEAT genome are marked
with an innovation number so that they may be recognised
as the same gene in different individuals. As new features
are added to the genomes, the individuals making up the
population become gradually less similar. The degree of
similarity is measured through a measure called the com-
patibility distance. When the distance between individuals
pass a certain threshold, they are segregated into separate
species. This process is called speciation. Pair selection
for reproduction happens within species. Typically the
species that have the most fit individuals will produce
more children, while the less fit species will produce fewer
(but not 0) children.

When a new species appears with a new feature, the
feature will not be tuned and likely affect the fitness of
the individuals negatively. NEAT protects new species for
a certain amount of time, allowing them time to adjust
before being evaluated and, if performing poorly, being
eliminated to make more room for the more fit species.

One notable variation of NEAT is called HyperNEAT



[44]. In this process, NEAT is used to evolve CPPNs
whose output determine the topology of ANNs. The in-
direct HyperNEAT encoding allows larger networks to be
evolved with complex connectivity patterns. Additionally,
because HyperNEAT can learn from the geometry of
the task, it is possible to increase the number of ANN
inputs and outputs without further training [45], [46]. If
the evolved CPPN creates a useful network connectivity
pattern at a small scale, it often also produces a useful
output at a larger scale.

2.4. Motivation

NeuroEvolution of Augmenting Topologies has been
shown to evolve CPPNs that produce patterns with repeti-
tions, repetition with variation, symmetries, and different
kinds of regularities, without using temporal development
and local interactions. However, in natural processes of
development such as embryogenesis, local interactions
and developmental time are key requirements. Biological
morphogenetic systems are the result of a continuous com-
putation, i.e. development, where intermediate phenotypes
emerge along the developmental path, and these interme-
diate phenotypes influence the decoding and regulation of
the genotype for the next phenotypic stage. Development
is a combination of interactions between genotype and
phenotypes, and with the environment. As such, natu-
ral development can be considered a dynamical systems
where the phenotype changes continuously due to growth
of new cells and adaptation to external perturbations, i.e.
environment. Morphogenetic processes may be considered
as Dynamical Systems with Dynamical Structures (DS)2

[47]. In such (DS)2 systems, state transition functions and
the set of state variables can change over time (caused by
morphogenetic processes). In this paper, we argue that
CPPN is an appropriate means for developmental systems
based on local interactions, which provides a mapping for
the next phenotypic stage for each component of the cellu-
lar system. Such mapping uses only local information, i.e.
the state of each cell and its neighbours. NEAT provides a
practical evolutionary strategy for CPPN complexification.

2.5. Other Related Work

Wolper and Abraham [48] used evolved CPPNs to
find seed patterns for Conway’s Game of Life [49]. Both
CPPN-NEAT (objective search) and novelty search [50]
were investigated. However, CPPNs were not used as
developmental encodings. Many different kinds of CA
encodings have been previously investigated. These in-
clude conditionally matching rules [51], [52], [53] where
conditions have to be satisfied to determine the next
state of a cell, instruction-based development [54], [55]
where transition functions are replaced by a program,
self-modifying cartesian genetic programming [56] where
a variation of genetic programming is used, and vari-
able length gene regulatory networks [57]. Nichele and
Tufte [58] investigated an instruction based encoding
where genomes could complexify during evolution. In [59]
traditional CA transition functions are evolved through
complexification. Nichele et al. [60] also proposed an
instruction-based development with instructions that could
self-modify the genome program during evolution. Cheney

and Lipson [61] investigated the evolution of 3D CA soft-
robot morphologies through CPPNs. However, in this last
work CPPNs make use of topological information instead
of a developmental approach, as often done with CA.

3. Methodology and Experimental Setup

In order to conduct the experiments described in the
following sections, a custom Python framework was de-
veloped to implement CA-NEAT. The experiments pre-
sented target problems and patterns of different complex-
ities, allowing for direct comparison of results with the
literature [58].

Briefly described, the system consists of an evolution-
ary loop based on the NEAT algorithm. Each individual
NEAT genotype is developed into a CPPN genotype,
which is used as the transition function for a CA system.
The performance of the developed phenotype for the CA
problem at hand is used as fitness measure.

3.1. Problems Under Investigation

Morphogenesis and replication are two distinct yet
fundamental processes in biological systems, and their
complexity is not fully understood yet. For example,
Venter and colleagues [62] have chemically synthesized
a minimal bacterial genome that includes only the genes
essential for sustaining life, e.g. metabolism and growth.
However, out of the total 473 genes, 149 have unknown
function. Self-replication in machines was first studied by
von Neumann [63] using a 29 states 2D cellular automaton
and has been a central problem in artificial life since
then. von Neumann was interested in the general question
“What kind of logical organization is sufficient for an au-
tomaton to be able to reproduce itself?”. In both biological
and artificial cellular systems, the cell is an autonomous
unit that serve as construct and constructor of the emerg-
ing organism. By being able to transfer biological proper-
ties of replication and growth in artificial systems, artificial
morphogenetic systems could move towards frontiers that
are not reachable by current methodologies.

For the investigation in this paper, the problems of 2D
replication and morphogenesis are chosen, as to be able to
compare results with those in the literature [58]. The five
”flag” patterns shown in Figure 3 were investigated. These
patterns represent a wide variation of properties such as
number of states and symmetries.

Each experiment consists of 100 independent runs.
All experiments have a population size of 200 individ-
uals and elitism degree of 1. Each generation-population
is segregated into species by NEAT, with selection and
reproduction happening within these groups. Sigma scaled
selection [64] is used to select pairs for reproduction.

During development of the system, a variation of
different configurations was tested for different problems.
However, for the results included herein, a choice was
made to use the same CPPN-NEAT configuration, and
as close to the same CA configuration as possible for
all problems. This makes it easier to make comparison
between experiments, but also means that the settings
chosen may favour some experiments over others. The
optimisation of CPPN-NEAT parameters is outside the
scope of this paper.



(a) 5x5 ”Mosaic”
2 states

(b) 6x6 ”Border”
2 states

(c) 6x6 ”Tricolor”
4 states

(d) 5x5 ”Swiss”
2 states

(e) 7x7 ”Nordic”
4 states

Figure 3: Patterns being investigated. Each color represents a different cell state, white represents the quiescent state.

(a) 5x5 (b) 6x6 (c) 7x7

Figure 4: Seed patterns for morphogenesis. For the 6x6
patterns there is no central cell, so the seed is not sym-
metric.

3.1.1. Morphogenesis. The morphogenesis problem is
defined as the development of a complex pattern from
a simple ”seed” pattern. The biological analogy and in-
spiration is embryonic development, with the seed pattern
also referred to as zygote. Figure 4 shows the seed patterns
used in these experiments.

The fitness evaluation for a morphogenesis phenotype
consists of the following steps:

1) Develop seed pattern for 30 iterations
2) For each stage

a) Compare cell by cell with target pattern
b) Calculate ratio of correct out of total cells

3) Pick max of values from step 2
4) Use function (2) with value from step 3 as x

f(x) = x ∗ e
5∗x

e5
(2)

Function (2) is used to reduce the contribution to the
score from quiescent cells, while ensuring that f(1.0) =
1.0. For instance, with the ”Mosaic” pattern shown in
Figure 3 (a) a completely quiescent pattern would have
a ratio of 0.52. With the correction the fitness in this case
is reduced to 0.05, which is much more appropriate for a
”lifeless” CA.

Because every iteration of the CA is counted equally
and separately, the fitness evaluation does not care if the
CA becomes stable, enters a cycle, or neither within the
30 allotted iterations.

3.1.2. Replication. The replication problem start with one
instance of some pattern in a larger grid, and over time
develop into a state where multiple copies of the pattern
exists in the grid, which may then replicate again. The
biological analogy of this is cell division and asexual
(clonal) reproduction. For the replication problem the seed
pattern is thus one copy of the target pattern in a larger
grid.

The fitness evaluation for a replication phenotype is
as follows:

1) Develop seed pattern for 30 iterations
2) For each stage

a) For each region of target pattern size

i) Compare cell by cell with target pat-
tern

ii) Calculate ratio of correct out of total
cells

b) Pick max 3 values from (a)
c) Multiply any non-1.0 value by a penalty

factor of 0.9
d) Calculate mean of three values

3) Pick max value from stage (2)

In this case the number of replicas sought is three.
There is no further contribution to the score if there are
more than three perfect replicas. Once again a penalty is
applied, this time to penalise the contribution from any
imperfect replica pattern.

Compared to the evaluation of morphogenesis of the
same pattern, the replication evaluation is much more
computationally expensive. Therefore it will always take
longer to collect results for a replication problem than
the same-pattern morphogenesis problem. However, both
morphogenesis and replication are properties that are
present in biological systems and are highly desided in
artificial morphogenetic systems.

3.2. Cellular Model

For both the aforementioned problems, a 2-
dimensional CA model was used. For the morphogenesis
problem the grid is of fixed size with toroidal border
conditions. For the replication problem the grid is
automatically expanding to accommodate growth in any
direction. In theory this means an infinite grid, but since
the CA may only iterate 30 times, there is a practical
limit to how large it may grow. In both problems, the
von Neumann neighbourhood (Figure 5) is used.

3.3. CPPN-NEAT

The nodes of the evolved CPPNs can have any of the
activation functions listed in Table 1.

In each run of each experiment, an initial population
of 200 genomes is generated. These have an input layer
with one node per member of the CA neighbourhood, and
an output layer with one node per possible cell state. The



Figure 5: The von Neumann neighbourhood includes the
four cardinal directions as well as the centre.

TABLE 1: Possible activation functions

Type Equation

Sigmoid f(x) = 1
1+e−x

Hyperbolic tangent f(x) = tanh(x)
Sinusoid f(x) = sin(x)

Gaussian f(x) = ae
− (x−b)2

2c2 a, b, and c are constants
Rectified linear unit f(x) = max(0, x)

Identity f(x) = x

Clamped f(x) =

{
0 x ≤ 0

x 0 < x < 1

1 x ≥ 1

Inverse f(x) = 1
x

Logarithmic f(x) = log(x)
Exponential f(x) = ex

Absolute value f(x) = |x|

Hat f(x) =

{
1− |x| |x| < 1

0 otherwise

Square f(x) = x2

Cube f(x) = x3

input layer neurons have a sigmoid activation function
which is never changed. When the initial population is
created, the number of connections for each individual
is randomly initialised to be between 50% and 100% of
being fully connected. Figure 6 illustrates this. As the
evolutionary algorithm iterates on the population, new
individuals come into existence that have hidden nodes
and different connections and activation functions.

The inputs to the CPPNs are the values of the neigh-
bourhood, but normalised to the range [−1.0, 1.0) to ac-
commodate the sigmoid input layer. Table 2 shows an
example of this normalisation. The output of the CPPN is
a set of values, one per possible CA state. The final step
of the transition function finds the highest of these values,
and outputs the state that correspond to that output node.

Figure 6: Example first-generation CPPN with 7 out of 10
possible connections.

TABLE 2: Example normalised states

State Normalised value
A -1.0
B -0.5
C 0.0
D 0.5

There is also a quiescent rule hardcoded into the
transition function. One of the CA cell states is considered
to be the quiescent or dead state. If all the values in the
input neighbourhood are quiescent, the output is always
quiescent.

The speciation rule in NEAT puts the individuals of
the population into separate species. Sometimes a mutated
child will be so dissimilar from its parents that it will
be placed in a new species. The parameter called the
stagnation limit determines how soon a new species may
be eliminated if not performing well. This value is set to
15 generations in these experiments.

3.4. Implementation

The system developed consists of a combination of
self-made and library code. The CA subsystem was built
from scratch to fit the available CPPN-NEAT implemen-
tations. It supports 1D and 2D topologies with various
border conditions. For each problem there is a problem-
specific fitness function which receives a genotype as input
from the NEAT subsystem, develops the transition func-
tion and iterates the CA before evaluating the performance
and returning a fitness value to the NEAT system.

The NEAT portion of the system is mostly based on
the library neat-python1. Data structures for genomes
and networks as well as various functions have been used
without modifications. The main evolutionary loop was re-
implemented with modifications. This was done for mul-
tiple reasons, including to take advantage of parallelism
using Celery2 and to store the results in a database
using SQLAlchemy3. Other software dependencies in-
clude matplotlib4 and seaborn5 for visualisation,
and dill6 for data and code serialisation. The com-
plete framework software for CA-NEAT is available on
Github7.

4. Results

In this section, results for morphogenesis and repli-
cation of different structures are given. Each experiment
consists of 100 independent runs using the same con-
figuration, with different initial populations (randomly
initialised). Each run continues the evolutionary loop until
an optimal solution has been found or it is stopped when
the maximum number of generations has been reached.
Because of the difference in number of generations re-
quired, some experiments finish quickly, while others are
executed for hundreds of generations until stopped.

Some of the optimal solutions found were visually
inspected to check the correctness of the evaluation al-
gorithms. Appendix A contains some example solutions
for various problems, selected to display a variation of
behaviours. Such figures provide valuable insight on the
inherent difficulty of the targeted problems.

1. https://github.com/CodeReclaimers/neat-python/
2. http://celeryproject.org/
3. http://sqlalchemy.org/
4. http://matplotlib.org/
5. http://seaborn.pydata.org/
6. https://github.com/uqfoundation/dill
7. https://github.com/mathiasose/CA-NEAT



TABLE 3: Summary of results. The metrics shown are the success rate and the mean number of generations until a
solution is found, with standard deviation also shown. In the case of 100% success rate, the number of generations
column shows how many generations it took until the final solution was found. In the case of less than 100% success
rate, the column shows how many generations were run until the experiment was stopped.

Problem Success rate % Mean generations σ generations Generations until stop
Mosaic morphogenesis 100 1.2 0.4 2
Border morphogenesis 1 270 0 509
Tricolor morphogenesis 100 56.5 228.8 2189
Swiss morphogenesis 76 147.7 158.9 600
Mosaic replication 100 4.2 10.6 99
Swiss replication 100 7.7 5 20
Tricolor replication 55 55.8 52.6 200
Nordic replication 0 - - 200

Figure 7: Mosaic pattern morphogenesis, all generations.

Table 3 depicts the obtained results. It is particularly
important to highlight the evolution over time (genera-
tions), not just the final result achieved at the end of the
experiment. There are multiple metrics that can be used
to visualise such data. In the figures shown in this section,
three metrics have been used:

1) The mean of the highest fitness for each gener-
ation of each run.

2) The median of the highest fitness for each gen-
eration of each run.

3) The cumulative number of runs that have fin-
ished (success rate).

The choice of the highest value (out of 200 individ-
uals) as representative of a whole generation, combined
with the fact that the populations have elitism, means that
the values shown in the graphs will only increase over
time, never decrease.

Some of the figures show all generations of the ex-
periment, until every single run has succeeded. Others
are cut short, either because the experiment was stopped
or to exclude statistically insignificant outlier values that
makes the figure less clear. In these cases, this is clearly
mentioned in text.

4.1. Morphogenesis

Figure 7 shows the results of the ”Mosaic” morpho-
genesis. In this particular case there existed an optimal
solution among the initial population in 80% of the runs.
The remaining runs succeeded after one reproduction cy-
cle.

Figure 8: Border pattern morphogenesis, 500 first gener-
ations. The value where the median stabilises represents
the fitness for a solution with one wrong cell.

Figure 8 shows the results from the ”Border” morpho-
genesis. This has a very different evolutionary process
compared to the ”Mosaic” morphogenesis. In this case
no optimal solution is found for a fairly long time. The
populations find local maxima solutions which have only
one incorrect cell, but struggle to find the global maxima
that gives the 100% correct patterns. At ca. 150 genera-
tions the median value is equal to the fitness given to a
solution with one incorrect cell. After 270 generations one
of the populations is successful, but after 500 generations
no other population has succeeded, and the experiment is
terminated.

Figure 9 shows the results from the ”Swiss” mor-
phogenesis. From both the mean line and the success
histogram we can see that there is an initially rapid
increase that gradually diminishes. By 150 generations 50
of the runs have succeeded, but by 300 generations only
11 more have finished, and by 600 generations the number
of successful runs is 76. At this point the experiment is
terminated.

Figure 10 shows the results of the ”Tricolor” morpho-
genesis. There is a large number of runs that complete in
the first 15 generations, after which the rate of completion
slows down. At 25 generations 80 runs have completed,
but by 100 generations only 13 more have finished. This
experiment was allowed to run to completion, but results
after the first 100 generations are omitted from the figure.
The last runs succeeded at generations 117, 149, 177, 302,
534, 607 and 2189.



Figure 9: Swiss flag pattern morphogenesis, 600 first
generations.

Figure 10: Tricolor flag pattern morphogenesis, 100 first
generations.

4.2. Replication

Figure 11 shows the results of the ”Mosaic” replica-
tion. By 25 generations 98 runs have completed. The last
two finished at 38 and 99 generations.

Figure 12 shows the results of the ”Swiss” replication.
Again we see the number of successful runs increase
quickly at first, before slowing down. In five generations,

Figure 11: Mosaic pattern replication, 25 first generations.

Figure 12: Swiss flag pattern replication, all generations.

Figure 13: Tricolor flag pattern replication, 200 first gen-
erations.

50 of the runs have completed, but the last 50 succeed
over the next 15 generations.

Figure 13 show the results of the ”Tricolor” replica-
tion. In this case the first results started appearing after
five generations. Like other cases there is a quick rise
in finished runs early on, which drops off gradually. By
100 generations, 45 runs have succeeded, and by 200
generations there are 55 finished runs, at which point the
experiment is ended.

Figure 14 shows the results of the ”Nordic” replica-
tion. The populations quite quickly reach local maxima
at 0.7, but are not able to find their way out of there to
the global maximum. The experiment was run up to 200
generations without any further change.

4.3. Size of Genomes

In addition to the number of completed runs, another
interesting result is the sizes of the genotypes of optimal
solutions. NEAT genotypes consists of a fixed number of
input and output nodes N +K, 0 or more hidden nodes,
and some number of connections between nodes. When
evaluating NEAT genotypes, it is interesting to consider
these numbers both separately and combined.

Table 4 shows measures of the optimal genotype sizes
for each experiment. Since some runs finish with a genera-
tion where there is more than one optimal solution present,



Figure 14: Nordic cross pattern replication, 50 first gen-
erations. Further generations up to 200 did not have any
significant change in the mean or median lines.

the number of optimal genotypes may be higher than the
number of finished runs.

5. Discussion

In some cases we observe that there is at least one
optimal solution among the individuals generated as part
of initial populations, e.g. ”Mosaic” morphogenesis and
”Mosaic” replication. This means that there exists a simple
solution consisting of only the input and output layers
with connections. In all cases where there exists many
solutions early, we can also notice a pattern in the cumu-
lative number of completed runs that follows a cumula-
tive chi-squared distribution [65], with a rapid rise that
gradually diminishes. The most extreme of these cases
is the ”Mosaic” morphogenesis where 80 runs complete
in the initial generation and the last 20 in the second
generation. This result can be explained by the symmetry
and repetitiveness in the target pattern, and CPPN has
been shown particularly successful when targeting mor-
phologies with such properties. However, CPPNs usually
exploit topological information to achieve symmetry and
regularity. In the work herein, the same result is achieved
without any available topological information, and only
through developmental processes based on local interac-
tions, i.e. a self-organising morphogenetic behaviour. For
more complex patterns, more generations are obviously
required in order to evolve and complexify the networks
in the initial population.

It is somewhat surprising which problems are easily
solved and which ones are not. We can observe that the
”Swiss” replication is much easier than the ”Swiss” mor-
phogenesis. This is in line with results in [55], [60], when
instruction-based development or conditionally-matching
rules are used. However, the ”Tricolor” morphogenesis is
easier than the replication of the same pattern, as it is often
the case when CA transition functions are used (obviously
with worst results). The fact that the ”Border” morphogen-
esis is more difficult than the ”Tricolor” morphogenesis
might seem not intuitive, since the ”Border” pattern has
both fewer colours (states) and one more symmetry. Figure
15 shows an example of the imperfect patterns produced
by CA-NEAT for the ”Border” morphogenesis. One plau-

Figure 15: ”Border” pattern with only one wrong cell. CA-
NEAT manages to find a pattern like this for the majority
of the runs by 150 generations, but struggles to find the
100% correct pattern.

sible explanation is that the symmetry is deceptive and
leads to a local maxima, while the ”Tricolor” experiment
avoids this, since symmetry in solutions will not give
better scores in such case. Novelty search [50] might be
explored for deceptive tasks. This is further discussed in
the Future Work section.

CA-NEAT does quite well for three out of four repli-
cation problems, but does not succeed at the ”Nordic”
replication. This problem was expected to be difficult,
since the pattern is rather complex (shifted symmetries).
However, instruction-based encoding in [58] found solu-
tions for this task. One possible solution for this problem
would be to exploit CPPN ability to produce such patterns
when topological information is available to the evolved
networks. This is discussed further in the Future Work
section.

As mentioned earlier, optimisation of NEAT param-
eters was outside the scope of this experimentation. As
such, populations were initialised without hidden nodes.
Alternatives could be to initialise the population with one
or more hidden nodes, a larger CA neighbourhood, and
an increased NEAT mutation rate to encourage innovation.
This is also discussed further in the Future Work section.

5.1. Comparison with Literature

The patterns and structures investigated herein are
widely used benchmarks in the literature [66], [67]. For
example, in [58] similar problems are investigated with
an instruction-based encoding, as well as a table-based
encoding for comparison.

When comparing results, it is important to consider
the differences in the experimental setups. In particular,
the populations in NEAT have to be much larger to
allow speciation. This gives CA-NEAT an advantage in
cases such as the ”Mosaic” morphogenesis where a large
initial population is likely to contain an optimal solution.
Conversely, it means it takes longer for each generation
of CA-NEAT, so results that require development over
generations may be found faster with smaller populations.
In [58] all populations ran up to 10000 generations before
being terminated.

5.1.1. Morphogenesis. For the ”Mosaic” morphogene-
sis, table based evolution has a success rate of 58%
and instruction-based 98%. With CA-NEAT this rate was
100%. The table-based and instruction-based evolutions
took on average 1336 and 1257 generations respectively,
while the NEAT search had found all solutions in two



TABLE 4: Sizes of genomes of optimal solutions. Genomes consist of node genes and connection genes, which may
be counted considered separately or combined. Each genome has a fixed number N +K input and output nodes, plus
some number (possibly 0) of hidden nodes. When considering genome size, only the hidden nodes are counted.

Min Max Mean Median Mode(s) σ

Mosaic morphogenesis (241 results)
Hidden nodes 0 1 0.1 0 0 (213 occurrences) 0.3
Connections 4 11 7.1 7 6 (53 occurrences) 1.5
Both 4 12 7.2 7 6 (49 occurrences) 1.6

Border morphogenesis (1 result)
Hidden nodes 7 7 7 7 7 (1 occurrence) 0
Connections 16 16 16 16 16 (1 occurrence) 0
Both 23 23 23 23 23 (1 occurrence) 0

Tricolor morphogenesis (119 results)
Hidden nodes 0 14 2 2 1 (31 occurrences) 2.1
Connections 6 32 15.1 15 16 (20 occurrences) 4.3
Both 6 46 17.1 17 13, 14, 18 (11 occurrences) 6

Swiss morphogenesis (61 results)
Hidden nodes 0 13 2.9 2 2 (19 occurrences) 3.1
Connections 5 22 10.2 9.5 9, 10 (13 occurrences) 3.7
Both 6 32 13.1 11 11 (12 occurrences) 6.5

Mosaic replication (136 results)
Hidden nodes 0 10 0.6 0 0 (81 occurrences) 1.2
Connections 4 21 7.6 7 7 (41 occurrences) 2
Both 4 31 8.2 8 7 (33 occurrences) 3

Swiss replication (114 results)
Hidden nodes 0 3 0.5 0 0 (63 occurrences) 0.7
Connections 7 14 9.5 9 9 (32 occurrences) 1.5
Both 7 16 10 10 9 (28 occurrences) 2

Tricolor replication (47 results)
Hidden nodes 0 20 4.8 4 2 (14 occurrences) 4.2
Connections 8 41 14.7 14 8 (7 occurrences) 5.7
Both 8 61 19.5 17 17 (5 occurrences) 9.5

generations. This is mostly explained by the large NEAT
population and relatively simple target pattern.

For the ”Swiss” morphogenesis, table-based evolution
had a success rate of 23% and instruction-based 100%.
The average generations until solution was 2668 for table-
based and 285 for instruction-based. CA-NEAT results
seems comparable to the instruction-based results, with
a 76% success rate by generation 600, and an average
generations of 147.7 so far, in the same order of magnitude
as the instruction-based result.

There is a stark contrast between the results of the
”Border” morphogenesis, where table-based evolution has
a 69% success rate and instruction-based 98%. CA-NEAT
has a 1% success rate at 500 generations.

For the ”Tricolor” morphogenesis, table-based evolu-
tion has a 19% success rate and instruction-based evolu-
tion has a 46% success rate. CA-NEAT improves both of
these with a large margin, with a success rate of 92% at
100 generations, 99% at 607 generations and finally 100%
at 2189 generations. CA-NEAT has an average number of
generations at 56.5, compared to 5002 for table-based and
6424 for instruction-based.

5.1.2. Replication. For the ”Mosaic” replication, table-
based evolution has a success rate of 85% and instruction-
based 100%. CA-NEAT also has a 100% success rate
and average generations of 4.2, compared to 39.7 for
instruction-based encoding, a significantly better result.

For the ”Swiss” replication, table-based evolution has
a success rate of 1% and instruction-based a 100% rate.
CA-NEAT has a 100% success rate too, with 7.7 average
generations, compared to the 41.8 of the instruction-based
evolution, also a significant difference.

For the ”Tricolor” replication, table-based evolution
has a success rate of 8%, and instruction based a 100%

rate. CA-NEAT has a 45% success rate at 100 generations,
and an average generations of 34.6 at that point. Compared
to the instruction-based average of 41.8 generations after
all runs, the performance of CA-NEAT seems lower in
this case.

5.2. Size and Topology of CPPN Phenotypes

In all the experiments where multiple solutions were
found, there existed at least one solution with no hidden
nodes. This indicates that a CPPN-based encoding can
be efficient at those particular problems. However, it has
not been determined whether these small CPPNs encode
solutions that are fast at morphogenesis, fast at replicating,
or how many replicas they produce, nor how many steps
of CA development they require.

Some of the found CPPNs were visually inspected
to try to understand their topologies. Figure 16 shows
two of these visualisations. In solutions with many hidden
nodes, the structure seems disorderly to a human, and it is
difficult to understand the relationship between input and
output based on topology alone.

In solutions with hidden nodes, it is often possible
to see some nodes that are not connected to the output
nodes. These are a kind of vestigial structure [68]. In
a final solution these could be pruned away to reduce
the genome size without changing CA behaviour. During
evolution these should probably be left in place, as they
could be reconnected by mutations and possibly produce
positive effects.

6. Future Work

There are many aspects of the CA-NEAT model that
have not yet been tested or analysed. In the remainder



(a) ”Mosaic” replication along one axis, like Figure A.14.

(b) ”Tricolor” morphogenesis that reaches a point attractor equal to the target pattern. The two hidden nodes are not connected to
output nodes and are thus ”vestigial”. See Figure A.10 for the CA development of this phenotype.

Figure 16: Examples of found CPPN encodings. Dashed lines represent disabled connections. The visualisation library
optimises the figures to have few crossing connections, and does not care about presenting nodes as structured layers.

of this sections, possible directions for future work are
analysed and discussed.

6.1. Other Morphogenetic Engineering Problems

The framework developed for this project is quite
generic and can handle a variety of problems already.
Code that is specific to a problem is contained in the
fitness function for that particular problem. In order to
test a new class of problems, it would be enough to use
a new fitness evaluation function.

The experiments presented in this paper concern devel-
opment and replication of 2D patterns, as proof of concept
that CA-NEAT is a promising avenue for morphogenetic

engineering and self-assembly of complex structures and
morphologies through local interactions. Morphogenetic
systems can be considered very powerful and decen-
tralised computing machines, where computation and
memory are totally distributed and the actual computation
is a result of self-organisation and emergence. There are
many other morphogenetic computational problems that
could be explored, e.g. the majority problem [69], the
firing squad synchronisation problem [70], or mathemat-
ical and algorithmic problems such as square calculation
[71]. Another variation of replication problem, known as
replicating loops [72], as well as morphogenesis in 3D
space [73] are target problems for future research.



6.2. Fitness Evaluation Variations

Over time NEAT will keep expanding genomes, in-
creasing the number of nodes and connections of the
CPPN topology. When comparing two CPPNs that pro-
duce the same CA rules, it is the less complex CPPN
that is most desirable, due to its lower memory footprint
and running time. The fitness evaluation function could be
amended to reward smaller genomes, encouraging this.

Another aspect that could be considered for certain
problems, such as morphogenesis, is that of attractors. For
the morphogenesis problem, the arguably best result is to
find the shortest possible attractor that contains the target
state, preferably a point attractor. One option could be to
introduce a penalising factor inversely proportional to the
length of the cycle. In a replication problem, one might
consider the emergence of a new copy of the original
pattern as the repeating of a cycle, and thus reward a
quicker replication in such case.

6.3. Variations of Cellular Model

The CA-NEAT experiments herein have shown differ-
ent degrees of success. However, the NEAT parameters
have not been optimised and the same settings have been
used for all the experiments. An exploration of various
parameters and relative performance is desired in future
research, as to be able to pinpoint suitable setting for such
morphogenetic engineering systems.

An interesting idea for further work is to allow evolu-
tion to optimise the neighbourhood definition. The neigh-
bourhood radius could be expanded easily with CPPN, as
it would simply be an addition of new input nodes. This
would create much more diversity in the initial population,
and possibly create genotypes that are more complex for
harder problems. Figure 17 proposes one implementation
of larger neighbourhoods, where there are many input
nodes available, but only the closest ones are connected
in the initial population. When mutating new genotypes,
new inputs could be re-connected, and over time evolution
would determine if such innovation was beneficial and
worth to be retained.

It would be also trivial to include environmental in-
formation in the form of one or more additional CPPN
input nodes. For example, each cell could know something
about the physics of the CA world. e.g. its position
(coordinates or distance from the origin coordinate), or
chemicals in the environment. The addition of an ab-
straction layer on top of the CA layer (e.g. chemicals
layer) has been shown beneficial for cellular systems.
In [74], a French flag organism was shown to possess
beneficial properties for morphogenetic systems, such as
self-repair and self-regulation, as a result of local in-
teractions with neighbouring cells as well as with the
environment (chemicals). Biological cells have different
means of receiving positional information [75]. Topologi-
cal information has been shown to be a key contributor to
CPPN-based solutions, even without local interactions. It
is therefore reasonable to imagine that CA-NEAT would
also benefit by including positional information as avail-
able input to the CPPN, in the form of coordinates or
gravity (direction). We envision that complex solution will
be easily achieved with CA-NEAT through development

based on local interactions with the addition of topological
information.

6.4. Novelty Search

In [48] it was shown that novelty search in combina-
tion with NEAT produced some interesting results where
objective search did not. Considering that the objective-
based search did not entirely succeed at finding solutions
to some of the deceptive problems in this paper, novelty
search could provide a different strategy of exploring the
solution space without getting trapped in local maxima.
In particular, one challenge is giving fitness scores to
intermediate non-optimal solutions in such a way as to
reward the solutions that will eventually lead to opti-
mal solutions and avoid rewarding ”dead ends”. Novelty
search [50] attempts to solve the problem by disregarding
the objective score and instead rewarding phenotypes that
exhibit previously unseen behaviour.

7. Conclusion

In this paper we presented a novel method for self-
organisation of morphogenetic cellular systems based on
development through Compositional Pattern Producing
Networks. CPPNs are used as developmental mappings
that take advantage of local interactions. CPPNs have
been evolved with the NeuroEvolution of Augmenting
Topologies algorithm and Cellular Automata have been
used as the experimental platform. One of the main issues
of morphogenetic engineering systems, and Cellular Au-
tomata in particular, is the difficulty of programmability
and control when the number of components, their types
(or states) and their local interaction neighbourhoods be-
come larger (towards systems at complexity levels found
in nature). CPPNs provide an appropriate mapping that
scales well in all these cases, e.g. linear increase of
input CPPN nodes when the neighbourhood is increased
as opposed to CA transition functions that would grow
exponentially, or linear increase of CPPN output nodes
when the number of states is increased as opposed to
CA transition functions that would grow exponentially.
The CA-NEAT morphogenetic framework has been tested
on two different problems, the development of structures
from a seed and the replication of structures of increasing
complexities. The presented results have shown promise
in most of the experiments, considering that NEAT pa-
rameters were not optimised as it was outside the scope
of this study. We suggest that the natural way forward is
to incorporate topological/positional information in CA-
NEAT, as CPPNs have been proven successful even with
development without local interactions. We argue that CA-
NEAT could provide a valuable EvoDevo approach to self-
organising decentralised control and programmability of
morphogenetic systems.
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Appendix A.
Sample Solutions

This appendix contains some visualisations of hand-picked example solutions that were found.
In morphogenesis cases where a previous state is revisited (a cycle is found), the number above the last state shown

indicates which previous state it is equal to.
For the morphogenesis examples up to 30 states are shown, including states after the target pattern is seen. For

replication examples, the visualisations stop after an optimal (3 copies) solution is seen.

Figure A.1: A solution to the ”Mosaic” morphogenesis where the CA finds a two-step cycle that includes the target
pattern.

Figure A.2: Another two-state cycle that includes the target state.

Figure A.3: Another two-state cycle that includes the target state.



Figure A.4: A solution where the target pattern can be seen early, but when the CA continues it becomes chaotic.

Figure A.5: The only solution that was found for the ”Border” morphogenesis. After finding the target state in iteration
23, the CA goes in to a two-step cycle which does not include the target state.



Figure A.6: A solution to the ”Swiss” morphogenesis where the CA goes in to a three-state cycle that contains the
target pattern.

Figure A.7: Another solution, where after visiting the target state the CA eventually annihilates itself completely.



Figure A.8: A solution where the CA develops with one of two possible symmetries, but still finds the solution that
has two symmetries.

Figure A.9: A solution that quickly finds the target pattern, but then keeps developing and finds a longer cycle that does
not include the target pattern.



Figure A.10: A solution to the ”Tricolor” morphogenesis that finds a point attractor equal to the target pattern.

Figure A.11: Another solution which visits the target pattern, but stabilises in a point attractor not equal to the target.



Figure A.12: A solution which stabilises into a ”Tricolor” pattern and then cycles through different permutation of the
colours.

Figure A.13: A solution that looks very chaotic for a very long time, but eventually manages to recover and create
patterns with vertical lines.



Figure A.14: A solution to the ”Mosaic” replication, where expansion happens only along one axis.

Figure A.15: Another solution, where replication is done in three directions while retaining the original.

Figure A.16



Figure A.17: An example of multiple stages of replication. First the original replicates into two copies. Then each copy
tries to replicate, but they interfere with each other and instead return to one copy each, but at a greater distance. Then
they each succeed in replicating, producing four copies total.

Figure A.18: A solution to the ”Swiss” replication that expands symmetrically along both axes.



Figure A.19: A solution which expands in two orthogonal directions.

Figure A.20: A solution which is like that of Figure A.18, except the CA ”forgot” one direction.



Figure A.21: A solution that has the same behaviour as that of the ”Mosaic” replication in Figure A.17.

Figure A.22: A solution which illustrates that the fitness function doesn’t care about noisy ”background” patterns as
long as it finds at least three perfect replicas.



Figure A.23: A solution which expands only along one axis.

Figure A.24: A solution to the ”Tricolor” replication. All the found solutions expanded only along the horizontal axis.

Figure A.25: Another solution to the ”Tricolor” replication.


