Acta Informatica manuscript No.
(will be inserted by the editor)

Replication, Refinement & Reachability:
Complexity in Dynamic Condition-Response Graphs

Sgren Debois - Thomas T. Hildebrandt -
Tijs Slaats

Received: date / Accepted: date

Abstract We explore the complexity of reachability and run-time refinement
under safety and liveness constraints in event-based process models. Our study
is framed in the DCR* process language, which supports modular specification
through a compositional operational semantics. DCR* encompasses the “Dy-
namic Condition Response (DCR) graphs” declarative process model for anal-
ysis, execution and safe run-time refinement of process-aware information sys-
tems; including replication of sub-processes. We prove that event-reachability
and refinement are NP-HARD for DCR* processes without replication, and
that these finite state processes recognise exactly the languages that are the
union of a regular and an w-regular language. Moreover, we prove that event-
reachability and refinement are undecidable in general for DCR* processes
with replication and local events, and we provide a tractable approximation

Supported by the Velux foundation (grant 33295), the Danish Council for Independent
Research (grant DFF-6111-00337) and Innovation Fund Denmark.

Sgren Debois

Department of Computer Science
IT University of Copenhagen
Rued Langgaards Vej 7

2300 Copenhagen S

E-mail: debois@itu.dk

Thomas T. Hildebrandt
Department of Computer Science
IT University of Copenhagen
Rued Langgaards Vej 7

2300 Copenhagen S

E-mail: hilde@itu.dk

Tijs Slaats

Department of Computer Science
University of Copenhagen

Njalsgade 128, Building 24, 5th floor
2300 Copenhagen S

E-mail: slaats@di.ku.dk

2 Debois, Hildebrandt, Slaats

for refinement. A prototype implementation of the DCR* language is available
at http://dcr.tools/actal6.

Keywords DCR graphs - replication - refinement - complexity

1 Introduction

Software systems today control increasingly complex processes operating in
unpredictable contexts. At the same time, it is becoming more and more crit-
ical that the software behaves correctly, e.g. that it is compliant with safety,
security and legal regulations. The combination of complexity, unpredictability
and need for compliance has lead to a general understanding that a foundation
for the implementation of modular, run-time adaptable and formally verifiable
software systems is needed [44] [43] 42].

This is not least the case in the fields of Process-Aware Information Systems
(PAIS) [43] and Business Process Management (BPM) [3], which constitute
the context of the present work. These fields deal with systems driven by ex-
plicit process designs for the enactment and management of business processes
and human workflows, and the study of formalisms for describing processes
has always been central in these fields: As a vehicle for communication, it is
vital that a business process model is unambiguous; as a vehicle for under-
standing, it is vital that it is analysable; and as a foundation for practical
systems, it is vital that it can be made executable. Popular models include
in particular models which specify explicit sequencing of business activities
as flow graphs, such as Petri Nets and Workflow Nets [I] which are the clos-
est formal counterpart to the industrial standard Business Process Model and
Notation (BPMN) [38].

However, an approach to process implementation based on flow graphs
implicitly assumes the initial design of a pre-specified process graph, that im-
plements the believed best practice given the initial required set of business
rules and legal constraints. This is problematic in several ways: Firstly, the
explicit flow graph often imposes more constraints than necessary. Secondly,
procedures, rules and regulations change or the process graph turns out not
to be the desired practice anyway. For long running processes, such as con-
trol software in hardware systems that can not be stopped or mortgages of
credit institutions, the changes need to be reflected in running processes. And
while the graph may be initially verified to implement the given business rules
and legal constraints, it does typically not represent the rules explicitly. It is
thus very difficult, if at all possible, to identify the required changes to the
flow graph.

Declarative process languages [2, 21] address this deficiency by leaving the
exact sequencing of activities undefined, yet specifying the constraints pro-
cesses must respect. This gives a workflow system the maximum flexibility
available under the rules and regulations of the process. In practice, the case-
worker or process engine is empowered to take what is considered the appro-
priate steps (e.g. considering resource usage) for the process and situation at

http://dcr.tools/acta16

Replication, Refinement & Reachability 3

Receive

Board meeting

Deadline

Fig. 1 Grant Application BPMN Process

hand, subject only to the constraints expressed in the process model. If the
constraint language is well designed, the constraints can directly represent the
business and legal regulations, making it easy to add or update constraints if
the regulations change [37].

As a running example, we consider a grant application process of a funding
agency that our industry partner, Exformatics, has recently implemented in a
commercial solution [12]. The high-level requirements arﬂ

1. applications can be received after a round is opened and until the deadline,

2. if a round is opened, the board must eventually meet, and

3. a board meeting can only happen when a round is open (i.e. before the
deadline), if at least one application was received.

A BPMN process implementing the requirements may be defined as shown in
Figure [T}

The process is initiated by an event Round indicating the start of a round,
followed by a loop for receiving applications until the deadline, after which a
board meeting is held. However, the requirements are not explicitly represented
in the process diagram, and moreover, the process introduces unnecessary, or
at least unspecified constraints. For instance, no board meeting can be held
before the deadline, even if applications are received, and it is not possible to
reopen the round, e.g. if insufficiently many good applications were received.
Of course, these possibilities may be modelled, but with the cost of making
the process graph more complex. And even then, the requirements would only
be implicitly represented by the diagram.

Our industry partner Exformatics employs a declarative, graphical process
notation, Dynamic Condition Response (DCR) graphs, introduced in [21], [36]
and developed further in [46], 22] 8,37, 24], [13]. As exemplified in Figurebelow
(produced with the tool at http://dcr.tools/), the DCR graphs notation
allows to specify the process by the four events (Receive, Deadline, Round,
Board Meeting) and four relations between the events.

1 We deviate from the implemented solution when it makes our examples clearer. In
particular, many reasonable constraints—such as “the deadline can only occur once the
round has begin”—have been left out in order to keep the example small.

http://dcr.tools/

4 Debois, Hildebrandt, Slaats

Deadline

Board Meeting

Fig. 2 Grant Application DCR Graph Process

The Receive event is dashed, representing that it is initially excluded from
the process. The line from Round to Receive with a + sign at the end is an in-
clude relation, meaning that Receive is dynamically included if the event Round
(the start of a round) happens. Dually, the line from Deadline to Receive with
a % sign is an ezclude relation, meaning that Receive is dynamically excluded
if the event Deadline happens. Together, these two relations represent the first
requirement. The arrow from Round to Board Meeting with a bullet at the start
represents that Board Meeting is a response to (i.e. must happen eventually
after) the Round event, as stated in the second requirement. Dually, the arrow
from Receive to Board Meeting with a bullet at the end represents that Receive
is a condition for Board Meeting, meaning that if Receive is included, i.e. a
round is open, it must have happened before Board Meeting can happen, as
stated in the third requirement.

The operational semantics of a DCR graph is defined in terms of a marking
assigning a triple of booleans (h,,7) to each event, indicating whether or not
the event previously (h)appened, is currently (i)ncluded, and/or is (r)estless.
(A restless event is one which must subsequently happen (or be excluded) for
the workflow to be complete.)

As illustrated by the Receive event above, an event may be excluded in
the initial marking and be dynamically included and excluded if it is related
to other events by include and exclude relations. Similarly, an event may be
restless in the initial marking or become restless because it is a response to an
event that happened as for the Board Meeting event above. Finite or infinite
executions are then defined to be accepting only if every included restless event
is executed or excluded at a later point in the execution.

As described in [21], 36], (labelled) DCR graphs is a conservative general-
isation of (labelled) prime event structures, allowing finite representations of
infinite behaviour and to express liveness properties. The former is achieved
by allowing an event to happen more than once and change dynamically be-
tween being in conflict (excluded) and being consistent (included) with the

Replication, Refinement & Reachability 5

current state. The latter is achieved via the notion of restless events and the
acceptance criteria described above.

In [I3], DCR graphs are extended to so-called hierarchical DCR graphs,
supporting dynamic creation of sub-processes with (local) events and inde-
pendent life cycles. This extension was motivated in practice by the funding
agency process above, e.g. to allow each received application to have its own
approval events and decision life cycle, and thereby recording the decision
made for each application. However, although the graphical notation of DCR
graphs has been adopted by industry [33], it does not scale well to larger and
more complex processes due to lack of compositionality. Also, the expressive
power of hierarchical DCR graphs was left open by [13].

The present paper introduces the DCR* process language, a core constraint-
based process language for DCR graphs. The process language supports modu-
lar specification of process-aware information systems and dynamic creation of
sub-processes with independent life-cycles, based on the primitives introduced
in (hierarchical) DCR graphs, but equipped with a compositional operational
semantics. The compositional semantics provides means for modular definition
of and reasoning for DCR* processes.

We provide two main technical contributions.

1. We analyse expressiveness and complexity for the DCR and DCR* calculi,
and
2. We establish a mechanism for run-time refinement of DCR* processes.

Ad (1). We show that both event-reachability and run-time refinement
is NP-HARD for DCR and undecidable for DCR*. Moreover, we provide a
full proof that DCR characterise exactly the languages that are the union
of regular- and w-regular languages.

Ad (2). As an application, we show that the DCR* language supports
run-time adaptation by composition. We formalise when an adaptation is
a refinement—preserve requirements of the adapted process—and provide a
polynomial-time computable syntactic approximation to refinement, referred
to as non-invasive processes. Such approximation is crucial: Our complexity
results preclude the existence of feasible exact algorithms.

Overview of the paper: In Section [2] we provide the DCR process lan-
guage and its compositional semantics. In Section [3] we prove that the DCR
process language characterises those languages that are the union of a regular
and an w-regular language. We then extend the language in Section [d]to DCR*
supporting dynamic creation of sub-processes with fresh (local) events. In Sec-
tion [5] we show that the existence of a run executing a given event is NP-HARD
for DCR processes and undecidable for DCR* processes. We address run-time
adaptation by composition in Section [6] where we reduce the problem of decid-
ing whether an adaptation is a refinement to the problem of whether an event
can eventually be executed. In Section [7] we then provide ”"non-invasiveness”
as a tractable syntactic approximation of refinement. Finally, in Section [8| we
conclude and outline related, current and future directions of work exploiting
the results in the present paper.

6 Debois, Hildebrandt, Slaats

T,U 2= f —ee condition
| f+ee response ¢pu=1t|f boolean value
| f+e inclusion D = (P, 0, @) event state
| f %« e exclusion M,N ::= M,e: P marking
| T U parallel
| 0 unit P,Qu=[M|T process

Fig. 3 DCR Processes Syntax.

An online, research prototype implementation of the process languages
presented in the paper, with a mapping to DCR graphs, can be found at
http://dcr.tools/actalé.

This paper is a revised and extended version of our conference paper [15].
Beyond improvements in presentation, the present paper adds (1) the develop-
ment of the encoding of Biichi automata into DCR processes; (2) the technical
development of the proof that non-invasiveness implies refinement; (3) the
analysis of the complexity of event reachability for both DCR and DCR* pro-
cesses, and (4) an analysis of the complexity of refinement for DCR, processes.

2 DCR Processes

Below we introduce the Dynamic Condition Response (DCR) process lan-
guage. As described in the introduction, it is based on the notions of dynamic
inclusion and exclusion of labelled events, related by conditions and response
relations introduced in DCR Graphs [36], 21].

We assume fixed universes of events £ and labels £; and we assume a fixed
assignment £(e) € L to each event e € £. A DCR process [M] T comprises a
marking M and a term T. The syntax of both are given in Figure

A term is a parallel composition of relations between events. We recall
from the introduction how the relations regulate what behaviour the term
may exhibit:

1. A condition f —e e imposes the constraint that for event e to happen, the
event f must either previously have happened or currently be excluded.

2. A response f <e e imposes the effect that when e happens, f becomes
restless and must eventually happen or be excluded.

3. An exclusion f %<« e imposes the effect that when e happens, it ezcludes
f. An excluded event cannot happen; it is ignored as a condition; and it
need not happen if restless, unless it is re-included by the final relation:

4. An inclusion f ++< e imposes the effect that when the event e happens, it
re-includes the event f.

Note that it is possible to specify a relation twice, e.g., f %< e || f %+ e;
however, when we give semantics below, it will be clear that this duplication
has no additional effect.

All four relations refer to a marking M, a finite map from events to triples
of booleans (h, i, 1), referred to as the event state and indicating whether or not

http://dcr.tools/acta16

Replication, Refinement & Reachability 7

M, f:(hi,,e:(ot,)] f—eele:0,0,0 (when i = h)
[M,e:(,t,)] f«eoele:0,0,{f}
M,e: (Lt,)] f+—ere:0,{f}0
[Mye: (ot,-)] f %o—ete: {f},0,0

[M,e: (,t,2)]0Fe:0,0,0
Mye: (Lt,)] RfFe:0,0,0 (when e # f)

Fig. 4 Enabling & effects. We write “_” for “don’t care”, i.e., either true t or false f, and
write R for any of the relations —e e, +< %< .

the event previously (h)appened, is currently (i)ncluded, and/or is (r)estless.
A restless event represents an unfulfilled obligation: once it happens, it ceases
to be restless. As commonly done for environments, we write markings as finite
lists of pairs of events and event states, e.g. ey : @1,..., e : P but treat them
as maps, writing dom(M) and M (e), and understand M, e : & to be undefined
when e € dom(M). The free events fe(T) of a term T is (for now) simply the
set of events appearing in it. (This changes when we introduce local events in
Sec. [4 below.) We require of a process P = [M] T that fe(T') C dom(M), and
so define fe(P) = dom(M). The alphabet alph(P) is the set of labels of its free
events.

Ezample 1 (Grant process term) The example of fig. [2[can be mapped to the
following term:

To = recv %< deadline || recv +<— round || bm <—e round || recv —e bm

Initially, no event has happened, no event is restless, and every event but recv
is included, giving us the marking:

My = round : (f, t,f),deadline : (f,t,f),recv : (f,f,f),bm: (f, t,f) .

We give semantics to DCR processes incrementally. First, the notion of an
event being enabled and what effects it has. The judgement [M| T Fe: E, I, R,
defined in Figure[d] should be read: “in the marking M, the term 7" allows the
event e to happen, with the effects of excluding events F, including events I,
and making events R restless.” Technically, we will treat the latter “E, I, R”
part as a triple when doing so is convenient. Note that events in DCR graphs
may happen more than once: the h component for the firing event is generally
“don’t care”.

The first rule says that if f is a condition for e, then e can happen only if
(1) it is itself included, and (2) if f is included, then f previously happened.
The second rule says that if f is a response to e and e is included, then e can
happen with the effect of making f restless. The third (fourth) rule says that
if f is included (excluded) by e and e is included, then e can happen with
the effect of including (excluding) f. The fifth rule says that the completely
unconstrained process 0, an event e can happen if it is currently included. The

8 Debois, Hildebrandt, Slaats

H e:do

[M]T+e:é M T =51 (M) T 22T
P — [INTRO] Y [PAR]
M T =T M) Ty || T S22, 77 || T3

(M) T <25 17

- [EFFECT]
M|T = [e:6- M| T’

Fig. 5 Basic transition semantics.

last rule says that a relation allows any included event e to happen without
effects when e is not the relation’s right-hand-side event.

Given enabling and effects of events, we define the action of respectively
an event e and an effect § = (E, I, R) on a marking M pointwise by the action
on individual event states f : (h,i,r) as follows.

(Event action) e- (f: (h,i,r))) d:‘aff: (hV (f=e), i, rA(f#€))
happened? restless?

(Effect action) &+ (f: (hyi,) < f: (h, GAFEE)V fEl, 1V fER)
N——

included? restless?

That is, for the event action, if f = e, the event is marked “happened” (first
component becomes t) and it ceases to be restless (last component becomes
f). For the effect action, the event only stays included (second component) if
f € E (it is not excluded) or f € T (it is included). This also means that if an
event is both excluded and included by the effect, conceptually the exclusion
happens first, followed by the inclusion. It is perhaps helpful to think of Petri
nets: The exclusion removes a token, the inclusion adds a token.

Finally, f is marked restless (third component) if either it was already
restless or it became restless (f € R). We then define the combined action of
an event and effect by (e:d)- M =46 - (e- M).

In defining the compositional semantics, we need to merge parallel mark-
ings and effects. Merge on markings is partial, since it is only defined on mark-
ings that agree on their overlap:

(My,e:m)® (Ma,e:m) = (M; @ My),e:m
(My,e:m)® My = (M; ® Ms),e:m when e ¢ dom(M>)

The merge of effects § is always defined; it is simply the pointwise union:
(Er,Ii, R1) © (E2, 12, Ry) = (E1 U B3, I ULz, Ry U Ry)

With these mechanics in place, we give transition semantics of processes in
Figure [

We use two forms of transitions: the effect transition [M]T “0y says
that [M] T may exhibit event e with effect J, in the process updating the
term T to become T”. (At this stage we will always have T' = T”; we will need

Replication, Refinement & Reachability 9

updates only when we extend the calculus in Section {4 below.) The process
transition [M] T < [N] U takes a process to another process, applying the
effect of e to the marking M, and thus only exhibiting the event e. The [INTRO]
rule elevates an enabled event with an effect to an effect transition. The [PAR]
rule combines effect transitions from the two sides of a parallel when they have
compatible markings. The [EFFECT] rule lifts an effect transition to a process
transition by applying the effect to the marking. Process transitions give rise to
an LTS, which we equip with a notion of acceptance defined formally below,
corresponding to the one of DCR Graphs [I1]: a run is accepting if every
restless event eventually either happens or is excluded.

Definition 2 A DCR process defines an LTS with states [M] T and (process)

transitions [M] T % [N] U. A run of [M] T is a finite or infinite sequence of

transitions [M] T = [My] To <% --- . A run is accepting iff for every state

[M;] T;, when M;(e) = (-, t,t) then there exists j > i s.t. either M;(e) = (_,f,)
e:d

or [M;] Ty — [Mj1] Tjta.

Note that since an event e may happen more than once, even DCR graphs
with only finitely many events may have infinite runs.

Having defined the LTS and runs, we give semantics to DCR processes:
The meaning of a DCR process is the language comprising its accepting runs.

Definition 3 A trace of a process [M]| T is a possibly infinite string s =
(8i)ier s.t. [M] T has an accepting run [M;] T; SN [Miy1] Tiy1 with s; = £(e;).
Finally, the process [M] T has language

lang([M] T) = {s | s is a trace of [M] T} .

Ezample 4 (Grant process transitions) As transitions change only marking,
not terms, we show a run by showing changes in the marking. In the table
below, rows indicate changes to the marking as the event on the left happens.
Columns “h,i,r” indicate whether an event is marked (h)appened, (i)ncluded,
and/or (r)estless. The column “Accepts?” indicates whether the current mark-
ing is accepting or not and the final column “Enabled” indicates which events
are enabled after executing the event on the left.

Event round | deadline | recv bm | Acc Enabled
happening|/h i r/h i r |h ir|lh ir

(none) ftf|ft f|fff|ftf] t {round, deadline, bm}
round t t t| f {round, deadline, recv}
deadline t f f {round, deadline, bm}
bm t f| t {round, deadline, bm}
round t f {round, deadline, recv}
recv t f | {round, deadline, recv, bm}
bm f| t |{round, deadline, recv, bm}

10 Debois, Hildebrandt, Slaats

After the first round event, bm cannot happen because of recv —e bm. When
deadline happens, it excludes recv because of bm %<« recv, and exclusion of
recv voids the condition recv —e bm; so after deadline, bm may again hap-
pen. When round subsequently re-includes recv, bm is again disabled. Accep-
tance of the processes changes throughout. Because of bm <e round, when-
ever round executes it makes bm restless, preventing the process from ac-
cepting until bm later happens, ceasing to be restless. In our examples, we
identify events and labels, so the above table indicates an accepting trace
(round, deadline, bm, round, recv, bm).

Ezample 5 (Event structures) A labelled prime event structure [49] can be de-
fined as a tuple E = (E, <,#,¢, L) where E is a set of events, < is a partial
order on events defining the causal dependency relation (satisfying an axiom of
finite cause), # is the binary, symmetric and irreflexive conflict relation (sat-
isfying an axiom of hereditary conflict) and ¢ is a labelling function assigning
every event to a label. A finite event structure E can be represented as the

DCR term
TE:He%oe’H H e %€

e<e’ e#e'Ve=e’

A state of an event structure is referred to as a configuration, defined as a finite,
downwards closed and conflict free set C C E of events. Define C# = {e | Je’ €
Cl.efte’}. A configuration for finite event structures can then be represented
by the marking Mg defined by Mg(e) = (t,f,f) for e € C, Mg(e) = (f,f,f)
for e € C# and Mg(e) = (f,t,f) for e ¢ C U C#. The DCR process [Mg) Tg
then represent a pair of a configuration and an event structure, which indeed
will have the same behaviour as the event structure.

DCR processes can represent more expressive variants of event structures.
For instance, an event structure with a set R C E of restless events as con-
sidered in [48] is then defined in the same way, except that the events in R
will initially be restless in the marking representing the configuration, i.e. the
third component of the event state will be t. Using the inclusion relation, it
is possible to represent resolvable conflicts similar to event structures with
resolvable conflict [19].

We note the connection between DCR processes and DCR Graphs [36], [47],
13] (proof in Appendix [A):

Proposition 6 There ezists a language-preserving equivalence between DCR
processes and finite DCR graphs.

3 Expressiveness of DCR Processes

In this section we show that DCR processes characterise exactly those lan-
guages that are the union of a regular and an w-regular language. The key
idea for proving the result is encoding Biichi automata into DCR processes
(see also [30]).

Replication, Refinement & Reachability 11

tB) = [I (II ®V.d 0% wlad | I] @ld.)+- @Lai) (1)

’ ’

pa g L

pgF

i€{0,1}
I T1 ([T ®0.d) % . la) | T] ((a0,d 1 =) +< (p,1,0,%)

g p iy L

Zlon

1€40, . .

I fimi +e 0L a,d) | fi % (,1,0,9))) &)

Il fo—e foll fr —e f1 (3)

Fig. 6 Term t(B).

Recall that a Biichi automaton B = (Q, X, §, qo, F)) comprises a finite set
of states (), an alphabet X, a transition relation § C @ x X x @), an initial
state qo € @ and a set of accepting states F' C). An infinite run of B is a
sequence qo, lo, g1, 1, ... where each ¢; € @) and each [; in X' and for all ¢ > 0
we have (gi,li,qi+1) € 0. A run is accepting iff there exists some ¢ € F s.t.
g; = q for infinitely many j > 0.

Given a Biichi automaton B = (Q, X, 9, qo, F') we define a corresponding
term t(B) in Figure[6|and marking m(B) in Figure[7] We model each transition

P LN q with an event (p, [, q) labelled I. At any time, only events corresponding
to a single state p are included; all other events are excluded. To change state,
an event (p,l,q) excludes all events (p,_,) and includes all events (g, _,).
Acceptance is modelled by two restless events fy, fi which are never enabled.
Whenever a transition out of an accepting state ¢ € F happens, we toggle
which of fy, f1 is included. An accepting run of the Biichi automaton will
infinitely toggle fo, fi and thus be an accepting run of the DCR process; a
non-accepting run will leave either fy or f; included and restless infinitely,
yielding a non-accepting DCR, run.

To toggle which of fy, f1 is included, it is necessary to split each transition
(event) (p,l,q) into two copies (p,l,q,0) and (p,l,q,1). Only one copy is in-
cluded at any time; a transition out of an accepting state then switches which
copy is active using suitable include and exclude relations. Let’s see how this
idea is reflected in Figure[6} numbers refer to equation numbers in that figure.

(1) Firing a transition p KN q out of a non-accepting state p excludes all other
transitions out of that state and includes all transitions out of ¢ in the
same copy 1.

Firing a transition p KN q out of an accepting state p excludes all other
transitions out of that state, then includes all transitions out of ¢ in the
other copy 1 — 4. The second line toggles which of fy, f1 is included.

Finally, we make sure that neither fy nor f; can themselves be executed.

12 Debois, Hildebrandt, Slaats

Event\ Happened Included Restless

fo f t

f1 f t

(po,1,4,0) f f

(p # po,1,4,0) f f
(plq,1) f f

Fig. 7 Marking m(B).

o
C - —h o+ —h

e

a

Fig. 8 Example Biichi automaton.

Example 7 Consider the Biichi automaton B in Figure [8l Using the above
construction, we find the events and transitions in the table below. Numbers
refer to equation numbers of Figure [6] Relations should be read left-to-top,
i.e., the event on the left sits at the left of the arrow, the event at the top sits
at the right.

(0,a,1,0) (1,4,0,0) (0,a,1,1) (1,b,0,1) fo h
(0,a,1,0)| =% (1) —+ (1)
(1,5,0,0) —=% (2) —+ (2) =% (2) =+ (2)
(0,a,1,1) =% (1) —=+ (1)
(1,0,0,1) | —+ (2) =% (2) =+ (2 =% (2
fo
fi

Lemma 8 A Biichi automaton B accepts an infinite string s iff the DCR
process [m(B)] t(B) does.

Proof Any run of B is of the form
lo ll l2
Go —q1 —> g2 —> -

By construction, any run of [m(B)] t(B) is of the form

[m(B) = My] t(B) LD, (g y(py Aeleeh),

Clearly these runs exhibit the same sequence of labels. It remains to show that
either they are both accepting or both non-accepting. Suppose the run of B
is not. Then for some n and i > n we have ¢; ¢ F. But then by construction,
either fo or f1 is restless and included in each M;, 1, and so also the run of
[m(B)] t(B) is not accepting. If instead the run of B is accepting, then there
exists a state ¢ s.t. for all n there exists a j > n with ¢; = ¢. But then by
construction also the included and restless states in M; and M;,, are disjoint,
and so also the run of [m(B)] t(B) is accepting. O

Replication, Refinement & Reachability 13

T.U == ...
| (ve:®)T local event
| le.T replication event

Fig. 9 DCR* syntax.

With this Lemma, we can exploit existing results on w-regular languages
to fully characterise the expressive power of DCR, processes.

Proposition 9 For every language L that is the union of a regular and an
w-reqular language, there exists a DCR process recognising exactly L.

Proof For such a language, there exists a finite automaton F' recognising ex-
actly the finite part and a Biichi automaton B recognising exactly the infinite
part. We adapt the above construction to one simulating F' and B simultane-
ously: Replace events (q,1, p,i) with “product-transition” events

((gB,qr),l, (pB,PF),1) .

To model finite acceptance, for every accepting state gp of the F', we duplicate
transition events going into ¢r yet again, obtaining for these events

((QB7qF)alv(vapF)vi>j)

for 0 < 7 < 1. For j = 0 we add relations as usual. For j = 1, we add exclude
relation to every event. Thus, firing, say ((¢s,qr),!, (pB,pr),i,1) when pp
is accepting in F' excludes every event of the DCR process, leaving it in a
terminated and accepting state. O

Using the above propositions we get the promised characterisation.

Theorem 10 A language L is recognised by some DCR process iff L is the
union of a reqular and an w-regular language.

Proof Suppose L is recognised by a DCR process P. By Proposition [f] there
exists a DCR graph G with the same language. From [36] we have that G can
be encoded as a Biichi automaton. Suppose instead £ is the union of a regular
and an w-regular language. By Proposition [9] we have that there exists a DCR
process with language L. O

4 DCR* Processes: Local events and Replication

In this section we extend the DCR process language to support dynamic cre-
ation of sub processes. We do this by extending the syntax with local and
replication events as shown in Figure [J] to the right, giving rise to the DCR*
process language.

14 Debois, Hildebrandt, Slaats

We assume that for each label | € L, there exist infinitely many events e
with that label, that is, with ¢(e) =

The local event (ve: @) T asserts that e is local to the term T'. This con-
struct is binding, and we take terms up to label preserving a-conversion, i.e.,
(ve: @) T = (vf: D) T|f/e] iff £(e) = £(f) and f not free in T. As usual, we
assume the Barendregt-convention and may thus assume binders are distinct.
A replication event le.T unfolds a copy of T" whenever it happens.

We define free events and alphabet for DCR* processes.

Definition 11 The free events fe(T) of a term T is defined recursively as
follows.

(T |U) = fe(YU fe(U)
fe(0) =
fe((ve: @) T) = fe()\ {e}
fe(le.T) = {e} Ufe(T)

The free events of a process fe([M] T') is simply fe([M] T) = dom(M); we
maintain the requirement that a process [M] T has fe(T) C dom(AM). The
alphabet alph(P) of a process is the set of labels associated with its events,
defined recursively as follows.

alph(e R f) = {£(e), £(f)}
alph(T' || U) = alph() Ualph(U)
alph(0) =

alph((ve: @) T) = {é(e)} Ualph(T)
alph(le.T') = {¢(e)} U alph(T)

The following Lemma states that transitions preserve free events and alphabet.

Lemma 12 Transitions [M] T A T and [M]T 5 [M']T' preserve free
events and alphabet, that is fe(M) = fe(M’), fe(T) = fe(T”), alph(T) =
alph(T"), and alph(M) = alph(M’).

Proof Preservation of free events and alphabet of terms for effect transitions
follows by easy induction on the derivation of the transition. For preservation
for process transitions, observe that by cases on the rules admitting a transition
[M]T 2 [M'] T', we must have dom(M) = dom(M’) by definition of the
action operator — - M; the desiderata now follows. a

The transition rules for the new constructs are given in Figure Only
terms and transition rules are extended; markings are the same.

Rule [LOCAL] gives semantics to events happening in the scope of a local
event binder. An effect on the local event is recorded in the marking in the
binder of that event. The event might have effects on non-local events, e.g., in

Replication, Refinement & Reachability 15

[M,f:@]Tﬁ)T’ f:9=(:8)-(f:P) ~vy=veife=f,ow.y=c¢ [LoCAL]
(M] (vf : &) T 2O p oy 1
[M] T 22 17 [M] T <25 77
s [PAR-2] = [REP]
M T || U X5 7 | U [M] le.T £% 1e.T || T
ve:s /
MT —=T [EFFECT-2]

M) T X% [5- M) T
Here 6\ f = (E\{f}, I\N{f}, R\{f}). We omit the obvious rule symmetric to [PAR-2].

Fig. 10 Transition semantics for local and replication events.

(vf: M) e++ f, the local f has effects on the non-local e. Thus the effects
are preserved in the conclusion, except that part of the effect which pertain
only to f. Rule [PAR-2] propagates a local effect through a parallel composi-
tion. It is possible that the effect mentions events in U; however, it cannot
mention events local to U. So the effects of § on U are fully expressed in the
effect of § on M. Rule [EFFECT-2] lifts effect transitions with local events to
process transitions. Finally, the rule [REP] implements replication events: If
the guarding event e happening would update the body T to become T”, then
e can unfold to such a T".

To define accepting runs we need to track local restless events across tran-
sitions. Fortunately, DCR* is simple enough that we can simply assume that
a-conversion happens only during replication (i.e., local events duplicated by
[REP] are chosen globally fresh).

Definition 13 A run of a DCR* process [M] T is a finite or infinite sequence

[M;] N; LN [M;41] Niy1 with A = e; or A = ve;. The trace of a run is the

sequence of labels of its events, i.e., the string given by £()\;) where £(ve) ef

£(e). A run is accepting if whenever an event e is marked as restless in M;
respectively a local event ve is marked as restless by its binder in 7T;, then there
exists some j > i s.t. either [M;] T 25 [M;41] Tj41 with \; = e respectively
A; = ve; or the event state of e in M; respectively T; has e excluded.

Note that the treatment of restless events in this Definition is morally the
same as that of Definition 2| adding the necessary mechanics to accommodate
bound events.

Ezample 14 (Grant process with replication and local events) We now consider
the requirement that when an application is received, a committee recom-
mends either approval or rejection to the board. The committee might rescind
an approval, but cannot reverse a rejection. Moreover, when applications are
competing for resources, the board cannot make a final decision until it has a
recommendation for every received application. We again use events recv and

16 Debois, Hildebrandt, Slaats

bm for receiving an application and convening a board meeting. We use local
events rapprove and vreject to model the per-application evaluation process
replication by recv. We first give a term A modelling a single recommendation
sub-process.

A = (vapprove : (f,t 1)) (vreject : (f,t) (approve %< reject || approve —e bm)

Note that approve and reject are local and can thus not be constrained further
outside the scope, yet approve has a condition relation to the non-local bm. We
make the approve event initially restless, which will mean that in order for the
process to be accepting approve must either happen or be excluded (because
reject happens).

We can now model a process [M;] T) reproducing the per-application sub-
process A every time recv happens

Ty = lrecv.A || recv —e bm My =recv : (f,t,f),bm: (f,t,f)

(To keep the process simple, we only retained from the previous example the
constraint that a board meeting requires receiving an application). In DCR*,
the term does change as the process evolves. Let’s see [M1] T} evolve:

recv

[Ml] T, — [MQ] T || A1

S5 M) Ty | Ay || Ag (4)
LappIoves, [Ms] Ty || (vapprove, : . .) (vreject, : (f,t,1)) (5)
approve; %+ reject, || approve; —e bm) || Ay
Wejit?) [Ms] Ty || ((yapprove1 s (t,t,f)) (vreject, : (f,t,1)) (6)

approve; %< reject, || approve; —e bm)

((vapprove, : (f, [, 1)) (vreject, : (. t,f))
approve, %< reject, || approve, —e bm)
bm

20 (M) Ty || - - (7)

Here My = recv : (f,t,f) and M3 = recv : (t,t,f),

At (4), the processes A1 and Ay are copies of A where local events approve
and reject have been a-converted to approve;, approve, and reject;, reject, re-
spectively, following the convention of unique local names. Moreover, because
they have not happened in the local markings under the binders, bm cannot
happen. To see this, observe that by the [PAR]-rule, for the whole process to
exhibit bm, every part of it must also exhibit bm. But the process

(vapprove, : (f,t,t)) ... approve; —e bm

cannot: the hypothesis of rule [LOCAL], that bm could happen if approve; is
considered global with marking (f,t,t), cannot be established.

When a local approve; event happens, its local marking changes to reflect
that the event happened and is no longer restless, as indicated with grey

Replication, Refinement & Reachability 17

background in . However, approve; happening is not enough to enable bm; it
is still disabled by the other copy. Also, the entire process is not in an accepting
state, since approve, is still restless and included. Once reject happens in the
second copy @, excluding approve in that copy, bm is enabled and the process
is in an accepting state: of the two local approve events bm is conditional upon,
one has happened (and thus also no longer restless), and the other is excluded
(and thus also no longer required for acceptance).

5 Complexity of DCR and DCR* Processes

In this section we investigate complexity of DCR and DCR*. We shall see
that deciding whether there exists a run including given event is NP-HARD
for DCR processes and undecidable for DCR* processes, the latter following
from a reduction from the Halting-problem for Minsky machines. We shall
subsequently use the results of the present section as a basis for analysing the
complexity of refinement in the next.

We shall take as our starting point the following key notion of “event-
reachability”:

Definition 15 (Event-reachability) Let P = [M;] T be a DCR* process,
and let e be an event of P. We say that e is eventually reachable in P iff there
is a transition sequence

My S5 My 2o S My SN

We call the sequence eq,...,e, a witness for reachability of e. The event-
reachability problem for (P, e) is then deciding whether a given e is eventually
reachable in P.

5.1 Event-reachability in DCR Processes

We show that Event-reachability for DCR processes (as opposed to DCR*
processes) is decidable but hard, by reduction from the boolean satisfiability
problem. The key idea is to encode the nodes (subformulae) of the abstract
syntax of a boolean satisfiability problem as events. Each node has two corre-
sponding events: One which will fire iif the corresponding subformula evaluates
to true, one which will fire iff if it evaluates to false.

Lemma 16 For DCR processes, there exists an NLOGSPACE-reduction B +—
([B], e) from boolean satisfiability to event-reachability.

Proof Let B be a boolean satisfiability problem over atoms, conjunction and
negation. Construct a DCR process [B] which has, for each non-leaf node n
of the abstract syntax tree of B, events nt,nf and nP!, nP? nP3; and for each
atom a events at,a’ and a®!, a”2. Then add relations as follows.

18 Debois, Hildebrandt, Slaats

1. For each atom a, add relations a®* —e aP! and aP® —e a?; and P! —e at
and a2 —e af and a®? ++ ot and @' 4« af.

2. For each non-leaf node n, add relations n°
b3
n.

—eo Pl b2 e nb2 NP3 e

3. For each non-leaf node n = u A v add relations n®! —e nt, n®?> —e nt and
nb3 —e nf: and nPt % ut, n? %< vt and nP3 % uf, n°3 % of.

4. For each non-leaf node n = —u add relations nt —e uf and nf —e ut.

Define a marking M, where every event is (f,t,f), except a®* and a®® which
must be (f,f,f). Consider a run of [B] executing a maximal number of distinct
events of [B]. Note that for each atom a; either a* or af has been executed,
but not both; define from this an assignment a — t or a — f. By induction,
each non-leaf node n has n' executed iff under this assignment n evaluates to
true and nf executed iff it evaluates to false. But then for the root note r of
B, rt is executed in some run iff B is satisfiable; i.e., r* is reachable in [B] iff
B is satisfiable. The DCR process [B] has O(|B|) nodes and relations, and so
this reduction is in NLOGSPACE. O

Theorem 17 FEvent-reachability for DCR is NP-HARD and in EXPTIME.

Proof From Lemma we have that Event-reachability is NP-HARD. To see
that it is in EXPTIME, first observe that for a DCR process P = [M] T, if

M) T 2 (M T

then T7 = T It follows that the size of the LTS of P is bounded by the number
of possible markings M, which in turn is bounded by

(23)\dom(M)| ’

because each event has has three state variables, each of which can assume just
two possible values, and there are | dom(M) | such events. It is straightforward
to construct an algorithm which traverses each state of the LTS of P, checking
if any state has e executable. Processing each state—finding out which events
are executable and what states might be reached if one were to execute one
of these events—is clearly polynomial in the size of P; so this algorithm takes
time at most exponential in the size of P. a

We establish in passing that the fragment of DCR* that has local names
but no replication is equivalent to plain DCR, processes.

Proposition 18 Let DCRY be the fragment of DCR* obtained by requiring
that mo term T contains a subterm le.T'. For any P € DCR”, there exists

P € DCR with lang(P) = lang(P). Moreover, the assignment P — P is
computable in NLOGSPACE.

Proof Let P = [M] T be a DCR process. Let f be a function assigning to
each local event ve in P an event f(e) fresh for P with process £(f(e)) = £(e).
Define P = [M’] T’ to be P in which

Replication, Refinement & Reachability 19

1. Every sub-term on the form (ve : @) T has been replaced by T,

Every occurrence of a local event e is replaced by f(e), and

3. M'= M, M" where dom(M") is exactly the range of f and whenever there
is a sub-term (ve : @) T in P we have f(e) : & € M".

N

It is straightforward to verify by induction on the transition semantics that

P pPifp S p (where é = e and Ve = f(e)). It follows that (P, P)
is a bisimulation (see, e.g., [40]), whence lang(P) = lang(P). The assignment
P — P is clearly in NLOGSPACE. O

5.2 Event-reachability in DCR*

In this subsection, we show that Event-reachability in DCR* is undecidable
by a reduction from the halting problem for Minsky Machines [34].

Recall that a Minsky machine m = (R1, Ra, P, ¢) comprises two unbounded
registers Ry, Ro; a program P, which is a list of pairs of addresses and instruc-
tions; and a program counter c, giving the address of the current instruction.
It has the following instruction set.

inc(i,a) Add 1 to the contents of register i. Proceed to a.

decjz(i,a,b) If register i is zero, proceed to a. Otherwise subtract 1 from
register ¢ and proceed to b.

halt Halt execution (wlog assumed to appear exactly once).

We construct, given a Minsky machine m, a term t(m) and a marking
m(m). We model machine instructions as events. To maintain execution order,
we model program addresses explicitly as events a. These events serve only to
constrain the execution of other events; they should not themselves happen,
and we prevent them from doing so with a condition a —e a for each a. By
making each instruction event e conditional on its program point a, a —e e,
we ensure that e can happen only if a is excluded.

To move the program counter from a to b, we re-include a and exclude b.
We define a shorthand insn(e, a,b) for an instruction event e at program point
a proceeding to program point b as follows:

insn(e,a,b) =a —ee|a+—cel b%+e

Next, we model registers. We model each a : decjz(i,b,c) by two events:
one, decjz®, which can happen only when the register is zero, and a second,
decjn®, which can happen only when it is not. Then we model increments
by making each increment replicated, spawning a new copy of decjn® for
every decrement instruction a : decjz(i, b, ¢) in P. The copies produced by a
single increment represent the opportunity for exactly one of these instructions
to decrement. Thus, we make the copies in a single increment exclude each
other. To make sure that decjz® cannot happen if the register is non-zero,
that is, if no decjn® is present, we make the latter a condition of the former:

20 Debois, Hildebrandt, Slaats

Event\ Happened Included Restless

c f f f

a when a # ¢ f t f
decjz® f t f

inc® f t f

halt f t t

Fig. 11 Marking m(m).

decjn® —e decjz®. Altogether, the term for one increment is constructed by
the following function. (We write (N;crx; : M) for (vay, : M) ... (va;, : M)
when I = {i1,...,in}.)

one(i) :(N decjn®: (f,tf)) H (insn(decjna,a,d) I

a:decjz(i,c,d) a:decjz(i,c,d)
decjn® —e decjz® || H decjn® Yo decjna)

a’:decjz(i,b,c’)
Adding one to a register ¢ is accomplished by making a new copy of one(?).
inc(a,i,b) = insn(inc?, a,b) ||!inc®.one(?)

We put it all together and define t(m) for a Minsky machine m = (R, R, P, ¢).

t(m) = H inc(a,i,b) || H insn(decjz®, a,b)

a:inc(i,b)€P a:decjz(i,b,c)EP
I J] a—enart| J[a—ea| J] one() |l J] one(2)
a:halte P a:leP <Ry i<Ro

Finally, the marking m(m) is given in Figure [11] below. (Recall that ¢ is the
program counter.)

Example 19 As an example, let us consider a Minsky machine adding the
contents of register 2 to register 1. We’ll consider the machine (0,1, P, 1),
where P is the program:

1:decjz(2,3,2)
2 :inc(1,1)
3 : halt

Applying the above construction, we get the following term (split out in a
table for readability).

H inc(a, i,b) H insn(decjz®, a,b)

a:inc(i,b)€P a:decjz(i,b,c)EP
2 —e inc? 1 —e decjz!
2 %+ inc? 1 +< decjz!
1 +¢ inc? 3 %<« decjz!

linc2.0

Replication, Refinement & Reachability 21

H a —e halt H a—ea H one(1) H one(2)

a:halte P a:IeP <Ry i<Ro
3 —e halt 1—el 0 (vdecjn® : (f,tf))
2 —e?2 1 —e decjn!
3—e3 1 ++ decjn!

2 %< decjn!
decjn1 —e decjz1
decjn! %< decjn!

We emphasise that in the column [T;_p one(2), all instances of decjn' are

within the scope of the binder and thus local.

Proposition 20 A Minsky machine m halts iff [m(m)] t(m) has an accepting
TUnN.

Proof We establish a bisimulation relation between finite execution traces of
the Minsky machine m and reachable markings of the encoding [m(m)] t(m).
First observe that in every reachable marking of [m(m)] t(m) exactly one of
the program address events will be included and exactly one event is enabled.

Now relate an execution trace of the Minsky machine ending in address j to
a reachable marking in which that event is excluded. Next, note by induction
on the length of the trace that for every pair in that relation, the machine can
perform an instruction iff the encoding can execute the corresponding event.
Now note, again by induction, that the form of the process t(m) is preserved
as well as the global marking m(m), except that instruction events are being
recorded as executed and, in the case of decjn, excluded. It follows that the
restless halt event can be eventually executed if and only if the machine can
execute the halt command. O

Theorem 21 Event-reachability in DCR* is undecidable.

Proof By reduction from the halting problem for Minsky Machines. Suppose
m is a Minsky Machine, choose an event e fresh for [m(m)] t(m), and construct
the DCR* process

V =le: (t,f,f),m(m)] t(m) | halt —ee.

By Proposition [20] e is reachable in V' iff m halts. O

6 Run-time refinement by composition

In this section, as an application of DCR*, we demonstrate how to achieve
run-time refinement by dynamic process composition.

Definition 22 Given DCR* processes [M] T and [N] S their merge is defined
when M @ N is, in which case it is [M] T®[N] S =[M @ N] T || S. When the
merge of two processes is defined, we say that they are marking compatible.

22 Debois, Hildebrandt, Slaats

Example 23 Suppose now as the grant process runs, a new requirement comes
up: For regulatory reasons, external auditors must regularly look through the
minutes of board meetings. That is, a board meeting must eventually be fol-
lowed by an audition. We easily model this constraint using restlessness and
a new event, audit. However, as we are introducing a new event, we must
also introduce additional marking. Altogether, we wish to merge P with the
following process Rj.

Ry = [bm: (f, t,f), audit(f, t, f)] audit <—e bm
We merge the process P = [M;] T} of Example [14] with Ry:
P, =P & Ry = [Mj,audit: (f,t,f)] T} || audit <—e bm

Note that since the process is the model, merging is not restricted to apply
only to the initial process; it is well-defined on any evolution P’ of P that is
marking compatible with R;.

As a second example, suppose further that it is also decreed that during
an audit, no further applications can be received. The following process Ro
models this additional requirement. (For clarity of presentation, we omit the
procedure for when an audit failing to satisfy auditors and assume simply that
every audit eventually “pass”es.)

Ry = [recv : (f,t,f),audit : (f,t,f), pass : (f,t,f)] recv %< audit || recv ++ pass
We merge P; and Rs:

Py, =P @R
= [My,audit : (f,t,f), pass: (f,t,f)] T} || audit +—e bm
|| recv %< audit || recv +< pass

When we extend the set of requirements, the run-time refinement of P
to P’ should ideally not allow traces that were not allowed by the old set of
requirements. We may try to formulate this property by language inclusion,
e.g, lang(P’) C lang(P) to ensure that the adapted process P’ is still compliant.
But as we have seen, run-time refinement might entail adding new events
(audit), so we cannot in general expect language inclusion. Hence, we consider
language inclusion only w.r.t. the alphabet of P. In doing so we employ the
following notation.

Notation. Given a sequence s, write s; for the ith element of s, and s|s for the
largest sub-sequence s’ of s such that s} € X for 0 < i < |s|; e.g, if s = AABC
then s|4,c = AAC. We lift projection to sets of sequences point-wise.

Definition 24 Let P, be DCR* processes. We say that @ is a refinement
of P iff lang(Q)aipn(p) € lang(P).

In practice, we will obtain such refinements R by merging P with a marking
compatible process Q.

Replication, Refinement & Reachability 23

Definition 25 Let P, be marking compatible DCR* processes. We say that
Q refines P iff P & Q is a refinement of P.

Note that this concept is not symmetric: Even though P Q =Q & P, it
may still be the case that P @ @ is a refinement of P but not of Q.

Ezxample 26 Continuing the above example, we now see a distinction between
merging with R; and merging with Ro: the former refines P, whereas the
latter does not refine P;. To see that Ry refines P, observe that P, is in a
sense less accepting than P (because of the potential restlessness of the new
event audit). To see that Ry does not refine P;, observe that P; @ Ry has the
following accepting execution:
Pre Ry 28 b, s,

Here audit excludes recv, and so enables bm to execute; bm in turn makes audit
restless. After a second audit, we have an accepting trace t = (audit, bm, audit).
However, bm cannot not be the first event of a trace of P; because it is condi-
tional on the non-executed recv. Formally, we found a counter-example to Ro
refining P;:

t|a|ph(P1) = <aUdit7 bma aUdit>‘{bm,recv,approve,reject}
= (bm)
¢ lang(P1)

Inspecting the process Rs more closely, one sees that the problem comes from
the dynamic exclusion of the recv event, since not only does it make the re-
ception of applications impossible, it also enables events such as bm that are
conditional on recv. A better way is to block recv by introducing a new condi-
tion:

R, = [recv : (f,t,f),audit : (f,t,f)] laudit.(vpass : (f,t,f)) pass —e recv

Here, once audit happens, recv is barred from executing until the local event
pass has happened. This process R/, does refine P;.

Unfortunately but unsurprisingly, the property of being a refinement is
NP-HARD for DCR and undecidable for DCR*.

Theorem 27 Let P,R be DCR processes. Deciding whether R refines P is
NP-HARD.

Proof By reduction from event reachability. Let (P, e) be an event reachability
problem and suppose P = [M] T. Choose events f,g & dom(P) with £(g) &
alph(P), and define DCR processes P’ and R as follows

P =[Mf:(ft.6),9: (ELOIT|foeflfoegll [[=%y

z€dom(P)
R=1[M(e), f: (f,t,t)] f %o+ e

24 Debois, Hildebrandt, Slaats

Note that P’, R can clearly be constructed from P, e in NLOGSPACE. The trick
here is that g is blocked by f in P’; refining by R excludes f, removing the
block. Clearly e is reachable in P iff g is in P’ & R. It is now enough to show
that g is reachable in P’ @ R iff R does not refine P’. Assume first g is reachable
in P’ @& R. Because {(g) & alph(P) and g is clearly not reachable in P’, R does
not refine P’. Assume instead g is not reachable in P’ @ R. Clearly also f not
reachable in P’ @ R, and so every run of P/ & R is a run of P’; but then R
refines P’. O

Proposition 28 Let m be a Minsky machine, and take M = [m(m)] m(t)
to be the encoding of m as a DCR* process given in Section [5.4. Take P to
be the process P = [(ve: (f,t,f)) e me e, with e labelled halt. Then m is
terminating iff M does not refine P.

Proof Clearly lang(P) = ¢, that is, the only trace of P is the empty trace. By
Theorem the encoding M of m has a trace exhibiting the label halt iff m
terminates, so lang(M @ P)|siph(p) has a non-empty trace iff m terminates. It
follows that lang(M @ P)|sipnpy € lang(P) iff m does not terminate, and so
M refines P iff m does not terminate. O

Theorem 29 Let P,R be DCR* processes. It is undecidable whether R re-
fines Q.

Proof Immediate from Proposition a

7 An Approximation of Refinement

Because deciding whether some R refines some P is either NP-HARD or unde-
cidable, we need an approximation. The key problem is that new exclusions
might remove conditions preventing events from firing, as we saw above, and
that new inclusions might enable events to fire. This leads us to the following
approximation:

Definition 30 (Non-invasiveness) Let R = [Mg] T and P be processes.
We say that R is non-invasive for P iff

1. For every context C[—], such that Tr = Cle =% f] or T = Cle =+ f],
either f is bound in C[—] or f ¢ fe(P); and

2. For every label | € alph(R) N alph(P), no bound event of Tg is labelled I,
and if e € fe(R) is labelled [, then e € fe(P).

It is straightforward to verify that non-invasiveness is decidable in poly-
nomial time. In our running example, R; is non-invasive for P, whereas Ry is
not for P, (because of the exclusion of bm).

This approximation covers a large class of practically important refine-
ments. Technically, it admits the addition of new events with labels not used

Replication, Refinement & Reachability 25

in the original process, and allow these new events to be conditional on or re-
quired by events in the existing process and vice versa. In overall terms, such
processes correspond to “linking” or “mixing in” new processes at run-time.

Also note, that even though existing events can not be excluded by added
events, it is possible to arbitrarily block events of the original process. Suppose
we want to adapt a process P, blocking permanently its ability to execute an
event e. We simply refine with the process Q:

Q=le:(f,t,NH)] (vg: (f,t,f)) g—oeg|g—eec

Here, g can never fire because it depends on itself, and so e can never fire
(again) because it depends on g. Moreover, refining process @) can selectively
enable and disable e by excluding and including g.

Within the application area of business process modelling, it is a com-
mon change to add the possibility/requirement of taking additional actions
in between existing actions. E.g., an insurance company might face a new re-
quirement that for certain claims, a report from an external expert must be
procured before it decides on the claim. For this class of requirements, it is
sufficient to have the ability to add new steps (e.g., ”procure report”) and
block the existing workflow until these new steps are completed (e.g., prevent
”decide claim” until we have executed ”procure report”); refinement (using
the blocking @ process above) supports these two mechanics.

We prove that non-invasiveness implies refinement. We first observe that
transitions do not introduce new constraints or effects on free events.

Lemma 31 (Transitions reflect relational sub-terms) If [M]T Ny
and T' = C'le R f], then there exists a context C[—] s.t. T = Cle R f] with f
free in C" iff it is free in C.

Proof Easy induction on the derivation of the transition. a

Next we prove that for processes that are composed of two processes, the
marking can be canonically separated in the three disjoint parts: The events
only occurring in the first process, the events that are shared, and the events
only occurring in the second process.

Definition 32 (Separation of Processes) Let P = [M] T} || T». A separa-
tion of P comprises disjoint markings M, Ms, S such that M = M; $.S & Mo,
that fe(71) N fe(Tz) C dom(S), and that fe(T;) \ fe(7T3-;) C dom(M;) for
i € {1,2}. A process [My1 ® S @ M) Ty || T is separated iff My, Ms,S is a
separation.

Note that separations are not necessarily unique, e.g., if an event e is
mentioned in the marking M but not free in any of the terms 77, T5. However, if
we know where such unconstrained events belong, we have a unique separation:

Lemma 33 (Canonical Separation) Let P, = [M;] Ty and Py = [Ms] Ty
with Py ® Ps defined. Then there exists a unique separation N1, No, S of Py @ Ps
satisfying dom(N;) = dom(M;) \ dom(Ms_;) for i € {1,2} and dom(S) =

26 Debois, Hildebrandt, Slaats

dom(M7) Ndom(Ms). We call this separation the canonical separation of P, ®
Ps.

Lemma 34 If a process [M] T} || Tz with canonical separation My @& S @ M,
has a transition

M|Ty | To 5T or [M]Ty || To S [M]T

then the following holds:

~

For some T{, T3 we have T' =17 || T5.

2. There exists a unique separation Mi, M4, S" of M’ with dom(M;) = dom (M)
and dom(S) = dom(S’).

3. This separation satisfies alph([M; ® S| T;) = alph([M] & S’ T})

4. If the original separation was canonical for Py = [My @ S| Ty and Py =

[S® Ms] Ts, then so is M, M5, S" for Pl = [M{®S’] T{ and P} =

[S"® Mj) Ts.

Proof Note that only the rules [PAR] and [PAR-2] allows term transitions for
a term on the form T3 || T; part 1 is then immediate by inspection of these
rules; and part 2 and 3 follows from Lemma[I2] Part 4 is then immediate from
parts 2 and 3. a

We will need the following auxiliary ordering on markings with identical
domains: Smaller markings have more restless events.

Definition 35 We order states (h,i,7) T (h/,¢',r') it h=h',i =4 andr =t
implies r = t. We order markings M C N point-wise when dom(M) = dom(N).

Lemma 36 If M T N and both [M| T and [N] T are processes, then:

1. M]Tke:d iff [NJTtFe:d;

2. [M]T 3T iff [N]T 2 T'; and

3. For every process transition [M] T s [M'] T’, there exists a unique N’
s.t. [IN)T L [N'] T'. This N' satisfies M' & N'.

Proof Part (1] is immediate by Definition of “F”. Part [2| then follows by in-
duction on the derivation of the term transition, using part [I] in the base
case [INTRO]. Part |3| follows by cases on the process transition rules [EFFECT)]
and [EFFECT-2], observing that for any M T N and any event or effect z,
r-MCTx-N. O

Lemma 37 Both term and process transitions are unique in the following
sense:

LM T 25 T and M) T 225 T then 6 = &' and T = T"".

2. IfPLQand P L Q' then Q = Q.

Replication, Refinement & Reachability 27

Proof (1) By induction on the derivation of the transition. For the base case,
[INTRO], by assumption we have

MeNTEST and [MaeN|T ST,

with M@ N =M @N' and [M]TFe:6and [M']TF e:d'. Wenow find by
cases on T and inspection of the rules in Figure 4| that M = M’ and 6 = ¢'.

The cases [PAR|, [PAR-2], and [REP] cases are straightforward; we exem-
plify with [PAR-2]. Suppose [M] T || U “2% Ty and [M] T || U 252 T,
By [PAR-2] we must have T3 = T || U and T» = T4 || U, and moreover
(M] T 2<% 77 and [M] T “2, T4, But then by IH 6; = 6, and T/ = T}
whence T7 = T5.

Finally, [LOCAL]. Suppose

M) (vf:0)T 22T and (M (vf:®) T X2 T,
By [LOCAL] we must have
(M, f:)T <2 T and [M,f:0]T <215,

with Ty = (vf : @1) Ty and To = (vf : §3) Ty. By TH 61 = 09 and Ty = T4. It
remains to prove that also &1 = @5. But again by [LOCAL] we have f : & =
(e:01) - (f:D)=(e:02) - (f: D)= [: Ps.

(2) Straightforward by inspection of the rules [EFFECT| and [EFFECT-2]
using part (1) of this Lemma. O

Lemma 38 (Weakening) Suppose [M & N| T MT IfA=e:6 and fe(T)U
{e} is disjoint from dom(N), or A = ve : ¢ and fe(T) is disjoint from dom(N),
then also [M] T 5N

Proof By induction on the derivation of the transition.

For [INTRO], note that we must have A = e : § and for some M’, N’ with
M'®N'"=M® N that

MeNTEST and [M)The:s

By inspection of the rules for the enabling relation in Figure [d] we find that
dom(M') C fe(T) U {e} and so dom(M’) disjoint from dom(N) and so M =
M’ @& M" for some M", whence [M] T NS

For [PAR] we have for some 41,y that A = e : 1 @ o with

MeN|T, <257 and [Ma&N| T, <2 1)

and fe(Ty || Tz)U{e} disjoint from dom(N), so also fe(Ty)U{e} and fe(T2)U{e}
disjoint from dom(N). By IH we find then transitions

6:52

M Ty S5 7 and (M) Ty S T

28 Debois, Hildebrandt, Slaats

establishing by [PAR] a transition [M] Ty || Tp <22% 77 | T3

For [LOCAL] we are given a transition

MaN| wf:e)T 22 vf o)1 .
such that for some e
M&N,f: B T5T and f:0 =(e:8)-f:&

and either e = f and v = ve or v = e. In the former case, we have by
assumption fe(T) = fe((vf :) T) disjoint from dom(N) and by the bound
variable convention we may assume e = f also not in the domain of dom(N).
Hence fe(T)U{e = f} also disjoint from N and by TH we have [M, f : §| T 9,
T’ which by [LOCAL] yields the requisite transition. In the latter case, we have
because v = e that fe(T) U {e} = fe(!f.9T) U {e} disjoint from N and again
by TH we find the requisite transition.

Finally, the cases [REP] and [PAR-2] are straightforward applications of TH,
noting for the former that fe(T) = fe(le.T') and for the latter that fe(T") C
fe(T || U) and so in both cases disjointness with N is preserved as we move to
the hypothesis. a

Lemma 39 If[M]|T 2 T with § = (E,I,R) thene € E resp. e € I implies
T =C[f =% e] resp. T = C[f —+ e] with e not bound in C[—].

Proof Easy induction on the derivation of the transition. a

Lemma 40 Let P be non-invasive for Q, and suppose My, S, Ms is the canon-
ical separation of P® Q = [My &S ® My] Ty || Tz. If also

My S M| T, 7—:6>Tl'
with § = (X, I, R), then X, I are both disjoint from fe(Q).
Proof Immediate from the Definition of non-invasiveness and Lemma O

Lemma 41 Let P be non-invasive for Q, and suppose My, S, My is the canon-
ical separation of P® Q = [M; &S & My] Ty || Tz. If also

Mi® S M|T || Ty lé%Tll I TQ’
then the following are true.
1. If4(~y) € alph(Q) then for some §' we have [S & Ms] Ty RN T and (7 : 9)-

(S® M) (y:6")-(S& My).
2. If £(~) & alph(Q) then (y:06) - (S My) T S @ M.

Replication, Refinement & Reachability 29

Proof We proceed by cases on «y; suppose first v = ve. If ve is a binder of T5, we
must have £(v) € alph(Q) and the transition must arise by (the rule symmetric

to) [PAR-2]. By definition of canonical separation we have fe(T%) disjoint from
ve:d

dom(M7) and so by Lemma |38| we find a transition [S @ Ms] To —— Ts,
altogether establishing (1). If instead ve is a binder of T, we must have £(v) &
alph(Q) lest non-invasiveness be contradicted. In that case we must have a
transition

ve:d

[Ml@S@MQ] T —>T1/

by Lemma [40] we find (v :0) - (S & M) E S & M.
Suppose instead v = e. In this case the transition must be derived by [PAR],
and so by Lemma [37] there exists unique 41, d2 such that

My @S @M Ty 5T and My ® 5 © M) Tp % T}

Suppose for (1) that £(e) € alph(Q). By non-invasiveness and canonicity of
separation we then have that e ¢ dom(M;) and that fe(T5) is disjoint from
dom(Mj), and so by Lemma |38 we have a transition

(S @ M) Tp <2 T}

By Lemma[d0] it now follows that (e : 01 @ 62) - (S & M) T (e : 62) - (S & Ma).
Suppose instead for (2) that £(e) ¢ alph(Q). It follows that e ¢ fe(T:), and
so d2 = (0,0,0). We now find (y:46) - (S® My) E S @& My by Lemmas
and [0 0

Lemma 42 Let P be non-invasive for Q, and suppose My, .S, Ms is the canon-
ical separation for P® Q = [My; &S & Ms] Ty || Tz. If also

M@ SeM|T, | Ty 5 [M &S &M T! | Ty =R

where the latter is a canonical separation then the following statements are
true:

1. If £(7) € alph(Q) then [S ® My) T X5 [N] T} where S’ ® M} T N.
2. If 0(v) & alph(Q) then S' @& M} T S & M.

Proof Immediate from Lemma [{1] and rules [EFFECT] and [EFFECT-2]. O

We are now finally ready to show that the syntactically decidable non-
invasiveness property implies refinement.

Theorem 43 If QQ is non-invasive for P then Q refines P.

Proof Let M = M; & S & M> be the canonical separation of P & @, and
consider a finite or infinite run of Ry = P ® Q = [M| Ty || To:

Ro % Ry % ...

30 Debois, Hildebrandt, Slaats

By induction on i using Lemma we can write each R; as a canonically
separated process

Ri=[M{®S5 e M)T] | T; = (M &S T) & (M3 ® 5] T3)

where alph([M} & S%] T}) = alph(P) and alph([S* & M3] T%) = alph(Q), and
[M3] Ty is non-invasive for [M{] T{. We prove by induction that there exists a
sequence N satisfying (a) N° = S @ M3, (b) S* & M4 C N*, and (c)

N = Nt when £(v;) & alph(P)
[NY] TP 25 [N T when £(v;) € alph(P)

The theorem then follows. We have immediately N© = S° obtaining (a).
For (b) and (c), consider some ¢ > 0, and assume first ¢(v;) ¢ alph(P). By
Lemma Part 2, we then have St @ Mé“ C S MiC N = Nitl
obtaining (b) and (c). Assume instead ¢(v;) € alph(P). Then take N+ = N
where N is given by Lemma[42] Part 1, immediately obtaining (b) and (c). O

8 Conclusion, Related and Future Work

In this paper, we studied the interplay of dynamic process instantiation and
run-time refinement in the context of the declarative event-based process lan-
guage, Dynamic Condition Response graph. We formalised the language here
as a process language. The present work generalises our prior work on DCR
graphs, co-developed and implemented by our industrial partner.

We proved that event-reachability for DCR processes without replication is
NP-HARD, while the combination of replication and local events makes event-
reachability and refinement undecidable. We then identified a decidable and
practically useful class of refinements, characterised by the syntactic notion
of non-invasive processes. Our findings and problems were illustrated by a
running example extracted from a real case.

Related Work. The DCR language is as we have seen closely related to DCR
graphs [36] 47, 21], which descend from event structures, and thus have rela-
tions to Petri Nets. Petri Nets have been extended to allow modular definition
(e.g. via shared transitions [32]) and to represent infinite computations and
w-regular languages (e.g., Biichi Nets [I7]). However, Petri nets introduce the
intentional construct of places marked with tokens, as opposed to event struc-
tures and DCR* processes, which only rely on causal and conflict relations
between events.

Variants of Event structures with asymmetric conflict relation relate to
the asymmetric exclude relation of DCR processes, including extended bundle
event structures [30}[20], dual event structures [28[31], asymmetric event struc-
tures [7], and precursor event structures [18]. The include relation of DCR pro-
cesses relate to event structures for resolvable conflicts [19], and the inclusion
and exclusion together allow representation of a dynamic causality relation
as found in dynamic causality event structures [6]. Automata based models

Replication, Refinement & Reachability 31

like Event automata [41] and local event structures [25] also allow asymmet-
ric conflicts, but use explicit states and do not express causality and conflicts
as relations between events. Besides the early work on restless events in [48],
we are not aware of other published work generalising Event structures to be
able to express liveness properties, nor to distinguish between events that may
and events that must eventually be erecuted. Replication events of the DCR*
process language relate to replication in process calculi and higher-order Petri
nets [27]. We believe to be the first to combine higher-order features and live-
ness.

Refinement in the shape of run-time adaptation has been studied also for
Petri nets [45] and process calculi [5, @, [10], but tends to require predefined
adaptation points, and often deal with adaptations via higher-order primitives.
In contrast, refinement in DCR* is dealt with by composition, which due to
the declarative nature allow for cross-cutting refinements without the need for
pre-specified adaptation points.

In the BPM community, the seminal declarative process language is De-
clare [2, [4]. As Declare is based on mapping primitives to LTL, which are then
mapped to automata, it necessarily distinguishes between run-time and design-
time. In contrast, in DCR processes, design-time and run-time representation
is literally the same. Declare has a relatively large set of basic constraints,
the formal expressiveness of which is clearly limited by that of LTL, while
DCR processes with only 4 basic constraints offers the full expressiveness of
regular and w-regular languages. A different approach is [35], which provides
a mapping from Declare to the CLIMB, which allows the use of its reasoning
techniques for support and verification of Declare processes at both design- and
run-time. The Guard-Stage-Milestone (GSM) approach [26] developed at IBM
Research is the main inspiration for the emerging Case Management Model
and Notation (CMMN) standard [39] and offers a data-centric declarative busi-
ness process modelling notation. The notation consists of stages, which have
guards controlling when the stage may start, and milestones controlling when
and how a stage may close. Initial work on relating GSM and DCR graphs
is provided in [I6] where it is shown how to derive consistent GSM Schemas
from DCR graphs.

Imperative process models such as BPMN [38] have supported dynamic
sub-processes for some time now, they are only recently being studied for
declarative languages [50]. Here, sub-processes do not have independent life
cycles, that is, when a sub-process is spawned, it must run to completion
before its super-process may resume. Interestingly, it is noted in ibid. that ex-
tending the model with sub-processes seems to increase its expressive power;
we formally confirm that supposition here, finding DCR, processes with repli-
cation and sub-processes able to encode Minsky machines.

Future work. DCR* processes as defined here only interact via shared events.
We are currently working on adding interaction between concurrent events,
labelled with send and receive labels as found e.g. in the m-calculus, thereby
lifting the results of the present paper to w-like languages. Towards better

32 Debois, Hildebrandt, Slaats

analysis of the infinite-state DCR* language, we have initiated work on ex-
ploiting the idea of responses and restless events in the domain of behavioural
types [14] and run-time monitoring [36].

The DCR* process language would benefit from a closer investigation of
its relation to modular [32] and higher-order Petri Nets [27]. Moreover, time
constraints and more general refinements as initiated in [24] [37], e.g. allowing
to remove constraints and events should be further investigated.

Finally, the present notion of refinement was not reified into an actual
semantics of run-time adaptation. We have defined refinement and found a
syntactic condition ensuring it, but we have neither embedded “adaptation”
as a primitive of the language nor included it in the core semantics—we have
not given a computational model of run-time refinement. Such an extension
would be interesting and important; one avenue would be to follow the ideas
of [29] and include “adaptation steps” as higher-order actions, obtaining a
semantics that include outright the notion of run-time refinement.

References

1. van der Aalst WMP (1998) The application of Petri nets to workflow
management. Journal of Circuits, Systems, and Computers 8(1):21-66

2. van der Aalst WMP, Pesic M (2006) DecSerFlow: Towards a truly declar-
ative service flow language. In: WS-FM 2006, Springer, LNCS, vol 4184,
pp 1-23

3. van der Aalst WMP, ter Hofstede AHM, Weske M (2003) Business pro-
cess management: A survey. In: van der Aalst WMP, ter Hofstede AHM,
Weske M (eds) Business Process Management, International Conference,
BPM 2003, Eindhoven, The Netherlands, June 26-27, 2003, Proceedings,
Springer, Lecture Notes in Computer Science, vol 2678, pp 1-12

4. van der Aalst WMP, Pesic M, Schonenberg H, Westergaard M, Maggi FM
(2010) Declare. Webpage, http://www.win.tue.nl/declare/

5. Anderson G, Rathke J (2012) Dynamic software update for message pass-
ing programs. In: Jhala R, Igarashi A (eds) APLAS, Springer, Lecture
Notes in Computer Science, vol 7705, pp 207-222

6. Arbach Y, Karcher D, Peters K, Nestmann U (2015) Dynamic causality in
event structures. In: Graf S, Viswanathan M (eds) Formal Techniques for
Distributed Objects, Components, and Systems: 35th IFIP WG 6.1 Inter-
national Conference, FORTE 2015, Held as Part of the 10th International
Federated Conference on Distributed Computing Techniques, DisCoTec
2015, Grenoble, France, June 2-4, 2015, Proceedings, Springer Interna-
tional Publishing, Cham, pp 83-97, DOI 10.1007/978-3-319-19195-9.6,
URL http://dx.doi.org/10.1007/978-3-319-19195-9_6

7. Baldan P, Corradini A, Montanari U (2001) Contextual Petri nets, asym-
metric Event structures, and processes. Information and Computation
171:149, DOI 10.1006/inco.2001.3060

http://www.win.tue.nl/declare/
http://dx.doi.org/10.1007/978-3-319-19195-9_6

Replication, Refinement & Reachability 33

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Barthe G, Pardo A, Schneider G (eds) (2011) Software Engineering and
Formal Methods - 9th International Conference, SEFM 2011, Montevideo,
Uruguay, November 14-18, 2011. Proceedings, LNCS, vol 7041, Springer

Bravetti M, Di Giusto C, Pérez JA, Zavattaro G (2012) Steps on the
road to component evolvability. In: Proceedings of the 7th International
Conference on Formal Aspects of Component Software, FACS’10, pp 295—
299, DOI 10.1007/978-3-642-27269-1_19, URL http://dx.doi.org/10.
1007/978-3-642-27269-1_19

Bravetti M, Giusto CD, Pérez JA, Zavattaro G (2012) Adaptable pro-
cesses. Logical Methods in Computer Science 8(4)

Carbone M, Hildebrandt TT, Perrone G, Wasowski A (2012) Refinement
for transition systems with responses. In: FIT, EPTCS, vol 87, pp 48-55
Debois S, Hildebrandt T, Marquard M, Slaats T (2014) A case for
declarative process modelling: Agile development of a grant applica-
tion system. In: EDOCW /AdaptiveCM ’14, IEEE, pp 126 — 133, DOI

10.1109/EDOCW.2014.27

Debois S, Hildebrandt TT, Slaats T (2014) Hierarchical declarative mod-
elling with refinement and sub-processes. In: Business Process Manage-
ment - 12th International Conference, BPM 2014, Haifa, Israel, Septem-
ber 7-11, 2014. Proceedings, Springer, Lecture Notes in Computer Sci-
ence, vol 8659, pp 18-33, DOI 10.1007/978-3-319-10172-9, URL http:
//dx.doi.org/10.1007/978-3-319-10172-9

Debois S, Hildebrandt TT, Slaats T, Yoshida N (2014) Type checking live-
ness for collaborative processes with bounded and unbounded recursion.
In: FORTE, Springer, Lecture Notes in Computer Science, vol 8461, pp
1-16

Debois S, Hildebrandt T, Slaats T (2015) Safety, liveness and run-time
refinement for modular process-aware information systems with dynamic
sub processes. In: FM 2015, Springer, no. 9109 in LNCS, pp 143-160,
DOI 10.1007/978-3-319-19249-9_10

Eshuis R, Debois S, Slaats T, Hildebrandt TT (2016) Deriving consis-
tent GSM schemas from DCR graphs. In: Sheng QZ, Stroulia E, Tata
S, Bhiri S (eds) Service-Oriented Computing - 14th International Con-
ference, ICSOC 2016, Banff, AB, Canada, October 10-13, 2016, Proceed-
ings, Springer, Lecture Notes in Computer Science, vol 9936, pp 467482,
DOI 10.1007/978-3-319-46295-0-29, URL http://dx.doi.org/10.1007/
978-3-319-46295-0_29

Esparza J, Melzer S (1997) Model checking LTL using constraint pro-
gramming. In: Azma P, Balbo G (eds) Application and Theory of Petri
Nets 1997, Lecture Notes in Computer Science, vol 1248, Springer Berlin
Heidelberg, pp 1-20

Fecher H, Majster-Cederbaum M (2005) Event structures for arbitrary
disruption. Fundam Inf 68(1-2):103-130

van Glabbeek R, Plotkin G (2004) Event structures for resolvable
conflict. In: Fiala J, Koubek V, Kratochvil J (eds) Mathematical
Foundations of Computer Science 2004: 29th International Sympo-

http://dx.doi.org/10.1007/978-3-642-27269-1_19
http://dx.doi.org/10.1007/978-3-642-27269-1_19
http://dx.doi.org/10.1007/978-3-319-10172-9
http://dx.doi.org/10.1007/978-3-319-10172-9
http://dx.doi.org/10.1007/978-3-319-46295-0_29
http://dx.doi.org/10.1007/978-3-319-46295-0_29

34

Debois, Hildebrandt, Slaats

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

sium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004. Pro-
ceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 550-561,
DOI 10.1007/978-3-540-28629-5_42, URL http://dx.doi.org/10.1007/
978-3-540-28629-5_42

van Glabbeek R, Vaandrager F (2003) Bundle event structures and CCSP.
In: CONCUR 2003 - Concurrency Theory, LNCS, vol 2761, Springer, pp
57-71

Hildebrandt TT, Mukkamala RR (2010) Declarative event-based workflow
as distributed dynamic condition response graphs. In: PLACES, EPTCS,
vol 69, pp 59-73

Hildebrandt TT, Mukkamala RR, Slaats T (2011) Nested dynamic condi-
tion response graphs. In: FSEN, Springer, LNCS, vol 7141, pp 343-350
Hildebrandt TT, Marquard M, Mukkamala RR, Slaats T (2013) Dynamic
condition response graphs for trustworthy adaptive case management. In:
OTM Workshops, Springer, LNCS, vol 8186, pp 166-171

Hildebrandt TT, Mukkamala RR, Slaats T, Zanitti F (2013) Contracts
for cross-organizational workflows as timed dynamic condition response
graphs. J Log Algebr Program 82(5-7):164-185

Hoogers P, Kleijn H, Thiagarajan P (1996) An event structure semantics
for general Petri nets. Theoretical Computer Science 153(12):129 — 170
Hull R, Damaggio E, Fournier F, Gupta M, Heath FT, Hobson S, Linehan
MH, Maradugu S, Nigam A, Sukaviriya P, Vaculin R (2010) Introducing
the guard-stage-milestone approach for specifying business entity lifecy-
cles. In: WS-FM, Springer, LNCS, vol 6551, pp 1-24

Janneck JW, Esser R (2002) Higher-order Petri net modelling: Techniques
and applications. In: Proceedings of the Conference on Application and
Theory of Petri Nets: Formal Methods in Software Engineering and De-
fence Systems, CRPIT 02, pp 1725

Katoen JP (1996) Quantitative and qualitative extensions of event struc-
tures. PhD thesis, University of Twente, Enschede

Lanese I, Lienhardt M, Mezzina CA, Schmitt A, Stefani J (2013) Con-
current flexible reversibility. In: Felleisen M, Gardner P (eds) Program-
ming Languages and Systems - 22nd European Symposium on Pro-
gramming, ESOP 2013, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, Springer, Lecture Notes in Computer
Science, vol 7792, pp 370-390, DOI 10.1007/978-3-642-37036-6_21, URL
http://dx.doi.org/10.1007/978-3-642-37036-6_21

Langerak R (1992) Transformations and Semantics for LOTOS. Univer-
siteit Twente

Langerak R, Brinksma E, Katoen JP (1997) Causal ambiguity and partial
orders in event structures. In. CONCUR ’97, LNCS, vol 1243, Springer,
pp 317-331, DOI 10.1007/3-540-63141-0_22

Latvala T, Mkel M (2004) LTL model checking for modular Petri nets. In:
Applications and Theory of Petri Nets 2004, LNCS, vol 3099, Springer,
pp 298-311

http://dx.doi.org/10.1007/978-3-540-28629-5_42
http://dx.doi.org/10.1007/978-3-540-28629-5_42
http://dx.doi.org/10.1007/978-3-642-37036-6_21

Replication, Refinement & Reachability 35

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Marquard M, Shahzad M, Slaats T (2015) Web-based modelling and col-
laborative simulation of declarative processes. In: Business Process Man-
agement - 13th International Conference, BPM 2015, Innsbruck, Austria,
August 31 - September 3, 2015, Proceedings, Springer, Lecture Notes in
Computer Science, vol 9253, pp 209-225, DOT 10.1007/978-3-319-23063-4_
15, URL http://dx.doi.org/10.1007/978-3-319-23063-4_15

Minsky ML (1967) Computation: Finite and Infinite Machines. Prentice-
Hall

Montali M (2010) Specification and Verification of Declarative Open In-
teraction Models - A Logic-Based Approach, Lecture Notes in Business
Information Processing, vol 56. Springer

Mukkamala RR, (2012) A formal model for declarative workflows: Dynamic
condition response graphs. PhD thesis, I'T University of Copenhagen
Mukkamala RR, Hildebrandt T, Slaats T (2013) Towards trustworthy
adaptive case management with dynamic condition response graphs. In:
EDOC, IEEE, pp 127-136

Object Management Group BPMN Technical Committee (2013) Business
Process Model and Notation, version 2.0. http://www.omg.org/spec/
BPMN/2.0.2/PDF

Object Management Group CMMN Technical Committee (2016) Case
Management Model and Notation, version 1.1. http://www.omg.org/
spec/CMMN/1.1/PDF

Park D (1981) Concurrency and automata on infinite sequences. In: Pro-
ceedings of the 5th GI-Conference on Theoretical Computer Science,
Springer-Verlag, London, UK, UK, pp 167-183, URL http://dl.acm.
org/citation.cfm?id=647210.720030

Pinna G, Poigné A (1995) On the nature of events: another perspective in
concurrency. Theoretical Computer Science 138(2):425-454, DOI http://
dx.doi.org/10.1016/0304-3975(94)00174-H, meeting on the mathematical
foundation of programing semantics

Preda MD, Gabbrielli M, Giallorenzo S, Lanese I, Mauro J (2015) Devel-
oping correct, distributed, adaptive software. Sci Comput Program 97:41—
46, DOT 10.1016/j.scic0.2013.11.019, URL http://dx.doi.org/10.1016/
j.scico.2013.11.019

Reichert M, Weber B (2012) Enabling Flexibility in Process-Aware Infor-
mation Systems - Challenges, Methods, Technologies. Springer

Rohloff K, Loyall J, Pal P, Schantz R (2007) High-assurance distributed,
adaptive software for dynamic systems. In: 10th IEEE High Assurance
Systems Engineering Symposium (HASE ’07), pp 385 — 386, DOI 10.1109/
HASE.2007.17

Sibertin-Blanc C, Mauran P, Padiou G (2007) Safe Adaptation of Compo-
nent Coordination. Proceedings of the Third International Workshop on
Coordination and Adaption Techniques for Software Entities 189:69-85
Slaats T (2015) Flexible process notations for cross-organizational case
management systems. PhD thesis, IT University of Copenhagen

http://dx.doi.org/10.1007/978-3-319-23063-4_15
http://www.omg.org/spec/BPMN/2.0.2/PDF
http://www.omg.org/spec/BPMN/2.0.2/PDF
http://www.omg.org/spec/CMMN/1.1/PDF
http://www.omg.org/spec/CMMN/1.1/PDF
http://dl.acm.org/citation.cfm?id=647210.720030
http://dl.acm.org/citation.cfm?id=647210.720030
http://dx.doi.org/10.1016/j.scico.2013.11.019
http://dx.doi.org/10.1016/j.scico.2013.11.019

36 Debois, Hildebrandt, Slaats

47. Slaats T, Mukkamala RR, Hildebrandt TT, Marquard M (2013) Exfor-
matics declarative case management workflows as DCR graphs. In: BPM,
Springer, LNCS, vol 8094, pp 339-354

48. Winskel G (1980) Events in computation. PhD thesis, University of Edin-
burgh

49. Winskel G (1986) Event structures. In: Advances in Petri Nets, Springer,
LNCS, vol 255, pp 325-392

50. Zugal S, Soffer P, Pinggera J, Weber B (2012) Expressiveness and un-
derstandability considerations of hierarchy in declarative business process
models. In: BMMDS/EMMSAD, Springer, Lecture Notes in Business In-
formation Processing, vol 113, pp 167-181

A Proof of Proposition [6]

We recap the original graph-based formalisation of DCR graph [23], 21}, [36] [46] [13].

Definition 44 (DCR Graph) A DCR graph is a tuple (E,R, M) where

— E is a finite set of (labelled) events, the nodes of the graph.

— R is the edges of the graph. Edges are partitioned into four kinds, named and drawn as
follows: The conditions (—e), responses (e—), inclusions (—+), and exclusions (—%).

— M is the marking of the graph. This is a triple (Ex, Re, In) of sets of events, respectively
the previously executed (Ex), the currently pending (Re), and the currently included
(In) events.

When G is a DCR graph, we write, e.g., E(G) for the set of events of G, Ex(G) for the
executed events in the marking of G, etc. We write (—ee) for the set {e/ € E | ¢/ —e e},
write (ee—) for the set {e’ € E | ¢ & €’} and similarly for (e —>+) and (e —%).

Definition 45 (Enabled events) Let G = (E,R,M) be a DCR graph, with marking
M = (Ex,Re,In). An event e € E is enabled, written e € enabled(G), iff (a) e € In and (b)
InN (—ee) C Ex.

Definition 46 (Execution) Let G = (E,R,M) be a DCR graph with marking M =
(Ex, Re, In). Suppose e € enabled(G). We may ezecute e obtaining the resulting DCR graph
(E,R,M’) with M’ = (Ex', Re’, In’) defined as follows.

1. ExX' = ExU {e}

2. Re’ = (Re\ {e}) U (ee—)

3. In"=(In\ (e—=%)) U (e—+)

Definition 47 (Transitions) Let G be a DCR graph. If e € enabled(G) and executing e in
G yields H, we say that G has transition on e to H and write G <> H. A run of G is a (finite
or infinite) sequence of DCR graphs G; and events e; such that: G = Go 96 2 LA

trace of G is a sequence of labels of events e; associated with a run of G. We write runs(G)
and traces(G) for the set of runs and traces of G, respectively

Definition 48 (Acceptance) A run Gy 20 6 2 s accepting iff for all n with
e € In(Gn) N Re(Gy) there exists m > n s.t. either e;, = e, or e € In(G). A trace is
accepting iff it has an underlying run which is.

Definition 49 (Language) The language of a DCR graph G is the set of its accepting
traces. We write lang(G) for the language of G.

Replication, Refinement & Reachability 37

This concludes our recap of DCR graphs (as opposed to DCR processes). Now, the proof.

Definition 50 Let T,U be terms. Define T' = U by taking for R ranging over the four
relations

eRflleRf=eRf (8)
and closing under monoid laws for — || — and 0.
Lemma 51 IfT=U then T ST and U = U’ implies T' = U’

Proof 1t is straightforward to verify that the monoid laws and the idempotency rule
defining 22 preserves transition in the above sense; the desiderata follows.

Definition 52 Observe that by the monoid laws, every term T can be read as a multi-set
of relations; by the idempotency rule (8), it can be read as a set of relations. Write T' for
this set. For a process P = [M] T, take P = [M] T.

Definition 53 Let P = [M] T be a process and G = (E,R, M) a graph. Define P =~ G iff

1. E=dom(M)
2. for all e € E we have M(e) = (h,i,7) iff h = (e € Ex) and i = (e € In) and r = (e € Re).

3. T=R

Lemma 54 Let P be a process and G a graph s.t. P = G. For all e, if P < P’ then for
some G' we have G < G’ with P’ ~ G'; and vice versa.

Proof By Lemma it is sufficient to prove this result for P. Assume P = [M] T and
G = (E,R,M). We proceed by induction on the number of relations k in T = R.

For k =0, clearly P’ = [e- M] T and G’ = (ExU {e}, In, Re); the result follows.

For k = 1, straightforward verification by cases on the single relation.

For k > 1, we must have T = T I T and R = T3 UT, such that the number of relations
in T; are both smaller than k. Define G; = (E, Tj, M). Note that if P <> P’ then we must
have

M T 25T M) T ST

= = 1616 - =
M) Ty || Tp S229°2 7y | T

(9)

In this case we have by induction that G; = (E, Tj,M) < (E, T}, M) = G for j € {1,2}.

We show first that e is enabled in P iff it is in Q. Suppose e is enabled in P. By @,
e is then enabled in [M] T} and [M] T». By induction, it is then enabled in G1,G2, and
by calculation on Deﬁnitionit is also enabled in GG. Now suppose instead e is enabled in
G. By Definition e is also enabled in G, G2. By induction, e is enabled in [M] T1 and
[M] Tz. Tt follows by the [PAR]-rule that e is enabled in P.

Now suppose we have transitions P <> P’ and G = G’. As noted we must have @; by
[EFFECT| we have transitions

M| Ty Se:6-MTh and [M]T2 Se:6-M] Tz (10)
By induction we must have transitions
G 5@ and G2 5 Gh (11)

We prove that P’ =~ G’. Items (1) and (3) of Deﬁnitionare immediate, so it is sufficient to
show Item (2). Let My (z) = h when M(x) = (h,i,r); similarly for ¢, r. It is straightforward
to verify using and that each of the following leads to a contradiction:

L. My(f) # (f € EX), or
2. M;(f) # (f € In'), o

38 Debois, Hildebrandt, Slaats

3. My(f) # (f €Re).

Theorem 55 The relation = is a bistmulation.

Proof Immediate from Lemma

Corollary 56 Let P be a process and G a graph. Then P =~ G implies lang(P) = lang(G).
Proof Using Lemma@y it is clear that a run of P gives rise to a run of G and vice versa.
It is sufficient to show that such a runs is accepting for P iff it is for G; this is immediate

by inspection of Definitions [2] and [48]

Proof (of Pmposition@ Immediate from Theorem and Corollary

	Introduction
	DCR Processes
	Expressiveness of DCR Processes
	DCR Processes: Local events and Replication
	Complexity of DCR and DCR Processes
	Run-time refinement by composition
	An Approximation of Refinement
	Conclusion, Related and Future Work
	Proof of Proposition 6

