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Abstract. Declarative or constraint-based business process and workflow nota-
tions, in particular DECLARE and Dynamic Condition Response (DCR) graphs,
have received increasing interest in the last decade as possible means of address-
ing the challenge of supporting at the same time flexibility in execution, adapt-
ability and compliance. However, the definition of concurrent semantics, which
is a necessary foundation for asynchronously executing distributed processes, is
not obvious for formalisms such as DECLARE and DCR Graphs. This is in stark
contrast to the very successful Petri-net–based process languages, which have an
inherent notion of concurrency. In this paper, we propose a notion of concurrency
for declarative process models, formulated in the context of DCR graphs, and
exploiting the so-called “true concurrency” semantics of Labelled Asynchronous
Transition Systems. We demonstrate how this semantic underpinning of concur-
rency in DCR Graphs admits asynchronous execution of declarative workflows
both conceptually and by reporting on a prototype implementation of a distributed
declarative workflow engine. Both the theoretical development and the imple-
mentation is supported by an extended example; moreover, the theoretical devel-
opment has been verified correct in the Isabelle-HOL interactive theorem prover.

1 Introduction

The last decade has witnessed a massive revival of business process and workflow man-
agement systems driven by the need to provide more efficient processes and at the same
time guarantee compliance with regulations and equal treatment of customers. Starting
from relatively simple and repetitive business processes, e.g. for handling invoices, the
next step is to digitalise more flexible work processes, e.g. of knowledge workers [22]
that are distributed across different departments.

In many business process management solutions, notably solutions employing Busi-
ness Process Model and Notation (BPMN), a distributed process will be described as
a set of pools, where each pool contains a flow graph that explicitly describes the flow
of control between actions at that particular location. However, the explicit design time
specification of both distribution and control flow sometimes lead to overly rigid pro-
cesses; and changes to the distribution and control flow at run time, i.e. delegation of
activities to different locations, repetition or skipping of activities, is non-trivial to sup-
port. Moreover, flow diagrams describe constraints on the ordering of activities only
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implicitly. For instance, a simple business rule stating that a bank customer must pro-
vide a budget before getting approved for a loan can be checked only by verifying that
on every path from the request for a loan to an approval, there is a “receive budget”
event. Depending on the exact process language, the complexity of verifying this sim-
ple rule ranges from challenging to undecidable.

Towards the challenge of accommodating flexibility and compliance, there has been
a renewed and increasing interest in declarative or constraint-based process notations
such as DECLARE [23,24] and Dynamic Condition Response (DCR) graphs [7,13,16].
In a declarative process notation, a process is described by the constraints it must fulfill,
while the control flow is left implicit. This means that activities can be carried out in any
order and at any location that fulfills the constraints. It also means that compliance rules
and constraints are captured explicitly in the model. However, so far constraint-based
process notations have only been equipped with sequential semantics allowing only
one event to happen at a time. This is in stark contrast to successful Petri Net-based
workflow specifications, which have an inherent notion of concurrency.

In the present paper we make the following contributions:

1. We provide an overview of the challenges a notion of concurrency must overcome
for an event-based declarative workflow notation.

2. We give a “true concurrency” semantics for DCR graphs by enriching DCR graphs
with a notion of independent events, and prove that the semantics of a DCR graph in
this case gives rise to a labelled asynchronous transition system [25,27]. The devel-
opment, which is quite technical, has been verified to be correct in the Isabelle-HOL
interactive theorem prover [19]; the formalised development is available online [4].

3. We show how this semantic underpinning of concurrency admits practical asyn-
chronous execution of declarative workflows. Essentially, this is achieved by as-
signing events to location. Thus, we capture asynchronous semantics for the entire
spectrum of distributions, spanning from the fully centralized workflow where ev-
ery event is happening at the same location, to the fully decentralized workflow,
where every event is managed at its own location.

4. We demonstrate the practical feasibility of the developed theory by reporting on a
prototype implementation of a distributed declarative workflow engine. The proto-
type is accessible online [3].

Related Work. Concurrency and distribution of workflows defined as flow graphs are
well-studied. Declarative modelling and concurrency has been studied in the context
of the Guard Stage Milestone (GSM) model [14] and declaratively specified (Busi-
ness) Protocols [8–10,26]. In the GSM model [14], declarative rules govern the state of
Guards, which in turn admits Stages to open and execute. The declarative rules refer-
ence a global state, which executing a Stage might change non-atomically. Stages may
run concurrently; to prevent errors of atomicity, a transactional concistency dicipline
based on locks is followed. That is, stages can be said to be concurrent if they do not
have interferring reads and writes to the global state. Neither (core) DCR graphs nor
(core) DECLARE has explicit notions of data, global state or state update. Writes and
reads of data must be modelled in DCR graphs as events, and interferrence between
such events by relations, i.e. any write event to a data location should explicitly exclude
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and include every other event representing access to the same location. Thus, depen-
dencies between activities are not expressed implicitly as predicates on a global state,
but instead explicitly through relations between activities.

In [8–10,26] protocols are given declaratively as rules governing which actions must
and must not be available in a given state. Like GSM, the steps in the protocol entail
modifying the global state, and the availability of actions in a particular state is directly
expressed as predicates on this state. Unlike GSM, race conditions are resolved by either
ordering the types of updates [8], or by projecting the global specification onto subsets
of its rules in a way that avoids the problems of non-local state and blindness [10].

The Agent-based approach of [15], while philosophically similar to the present ap-
proach, sidesteps the issue of concurrency. Agents manage or invoke services, com-
prised of tasks; tasks are explicitly declared as being in sequence, in parallel, etc. Before
invoking a service, the invoking agent must negotiate the particulars of its usage with
the managing agent; this negotiation is specified in part declaratively. It is left to the
implementation of agents and services to ensure that concurrency issues do not arise.

Concurrency is less well-studied in the setting of pure declarative formalisms with-
out explicit data and global state, like DECLARE and DCR graphs. We took tentative
steps for DCR graphs in [1]. For DECLARE, [11,12] provide pattern based translations
of a subset of DECLARE LTL constraints to Petri Nets by giving a net for each con-
straint. These works do not cover the full expressive power of LTL (in particular, they
only cover finitary semantics). In contrast, DCR Graphs are known to be equivalent to
Büchi-automata [5,16,18], and thus express infinitary liveness conditions and are more
expressive than LTL. [20] offers a fully automatic mapping from Declare to finite state
automata to Petri Nets, but disregard the independence relation in their translation. Fi-
nally, [21] considers declarative, event-based workflow specifications. Local constraints
for each event are derived from a global specification provided in an LTL-like temporal
logic. However, the use of the temporal logic makes the setting dependent on an ini-
tial calculation of the local constraints, which only provide the independence relation
implicitly.

2 Concurrency & declarative workflows

In this section, we explain through examples the issues surrounding concurrency in
declarative workflow specifications, and give the main gist of our proposed solution.
Along the way, we will recall the declarative model of DCR graphs.

2.1 A mortgage credit application workflow

As our main example, we will use a declarative specification of a workflow from the
financial services industry, specifically the mortgage application process of a mortgage
credit institution. The example is based on an ongoing project with the Danish mort-
gage credit institution BRFKredit. For confidentiality reasons, we are unable to present
an actual process of BRFKredit; instead, we have distilled down the major challenges
discovered in that project into the following wholly fictitious application process.
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Mortgage application processes are in practice extremely varied, depending on the
type of mortgage, the neighbourhood, the applicant, and the credit institution in ques-
tion. The purpose of the process is to arrive at a point where the activity Assess loan
application can be carried out. This requires in turn:

1. Collecting appropriate documentation,
2. collecting a budget from the applicant, and
3. appraising the property.

In practice, applicants’ budgets tend to be underspecified, so an intern will screen the
budget and request a new one if the submitted one happens to be so.

The caseworker decides if the appraisal can be entirely statistical, i.e., carried out
without physical inspection, but rather based on a statistical model taking into account
location, tax valuation, trade history etc.; or if it requires an on-site appraisal. On-site
appraisals are cursory in nature, and do not require actually entering the property. For
reasons of cost efficiency, one may not do both on-site and statistical appraisals, not
even in the case of an audit. However, if the neighbourhood is insufficiently uniform, a
thorough on-site appraisal is required. This thorough appraisal requires physical access
to the property, so the mobile consultant performing the appraisal will in this case need
to book a time with the applicant.

Appraisals are occasionally audited as a matter of internal controls; an audit may
entail an on-site appraisal, which may or may not coincide with an ordinary on-site
appraisal. It is customary, however, to consider a statistical appraisal an acceptable sub-
stitute for an on-site appraisal during an audit.

2.2 A DCR formalisation

This textual description of the application process is inherently declarative: we have
described constraints on the ordering of activities in the process rather than positing
a particular sequencing. Thus, this process is naturally described by a declarative pro-
cess model such as DECLARE or DCR graphs. Presently, we give a DCR graph-based
declarative model in Figure 1 on page 5, produced with the tool available at [3].

DCR models are graphical; activities, also known as “events” are represented by
boxes, labelled by the name of the activity and the role or participant executing that
activity. E.g., the top-right box represents an activity Collect documents which is carried
out by a caseworker. Activities are colored according to their state: grey is not currently
executable, red text is required, and greyed out is excluded. Arrows between boxes
represent constraints between activities. DCR graphs define in their most basic form
only 4 such constraints: Conditions and Responses, Inclusions and Exclusions.

Conditions. A condition, drawn as an arrow with a dot at the head, represents the
requirement that the source activity must be executed at least once before the target
activity can be executed. In our model, we see, e.g., that Collect documents must be
executed before Assess loan application can be.

Responses. An activity can be required for the workflow to be considered complete,
usually called accepting. Incomplete or “pending” activities are labelled in red and
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Fig. 1. Declarative DCR model of a mortgage application process

have an exclamation mark next to them. In the model, the activities Budget screening
approve and Assess loan application are initially pending. A response, represented by
an arrow with a dot at the tail, indicates that executing the source activity imposes
the requirement to later do the target activity, that is, executing the former makes the
latter pending. In the model, when an applicant does Submit budget, this imposes the
requirement of a subsequent screening, and so there is a response from Submit budget
to Budget screening approve.

Inclusions and exclusions. An activity is always in one of two states: it is either
included or excluded. In diagrams, excluded activities are drawn with a thin gray; regu-
larly drawn activities are included. An excluded activity cannot execute; it cannot pre-
vent the workflow from being accepting, even if it is pending; and it cannot prevent
other activities from executing, even if they have conditions on it. For ease of reading,
conditions from excluded activities are also drawn with a thin gray, to indicate that they
currently do not have effect.

An activity may cause other activities to be included or excluded when it is itself
executed. This is indicated diagrammatically with arrows that has “+” and “%” as heads.
In the model, the Irregular neighbourhood activity—which is an automated activity
executed by IT-systems—includes the Make appraisal appointment, which is initially
excluded; this in turn makes On-site appraisal non-executable until the appointment
has been made, by virtue of the condition from Make appraisal appointment to On-site
appraisal. Conversely, the On-site appraisal and Statistical appraisal activities exclude
each other: after doing one, one may no longer do the other.
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The semantics of a DCR model is the set of (finite and infinite) sequences of ac-
tivities in which every pending activity is eventually executed. We call such sequences
“traces”. For finite traces, this means that no activity is pending at the end.

Example 2.1. The model in Figure 1 admits (among infinitely many others), the follow-
ing three traces. The first is the “happy path”, the usual and simplest case. The second
is the “happy path” for the less frequent case of an irregular neighborhood. The third is
a convoluted special case, with audit and re-submission of a pre-screened budgets.

1. Collect documents, Submit budget, Statistical appraisal, Budget screening approve,
Assess loan application.

2. Submit budget, Collect documents, Irregular neighbourhood, Budget screening ap-
prove, Make appraisal appointment, On-site appraisal, Assess loan application.

3. Collect documents, Submit budget, Statistical appraisal, Irregular neighbourhood,
Budget screening approve, Appraisal audit, Make appraisal appointment, Submit
budget, On-site appraisal, Budget screening approve, Assess loan application.

2.3 Concurrency in the example workflow

It would appear that certain activities in this workflow could happen concurrently,
whereas others are somehow in conflict. It is clear from the textual specification that,
e.g., the process of submitting and screening the budget is independent from the ap-
praisal model, and we would expect to be able to execute them concurrently in practice.

Our DCR model of Figure 1 appears to bear out this observation: there are no
arrows—and so it would seem no constraints—between Submit budget and Budget
screening approve on the one hand; and Appraisal audit, On-site appraisal, and Sta-
tistical appraisal on the other. This insight begets the question: Exactly when are two
activities concurrent? Exactly when will it always be admissible to swap two activi-
ties? These questions have practical relevance: E.g., the mobile consultant might be
without internet connectivity when he executes the activity On-site appraisal; but this
is admissible only if it is somehow guaranteed that only concurrent activities happen
simultaneously.

We proceed to examine what is a reasonable notion of concurrency of activities
through a series of examples. We will attempt to obtain a set of principles to help us
later judge what is and is not a good definition of “concurrency”.

Example 2.2. The traces indicated above gives an indication that there is indeed some
form of independence, in that, e.g., in the first trace, the activities Submit budget on the
one hand and Statistical appraisal on the other can be swapped and we still have an
admissible trace. In fact, it is not terribly difficult to prove that in any admissible trace,
we can always swap adjacent activities when one is among the budget activities and the
other is among the appraisal activities, and the trace we then get is still admissible.

The principle we observe here is that adjacent concurrent activities should be able
to happen in either order.

Example 2.3. A very easy example of activities that cannot be considered concurrent
are ones related by a condition. If one requires the other to have happened previously,
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clearly they cannot in general happen at the same time. This is the case for, e.g., Collect
documents and Irregular neighbourhood.

The principle we observe here is that concurrent activities cannot enable each other.

Example 2.4. However, clearly not every two activities can be reasonably swapped.
For instance, the activies On-site appraisal and Statistical appraisal are specified to be
mutually exclusive (in most cases) in the textual specification, and in the DCR model
each excludes the other. If one happens, the other cannot, and so they cannot reasonably
be considered concurrent: When they cannot happen one after the other, surely they
should not be allowed to happen simultaneously.

The principle we observe here is that concurrent activities cannot disable each other.

Example 2.5. A different way activities can be in conflict is if their executions have mu-
tually incompatible effects on the state of the DCR graph. For instance, the Appraisal
audit includes On-site appraisal, whereas Statistical appraisal excludes it. Clearly, Ap-
praisal audit and Statistical appraisal cannot be executed concurrently: if they were
to happen at the same time, what would be the resulting state of On-site appraisal—
included or excluded?

The principle we observe here is that concurrent activities cannot have incompatible
effects on the state of other activities.

Example 2.6. The examples we have seen so far have one thing in common: activities
that could not be considered concurrent were related by arrows in the model. Could it
be that events not directly related are necessarily concurrent?

No! Consider the events Irregular neighbourhood and On-site appraisal. These are
not directly related: there are no arrows from one to the other. However, Irregular neigh-
bourhood includes Make appraisal appointment, which is a condition for On-site ap-
praisal. Thus executing Irregular neighbourhood prevents the execution of On-site ap-
praisal. Thus we might observe the ordering first On-site appraisal followed by Irregu-
lar neighbourhood, but never the opposite order. In the abstract, like for conditions, one
of these activities precludes the execution of the other, and so they cannot be considered
concurrent—even though there is no arrow between them.

The principle we observe here we saw already before: concurrent events cannot
disable each other.

In subsequent sections, we formalise concurrency of DCR activities in terms of La-
belled Asynchronous Transition Systems. We shall see that within the notion of concur-
rency embodied in those, the handful of examples we have given above in fact embody
all the ways activities of a DCR graph can be non-concurrent.

3 DCR Graphs

In this Section we define DCR graphs formally. This is a necessary prerequisite for
defining concurrency of DCR graph events (activities) in the next Section.

The formalisation here mirrors a mechanised but somewhat less readable formali-
sation in the proof-assistant Isabelle-HOL [19]; results of the next section are verified
to be correct by Isabelle-HOL. The formalisation is available online [4].
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We will need the following notation. For a set E we write P(E) for the power set
of E (i.e. set of all subsets of E) and Pne(E) for the set of all non-empty subsets of E.
For a binary relation→⊆ E×E and a subset ξ ⊆ E ofE we write→ξ and ξ→ for the
set {e ∈ E | (∃e′ ∈ ξ | e→ e′)} and the set {e ∈ E | (∃e′ ∈ ξ | e′ → e)} respectively.
For convenience, we write→e and e→ instead of the tiresome→{e} and {e}→.

In Def. 3.1 below we formally define DCR Graphs.

Definition 3.1 (DCR Graph). A Dynamic Condition Response Graph (DCR Graph) G
is a tuple (E,M,R, L, l), where

(i) E is a set of events (or activities),
(ii) M = (Ex,Re, In) ∈M(G) is the marking, forM(G) =def P(E)×P(E)×P(E)

(mnemonics: Executed, Response-required, and Included),
(iii) R = (→•, •→,→+,→%) are the condition, response, include and exclude rela-

tion respectively, with each relation→⊆ E× E.
(iv) L is the set of labels and l : E→ L is a labeling function mapping events to labels.

For the remainder of this paper, when a DCR graph G is clear from the context, we
will assume it has sub-components named as in the above definition; i.e., we will write
simply •→ and understand it to be the response relation of G.

An event of a DCR graph is enabled if it is included and every one of its conditions
were previously executed:

Definition 3.2. For an event e of a DCR graph G, we say that e is enabled, written
G ` e, iff e ∈ In ∧ (In ∩→•e) ⊆ Ex.

In the following definitions we then define the result of executing an event of a
DCR Graph. Firstly, in Def. 3.3 we define the effect of the execution of the event, i.e.
which event was executed(∆e), which events are being included(∆I), which events
are being excluded(∆X) and which events are being made pending(∆R). We then in
Def. 3.4 define how the effect is applied to the (marking of the) DCR Graph to yield a
new (marking of the) DCR Graph: ∆e is added to the set of executed events, first ∆X
are removed from the set of included events and afterwards ∆I are added to the set of
included events (meaning that events that are both included and excluded in a single step
will remain included), finally ∆e is removed from the set of pending responses before
∆R is added to the set of pending responses (meaning that if an event is a response to
itself it will remain pending after execution). Finally in Def. 3.5 we define how these
two operations are used together to execute an event on a DCR Graph, yielding a new
DCR Graph.

Definition 3.3. The effect of the execution of an event e on a DCR Graph G is given by
EFFECT(G, e) = (∆e,∆I,∆X,∆R) where:

(i) ∆e = {e} the singleton set containing the event being executed,
(ii) ∆I = e→+ the events being included by e,

(iii) ∆X = e→% the events being excluded by e,
(iv) ∆R = e•→ the events being made pending by e.
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When the DCR GraphG is given from the context we will below write δe for EFFECT(G, e).

Definition 3.4. The action effect δe = (∆e,∆I,∆X,∆R) on marking (Ex,Re, In) is:

δe · (Ex,Re, In) =
(
Ex ∪∆e, (Re \∆e) ∪∆R, (In \∆X) ∪∆I)

The action of effect δe on a DCR Graph G = (E,M,R, L, l) is then defined as:

δe · (E,M,R, L, l) = (E, δe ·M,R, L, l)

Definition 3.5. For a Dynamic Condition Response Graph G and event G ` e, we
define the result of executing e as G⊕ e =def EFFECT(G, e) ·G.

Towards defining accepting executions of DCR graphs, we first define the obliga-
tions of a DCR graphs to be its set of included, pending events.

Definition 3.6. Given a DCR graphG = (E,M,R, L, l) with marking M = (Ex,Re, In),
we define the obligations of G to be OBL(G) = Re ∩ In.

Having defined when events are enabled for execution, the effect of executing an
event and a notion of obligations for DCR Graphs we define in Def. 3.7 the notion
of finite and infinite executions and when they are accepting. Intuitively, an execution
is accepting if any obligation in any intermediate marking is eventually executed or
excluded.

Definition 3.7 (DCR Semantics). For a DCR graph G an execution of G is a (finite
or infinite) sequence of tuples {(Gi, ei, G

′
i)}i≤k (for k ∈ N ∪ ω) each comprising a

DCR Graph, an event and another DCR Graph such that G = G0 and for i < k we
have G′i = Gi+1; moreover for i ≤ k we have Gi ` ei and G′i = Gi ⊕ ei. We say the
execution is accepting if for i ≤ k we have for all e ∈ OBL(Gi) there is a j ≥ i with
either ej = e or e 6∈ OBL(G′j). We denote by exe(G) respectively acc(G) the sets of all
executions respectively all accepting executions ofG. Finally, we say that a DCR graph
G′ is reachable from G iff there exists a finite execution of G ending in G′.

4 Asynchronous Transition Systems & DCR Graphs

With the DCR graphs in place, we proceed to imbue DCR graphs with a notion of con-
currency. For this, we use the classical model of asynchronous transition systems [27],
here extended with labels as in [25]. As mentioned, the development has been verified
in Isabelle-HOL [19]; the formalisation source is available online [4].

Once we embed DCR graphs in labelled asynchronous transition systems, we shall
find that the examples of concurrent and non-concurrent activities from Section 2 actu-
ally exemplify independent and non-independent events. Moreover, the examples will
turn out to be exhaustive, in the sense that each example exemplifies one of the proper-
ties necessary for events to be (or not to be) independent.

We apply the results of the present section in Section 5, when we present a prototype
implementation of a distributed declarative workflow engine. The correctness of this
engine hinges on the notion of independence presented here.

First, we recall the definition of labelled asynchronous transition systems [25].
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Definition 4.1 (LATS). A Labelled Asynchronous Transition System is a tuple A =
(S, s0,Ev,Act, l ,→, I) comprising states S, an initial state s0 ∈ S, events Ev, a la-
belling function l : Ev→ Act assigning labels (actions) to events, a transition relation
→⊆ S × Ev × S, and an irreflexive, symmetric independence relation I satisfying

1. s e−→ s′ and s e−→ s′′ implies s′ = s′′

2. s e−→ s′ and s′ e′−→ s′′ and eIe′ implies ∃s′′′ such s e′−→ s′′′ and s′′′ e−→ s′′

3. s e−→ s′ and s e′−→ s′′ and eIe′ implies ∃s′′′ such s′ e′−→ s′′′ and s′′ e−→ s′′′

In words, the first property says simply that the LATS is event-determinate: an event
will take you to one and only one new state. The second says that independent events
do not enable each other. The third that independent events can be re-ordered. In the
context of DCR graphs, the first property is trivially true, and we have seen an example
of the second property holding in Example 2.3, and of the third in Example 2.2.

For the remainder of this section, we establish that a DCR graph G gives rise to
a LATS A(G). Along the way, we shall see how the various definitions we set up to
eventually arrive at independence arise from the examples of “obviously concurrent”
and “obviously non-concurrent” behaviours we saw in Section 2.

Towards finding a suitable notion of independence, we first define a notion of effect-
orthogonality for events of a DCR graph. As we shall see, this orthogonality charac-
terises the situation where the effects of events commute on markings.

Definition 4.2. We say that events e 6= f of a DCR graph G are effect-orthogonal iff

1. no event included by e is excluded by f and vice versa, and
2. e requires a response from some g iff f does.

We lift this notion to effects themselves, saying δe, δf of G are orthogonal iff e, f are.

Here, the first condition says that effect-orthogonal events cannot have conflict-
ing effects. We saw an example of such conflicts in Example 2.5: the Appraisal audit
includes On-site appraisal, whereas Statistical appraisal excludes it. The second con-
dition is perhaps less intuitive, saying that if one event makes the other pending, the
other event hides this effect by making itself pending. A more intuitive, but also more
restrictive alternative, would be to require that neither event has a response on the other.

Proposition 4.3. Let δe, δf be effects of a DCR graph G, and let M be a marking for
G. If e, f are orthogonal then δe · (δf ·M) = δf · (δe ·M).

Proof (in Isabelle). See [4], Lemma “orthogonal-effect-commute”.

Next, we define that two events are cause-orthogonal. The intention is that for such
event pairs, executing one cannot change the executability of the other.

Definition 4.4. Events e, f of a DCR-graph G are cause-orthogonal iff

1. neither event is a condition for the other,
2. neither event includes or excludes the other, and
3. neither event includes or excludes a condition of the other.
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We saw examples of all three conditions previously. Specifically, for (1), we saw in
Example 2.3 that Collect documents is a condition for Irregular neighbourhood, and so
these activities cannot be considered non-causal. For (2), we saw in Example 2.4 how
On-site appraisal and Statistical appraisal exclude each other and thus cannot be cause-
orthogonal. For (3), we saw in Example 2.6 how Irregular neighbourhood included a
condition of On-site appraisal, and thus those two events cannot be cause-orthogonal.

From effect- and cause-orthogonality, we obtain the requisite notion of indepen-
dence. This explains the contents of the examples we have seen so far: activities that
could be considered “concurrent” are independent; those that could not are not.

Definition 4.5. Given a DCR graph G, we say that events e, f are independent if they
are both effect- and cause-orthogonal. We write IG for the independence relation in-
duced by a DCR-graph G.

We must of course prove that our proposed independence relation IG satisfies the
conditions for an independence relation of Definition 4.1.

Theorem 4.6. Let G be a DCR graph. If e, f are independent events of G then any
marking in G satisfies the concurrency properties (1–3) of Definition 4.1.

Proof (in Isabelle). See [4], Theorem “causation-and-orthogonality-entails-independence”.

And with that, we arrive at a formal definition of concurrency for the declarative
workflow model of DCR graphs: Each DCR graph has an associated independence
relation, and thus an associated LATS, which tells us which activities (events) can be
considered concurrent and which cannot.

Corollary 4.7. Let G be a DCR graph. Then L(G) is a Labelled Asynchronous Transi-
tion System when equipped with independence relation IG. We call this LATS A(G).

Proof (in Isabelle). See [4], Theorem “DCR-LATS”.

We shall see in Section 5 how Corollary 4.7 and Theorem 4.6 enables a practical
distributed implementation of declarative workflows in general, and in particular of our
mortgage application example. We conclude this section by noting in Table 1 which
events of our running example are in fact independent.

5 A Process Engine for Distributed Declarative Workflows

The previous sections supply an understanding of DCR graphs as labelled asynchronous
transition systems and in particular of independence of DCR graph events. With that,
the door opens to a distributed implementation of a declarative workflow language. We
have implemented such a prototype engine; in this Section, we describe by example the
workings of that engine.

The central idea is to exploit the extremely local nature of DCR events in conjunc-
tion with the notion of independence. Because of the locality of DCR events, we can
partition the set of events of a DCR graph into components, assigning each component
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Appraisal audit x x x x x
Assess loan application x x

Budget screening approve x x x x x x
Collect documents x x x x x x

Irregular neighbourhood x x x
Make appraisal appointment x x x x x x

On-site appraisal x x x
Statistical appraisal x x x x

Submit budget x x x x x x x

Table 1. Independence relation for activites of the model of Figure 1.

to a distinct node in a distributed system. The node is responsible for executing the par-
ticular event, and for notifying other components of executions, when such executions
requires them to update their state.

However, a node cannot freely execute its events; that would leave us open to all the
mistakes of non-concurrency exemplified in Section 2. We therefore employ a locking
mechanism to ensure that only concurrent events can be executed simultaneously.

We exemplify this by forming a distributed version of our running example. For
ease of presentation, we distribute the workflow over only two nodes: one for the “Mo-
bile consultant” (presumably his mobile device), and one for the rest. However, the
principles of distribution employed here apply to arbitrarily fine sub-divisions of DCR
graphs, right down to each node hosting only a single event.

Presently, we obtain the two components in Figure 2. The diagram for each compo-
nent represents remote events as dashed boxes. Moreover each component retains only
remote events with which some local event is not independent. For the “Mobile consul-
tant” component (Figure 2), that means that all events related to budgets are gone, as is
the initial Collect documents. The “other” component (Figure 2) retains all the “Mobile
consultant” events, because every event of the Mobile consultant is in fact in conflict
with some event local to “other”.

The procedure for executing an event, in detail, is as follows. A component wishing
to execute an event e must first request3 and receive locks on all (local and remote)
events that are in conflict (i.e., not independent ) with e (thus, in particular, on itself).
It then queries the state of remote events to determine if e is currently executable. If it
is, it instructs remote events affected by firing e to change state accordingly. Finally, it
releases all locks.

For example, if the “other” component wishes to execute the Assess loan application
event in the DCR graphs of Figures 2 and 2, it will first request and receive a lock on

3 All components request locks in the same fixed order to prevent deadlocks.
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Fig. 2. Component models for the Mobile consultant (left) and for other roles (right).

On-site appraisal; then query the state of On-site appraisal; then find out that that event
is not previously executed; and will then release the lock on On-site appraisal.

Notice that since this procedure is based on independence, it allows concurrency
in the very concrete sense that the “other” component is free to execute any of the
events Collect documents, Submit budget, and Budget screening approve without com-
munication with the “Mobile consultant” component, because these three events are all
independent with all the events of the “Mobile consultant” component. Conversely, any
other event requires communication, since these other events are all in conflict with the
some event of the “Mobile consultant” component.

Implementation. We have implemented the technique described here in the DCR Work-
bench, an existing web-based tool for experimenting with DCR graphs; see, e.g., [7].
The diagrams in this paper are all output from this prototype.
The prototype allows specifying components by accepting for each activity an optional
indication of a URL at which the event is located. E.g, in the component model for other
roles (Fig 2), the remote activity “On-site appraisal” is given as:

"On-site appraisal"
[ role = "Mobile consultant"
url = "http://localhost:8090/events/On-site%20appraisal" ]

The DCR Workbench then enables starting separate REST services for each such
component model. Each service accesses information about state of remote events by is-
suing a GET to URLs derived from the specified one. E.g., in the other roles component
model, “On-site appraisal” is a condition for “Assess loan application”; accordingly,
to execute “Assess loan application”, the REST service for that model will query the
executed state of “On-site appraisal” by issuing a GET request to:

http://localhost:8090/events/On-site%20appraisal/executed
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Similarly, PUT requests are used to update the state of remote activities; e.g., “Irregular
neighbourhood” will, when executed, make “Make appraisal appointment” excluded
by issuing an appropriate PUT.The implementation ensures that before state of remote
events is queried or updated, all independent activities are locked. Please refer to the
prototype [3] to experiment with declarative concurrency first-hand!

6 Conclusion

We have studied concurrency of pure declarative workflow models. This problem is
important, since its solution is a prerequisite for implementing distributed engines for
declaratively specified workflows. Concretely, we investigated reasonable examples and
non-examples of concurrency for the declarative DCR model by example; we formally
added a notion of concurrency between events of DCR graphs, enriching the standard
semantics to a semantics of the classical true concurrency model of labelled asyn-
chronous transition systems. We backed this foundational contribution by (a) a formal
verification in Isabelle-HOL of the development [4], and (b) a proof-of-concept imple-
mentation of a distributed declarative workflow engine, available at [3].

6.1 Discussion and Future Work

The present work considers only core DCR Graphs, which can represent only finite
state processes and have no (practical) representation of data, as events can not be
parametrized by data. This consitutes of course a noteworthy gap between the theory
and practice.

The practical commercial use of DCR graphs by Exformatics has succesfully em-
ployed DCR graphs as a control-flow layer on top of an underlying database, using
database triggers as events signalling changes to data values [6]. Processes dynamically
handling multiple instances of business artifacts (e.g. multiple instances of the budget in
our running example) with separate life cycles were realised by different DCR graphs,
one for each data object being processed, interacting via the underlying database. In
this case, the present work would apply to the individual models for each artifact, but
not accross the models.

In [5, 7], DCR Graphs have been extended to DCR Graphs with sub-processes, al-
lowing dynamically created multiple instances of sub processes and thus enabling anal-
ysis of processes as described above. We believe that the present work on concurrency
can be lifted to DCR Graphs with sub-processes. The increased expressiveness however
comes at the cost of making the model Turing complete [5].

Regarding data, we are presently working on extending the work on sub-processes
for DCR-graphs [7] to parametric sub-processes: Events which take data values as input
can spawn a new sub-process as a continuation, whose shape depends on the data inputs
(and in particular allows to declaratively ”store” the revieved data in the continuation, as
in functional programming languages). This should be compared to declarative models
facilitating data and state as side-effects on a global state such as [14].

On a different note, given the similarity of DCR graphs and DECLARE, it is natural
to ask whether the presently introduced notion of concurrency and subsequent distribu-
tion of executable models can be transferred to DECLARE. To this end, it’s important
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to realise that the present work relies crucially on the notion of “event state” inherent in
DCR graphs. Concurrency and independence can be framed in terms of which events
may or may not update the states of other events by firing. DECLARE does not come
with a similar notion of state, and so it would appear that the present approach does
not apply directly. However, there is still hope: Looking at the standard relations of
DECLARE instead of LTL in general, it seems plausible that one might define an alter-
nate semantics either by encoding of DECLARE into DCR Graphs or in terms of some
similar notion of “activity state”; and then apply the approach of the present paper.

Our work with industry suggests that the flexibility of DCR Graphs is sought for, but
the difficulty of presenting and understanding declarative models is a major obstacle to
wider adaptation of declarative methodologies. This often stems from fairly small mod-
els defining sometimes quite complex behaviour. We believe that the ability to distribute
DCR Graphs and understand the independence between events is likely to help present-
ing the models. For instance, defining independence for DCR graph events as labelled
asynchronous transition systems (lats) opens the door to an encoding of DCR graphs
into Petri nets using the mapping from lats to Petri nets in [25]. In addition to opening up
for the application of the many tools and techniques developed for Petri Nets, it would
give a way of deriving flow diagrams from DCR graphs in a concurrency-preserving
way, which should be compared to the work in [11].

Finally, the concurrent semantics opens up for possible use of partial-order re-
duction model checking techniques [2] towards more efficient static analysis of DCR
graphs than the current implementations based on verification on Büchi-automata [16–
18].
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