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Abstract
Transformations form an important part of developing domain
specific languages, where they are used to provide seman-
tics for typing and evaluation. Yet, few solutions exist for
verifying transformations written in expressive high-level
transformation languages. We take a step towards that goal,
by developing a general symbolic execution technique that
handles programs written in these high-level transformation
languages. We use logical constraints to describe structured
symbolic values, including containment, acyclicity, simple
unordered collections (sets) and to handle deep type-based
querying of syntax hierarchies. We evaluate this symbolic
execution technique on a collection of refactoring and model
transformation programs, showing that the white-box test gen-
eration tool based on symbolic execution obtains better code
coverage than a black box test generator for such programs
in almost all tested cases.

1. Introduction
Transformations are everywhere: from being used to prettily
display structured data available in JSON or XML formats in
many websites, to forming the core of language workbenches
such as Spoofax (Kats and Visser 2010), where they provide
name resolution, typing and dynamic semantics for Domain
Specific Languages (DSLs). Consider the rename field refac-
toring in Fig. 1 as an example of a transformation. It changes
the name of a target field in the definition of the target class
and ensures that all relevant field accesses use the new field
name (Fowler 1999).

⇤ Partially funded by Danish Council for Independent Research, grant
no. 0602-02327B
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class Account {
  Money credit;
  MovieList purchases;
  …
  membershipLevel() {
    … this.credit …
  }
}

class PurchaseView {
  view() {
    Account a; Movie m;
    … a.credit … m.credit …
  }
}

rename credit 
to balance in 
Account

class Account {
  Money balance;
  MovieList purchases;
  …
  membershipLevel() {
    … this.balance …
  }
}

class PurchaseView {
  view() {
    Account a; Movie m;
    … a.balance … m.credit …
  }
}

Figure 1: The Rename-Field refactoring: rename the defini-
tion of credit to balance and update all references accordingly.

While one could write transformations like rename field
in C or Java, they are optimally written in a specialized
transformation language or framework, proposed across
various communities such as the programming language
community (TXL (Cordy 2006), Stratego (Bravenboer
et al. 2008), Uniplate (Mitchell and Runciman 2007),
Kiama (Sloane 2011)), the model transformation community
(ATL (Jouault and Kurtev 2005), Epsilon (Kolovos et al.
2008), QVT (Object Management Group 2011)) and the
concurrency theory community (Maude (Troya and Vallecillo
2011)). All these languages support some form of type-
directed querying and manipulation. Type-directed querying
allows matching structural patterns in structured data by
following types of objects and references between them,
while type-directed manipulation allows rewriting patterns
to structures with new types and new references. Type-
directed querying and manipulation is deep, unlike in classic
functional programming, so target patterns can be matched
anywhere in a syntax tree. In our example in Fig. 1, a type-
directed query makes it possible to retrieve all accesses to
the credit field where the target expression has type Account,
using only a couple of lines.

Transformations are complex programs and as such prone
to bugs; for our rename field example, a bug could be that
the new field name clashes with an existing one in the class.
Due to the complexity of transformations these bugs are hard
to find and expensive to fix, yet transformations form the



core of daily-used language implementations and tools. De-
veloping formal techniques and automated tools to verify the
correctness of these transformations is therefore important to
increase the trustworthiness of our language implementations
and tools (Cadar and Donaldson 2016; Schäfer et al. 2009;
Hoare 2005).

We aim to take a step towards achieving that goal by
presenting a foundational symbolic execution technique for
high-level transformation languages. Our technique handles
target high-level transformation features—containment, set
expressions, type-directed querying and manipulation, and
fixedpoint iteration—as first-class to make it feasible to use
in practice. Concretely, our contributions are:

• TRON, a compact formally defined imperative language
suitable for theoretical development of analysis methods
for transformations, including type-directed querying and
manipulation; the language has been designed to capture
key properties in this space.

• A formal symbolic execution technique for TRON that
deals with complex concepts such as symbolic sets, own-
ership constraints and deep type-directed operations.

• An evaluation of the symbolic execution technique when
used for white-box test generation using realistic model
transformations and refactorings, showing that our sym-
bolic executor makes effective white-box test generation
for transformation feasible.

• A comparison of our symbolic execution technique to
object-oriented symbolic executors, highlighting the diffi-
culties of dealing with target high-level features as second-
class.

Our intended audience are researchers in programming lan-
guages and software engineering, who recognize the need of
first-class analysis techniques for transformations. By provid-
ing a useful symbolic semantics, we hope that this work can
influence efforts in building tools for test generation, static
analysis and verification of such transformations.

2. Overview
Running Example We start by discussing the example in
Fig. 1 in more detail. Observe that the refactoring program
needs two important parts: the type definitions (sometimes
called meta-model) for the data and the actual transformation
code. We will use (minimalistic) class diagrams to show the
former, and TRON, our compact formally defined transfor-
mation language, to show the latter. These two notational
choices incorporate some key common characteristics of
transformations, which we discuss below.

Fig. 2a shows the types for the abstract syntax of a
hypothetical object-oriented language. We show the classes1

1 The abstract syntax types do not describe the syntax of TRON itself.
They are a description in TRON of data manipulated by our running
example, which is a TRON program, whose input data happens to represent

and properties relevant for our refactoring, while omitting
irrelevant details. In our example, each class has a name (an
attribute), and contains two collections, one for fields and one
for methods. Recall that in class diagrams, a black diamond
is used to decorate containment references. Containment
is traditionally found in object-oriented modeling, but also
exists in algebraic data types of functional programming
languages, in grammar-based languages like TXL, and in
XML documents.

Additionally, each class may also simply refer to a possible
super-class. Note that the simple reference is denoted using
a line without the diamond symbol. The mixture of classes,
with containment references, simple references, and attributes
of simple types is typical of transformation languages, so we
include these constructs in TRON.

In the example, each method has a body which we—for
simplicity of presentation—allow only to be expressions.
Expressions themselves can come in many different kinds
(thus the use of inheritance), but we only show expressions
representing ‘this’ and field access expressions since they are
the ones relevant for the example.

A simplified implementation of the rename field refactor-
ing, is shown in Fig. 2b. The implementation of the refac-
toring is presented in TRON. We introduce TRON and its
semantics in Sect. 3–4, but let us discuss the example based
on general intuitions. In the top we list the input parame-
ters (references to a class, the field with the old name, and
the replacing field with the new name) and the application
precondition (the old field has to be contained in the class’s
fields, whereas the new must not).

We begin the refactoring by removing the old field defi-
nition from the fields of the class and adding the new field
definition (Line 5). Then, in Line 6, all field access expres-
sions in the class are matched and gathered into a single set
using a deep type-directed query, which collects instances of
FieldAccessExpr contained transitively in the input class. A
language without first class support for such kind of queries
usually requires implementing traversal algorithms for the
structure in question (e.g., in the form of visitors), or use of
dynamic dispatch, reflection or other type-access mechanism
to select the right nodes. This capability is however avail-
able directly in high-level transformations languages, such
as those mentioned in Sect. 1, and therefore is included in
TRON.

After the deep type-directed query, Line 6 binds each
element of the matched objects to faexpr executing Lines
7–9 for each of these objects. If the expression accesses
the refactored field (Line 7-8) then the field reference is
updated to point at the new field (Line 9). It is typical for
the transformation languages that references are redirected
or attributes are changed. This happens either imperatively

hypothetical object-oriented programs. In particular, do not confuse TRON
(meta) classes as types of objects, with the objects they type which are
classes in the subject input programs that are refactored in the example.



name : String
…

Class
…

Method

name : String
…

Field

FieldAccessExpr

0.. * fields
target

0..* methods

type

body

…
Expr

field

…

ThisExpr

super

(a) Abstract syntax for simple object-oriented programs

1 input: target_class: Class, old_field: Field, new_field: Field
2 precondition: old_field 2 target_class.fields
3 ^ new_field /2 target_class.fields
4

5 // the refactoring program
6 target_class.fields := (target_class.fields \ old_field) [ new_field
7 foreach faexpr 2 target_class match? FieldAccessExpr do
8 if faexpr.field = old_field ^
9 faexpr.target.type = target_class then

10 faexpr.field := new_field
11 else skip

(b) A Refactoring in TRON

Figure 2: A simplified version of the rename-field refactoring example in TRON

TransformationType 
Definitions

Symbolic 
Executor Model Finder⋮

h

h

Figure 3: High level architecture of the symbolic executor.

using destructive updates (like in the example), or in a pure
way by copying, and usually continues until no more changes
are possible. TRON has the foreach statement (and also a
simpler fix statement) to emulate the fixed point semantics
of these languages. We chose to make TRON imperative so
we can reason about destructive updates, which are allowed
in many transformation languages like ATL and Kiama.

Symbolic Execution of Transformations An effective way
to check whether there is any bug present in transformations—
like rename field refactoring presented above—is by using
symbolic execution, which is able to systematically explore
the various program paths. An overview of our symbolic
execution technique for transformations is presented in Fig. 3.
The symbolic executor expects a transformation written in
TRON as an input, along with the required type definitions.
The initial step is to run the symbolic executor (see Sect. 4)
on the input transformation and generate a finite set of path
conditions. These path conditions are logical formulæ con-
straining the shape, types and range of input data, achieved
by refining input constraints according to the semantics of
each statement in the given transformation.

Intermediately, we use the model finder to prune those
paths which produce unsatisfiable formulæ so that only valid
paths are considered. In our implementation, the model finder
uses the relational constraint solver KodKod (Torlak and
Jackson 2007) to check the existence of a suitable model
satisfying a target formula within a bounded scope, possibly
failing when either the formula is unsatisfiable or the scope
is too small.

3. A Demonstration Language
TRON is a compact theoretical transformation language, in-
corporating characteristic features of high-level constructs
of languages discussed in Sect. 2; Tbl. 1 shows how these
features are captured in TRON. TRON is a decoy language,
so that the core of our ideas remain applicable to real-world
transformation languages. We developed it as a methodolog-
ical device, to keep the formal work, discussions, and the
presentation focused, and to allow agile experimentation;
TRON is not meant to be used by programmers.

We present TRON in two parts: a) the meta-model that cap-
tures structures of the manipulated data and b) the operational
part of the language that describes computations.

Notation. We use r

⇤ to denote the reflexive-transitive clo-
sure of a binary relation r, and similarly r

+ for the transitive
(non-reflexive) closure . We use }(A) to denote the power set
of A. For a particular function f 2 A ! B, we use graph f
to represent the set {hx, f(x)i|x 2 dom f}. We use f [a 7! b]

to represent function updates, so that f [a 7! b](a) = b and
f [a 7! b](a

0
) = f(a

0
) when a

0 6= a.

Data Model. The data in TRON is described by types
that capture the common features of rewriting languages:
constructors, containment, references and generalization. It
is essentially a formal model for the kind of structures like
the one represented in Fig. 2a.

A data model is a tuple: hClass,Field, gen, refi, where
Class is the set of classes, Field is the set of fields, partitioned
into contained fields Field� and referenced fields Field .
Later, we use c to range over class names (Class), and
f to range over field names (Field). A class has at most
one superclass, described by the generalization relation:
gen ✓ Class ⇥ Class, where c gen c

0 means that c is
a subtype of c

0. Each field has a corresponding type, a
class. This is represented by the references relation ref ✓
Class⇥Field⇥Class, where ref(c, f, c0) means that the class
c has a field f of type c0. We generally expect that gen has
the expected properties of a generalization relation, namely
that there is a strict ordering of generalization (no cycles);



Feature
Language ATL Scala Haskell Maude

Containment Containment references Case Classes Algebraic Data Types Many-Sorted Terms

Set expressions OCL collections and
collection operations Standard library Standard library Standard library

Shallow matching Type testing via
oclIsKindOf

Pattern matching Pattern matching Rewrite rules

Deep matching Transformation rule
definition

Rewrite rules and
strategies via Kiama

Generic traversal via
Uniplate Rewrite rules and strategies

Fixedpoint iteration Lazy rules, recursive
helpers

Recursive functions,
Kiama strategies Recursive functions Rewrite strategies

Table 1: Relating TRON features to existing high-level transformation languages

:Class “Account” :String
methods

fields

:Field “balance” :String
:Field

name

name
“purchases” :String

name
:Method

:FieldAccessExpr

:ThisExpr

body

target

field… type

type

Figure 4: A heap instantiating one model of Fig. 2a, inspired
by the Account class in Fig. 1. Dots (•) represent instances,
diamond affixed lines represent containment links, dashed
lines represent simple links.

similarly, we expect that reference definitions in ref are not
overriden by subtypes, i.e. if for any class c a supertype has
defined a typing for a field f , then c must have the same
typing for f .

We will let fields(c) be the function that gets all fields
defined for a class c or any of its supertypes, and is defined
as follows: fields(c) = {hf, c00i|c gen⇤ c

0 ^ ref(c

0
, f, c

00
)}. We

do not explicitly handle simple types in our formal model.
Simple types can be modeled using classes from a theoretical
point of view. For instance we can assume a class Integer
with instances representing integer numbers. Then integer
attributes can be modeled as references to this class. We do
handle simple types in our symbolic executor, in the same
way as other symbolic executors do, using symbolic variables
of corresponding simple types.

Heap Representation. Concrete TRON programs are exe-
cuted over finite concrete heaps (h 2 Instance ⇥ Field !
} (Instance)) that contain instances organized into structures
using containment links and simple links (a link is a concrete
instantiation of a field). In particular each link f of an instance
o, can point to a set of instances O. Instances are typed at run-
time using a type environment (� 2 Instance ! Class). An
example heap is shown in Fig. 4, which describes a possible
definition of the Account class from Sect. 1.

For the remainder of this paper we will only consider well-
formed heaps where all instances are typed and their structure
conforms to the static typing provided by the data model.
Furthermore, we assume that in well-formed heaps each
instance can at most be pointed to by a single containment
link (no sharing) and that there are no cycles in containment
(acyclicity). Note that these restrictions do not apply for
simple links, which still allow cycles and sharing.

Abstract Syntax. The core TRON constructs include access
to variables and fields, constants, object construction, assign-
ment, sequencing and branching. The syntax is summarized
in the following grammar:

SetExpr 3 e ::= x | ; | e1 [ e2 | e1 \ e2 | e1 \ e2
BoolExpr 3 b ::= e1 ✓ e2 | e1 = e2 | ¬b | b1 ^ b2

MatchExpr 3 me ::= e | e match c | e match* c

Statement 3 s ::= skip | s1; s2 |x := e | x := e.f

|x := new c |e1.f := e2 | if b then s1 else s2

| foreach x in me do s |fix e do s

where x is a variable, f is a field name, and c is a class
name. The set expressions e and Boolean expressions b

are standard. Match expressions (me) include “e match c”
which allows finding all objects computed by e that are
instances of class c. For example, given a set of expressions
exprs = {te1, te2, fae1, fae2} where te

i

is of type ThisExpr

(from Fig. 2a) and fae
i

is of type FieldAccessExpr, then
the expression “exprs match ThisExpr” would return the
set {te1, te2}, similarly “exprs match FieldAccessExpr” re-
turns {fae1, fae2} and “exprs match Expr” return the com-
plete set exprs. A deep variant of the pattern matching,
e match⇤ c, is also provided. It matches objects nested at
an arbitrary depth inside other objects, following the contain-
ment references (ref�). This is similar to the matching capa-
bilities in many of the model transformation, term and graph
rewriting languages. A classical example here would be to get
all variables in a term, i.e., the expression expr match⇤ Var—
for a class Var representing variables—would return a set
that has all variables transitively contained in expr.



Most of the statements, s, are standard formulations from
Java or IMP; from left to right, the statements are: skip,
sequencing, branching, variable assignment, assignment of a
field value, object creation (new) and assignment to a field.

There are two looping constructs in TRON. The
“foreach x in me do s” iterates over the set of elements
matched by me, binding each element to x, and executes then
statement s for each of them. The “fix e do s” loop executes
the body s, and continues to do so as long as the values of e
after and before iteration differ; therefore expression e defines
the part of the heap which is relevant for this fixed point
iteration (a control condition). By allowing the statement to
explicitly depend on a local control condition, it is possible
to create temporary helper values on the heap (outside e)
without influencing the loop termination. This allows explicit
modeling of the implicit fix point iteration that is also sup-
ported by many high-level transformation languages where
rewrite rules are repeatedly applied until no rule is further
applicable.

4. Symbolic Execution
We discuss the main design principles of our symbolic
executor. Although, the technique has been developed for
TRON, the design decisions were driven by the desire to
handle the language features incorporated by TRON, which
are selected from several transformation languages.

4.1 Symbolically Representing Rich States
Symbolic execution uses symbols (fresh variables) to rep-
resent unknown values of (King 1976), which we denote
with small Latin letters followed by a question mark (x?).
We present below the representation of state our symbolic
executor maintains to correctly constrain the legal shapes of
possible concrete stores and heaps on each program path.

Spatial Constraints. Since transformations manipulate
structured data, not just simple values, the symbolic states
of our executor describe primarily the possible shapes of the
memory heap. Following other symbolic executors for object-
oriented languages (Khurshid et al. 2003), we use spatial
constraints to restrict the shapes admitted by an execution
path. These constraints are first order formulae restricting
values that are pointed to by links. In the style of the Lazier#
algorithm (Deng et al. 2012), we distinguish between two
kinds of symbolic objects: symbolic instances and symbolic
references.

A symbolic instance (o2 Instance) abstracts over a unique
instance. Instances cannot alias, so two different symbolic
instances always point to two different class instances in
memory, even if they have the same type. A symbolic ref-
erence (x?

, y

?2Symbol) points to a class instance that may
be aliased by other reference symbols, and, indeed, by some
symbolic instances. The separation of symbolic instances
and symbolic references allows to separate reasoning about
the structure of the representation of the data from aliasing

by references. We can lazily reason about aliasing without
committing pre-maturely to a particular concretization of the
heap structure. This is particularly important for our symbolic
executor, as it handles deep containment constraints, which
are hard to reason about and are heavily affected by aliasing
(more about deep containment constraints below).

In traditional symbolic execution (Khurshid et al. 2003),
whenever a field is accessed, the executor branches to ini-
tialize it to a new symbolic instance, or to alias an existing
symbolic instance. In contrast, the Lazier# algorithm, simply
assigns a distinct symbolic reference to each fresh field access
and aliasing is only explicitly treated if the substructure of
that symbolic reference is further explored.

For objects created using new, we eagerly generate a
new concrete instance and exclude it from aliasing with
pre-existing symbolic references, as new objects cannot
alias previously existing ones (assuming correctness of the
memory manager). To emphasize this in the rules below, we
mark the explicitly created instances with a dagger (o†).

Set Symbols. In addition to ordinary symbolic references,
we introduce symbolic reference sets, or set symbols for short
(X?

, Y

? 2 SetSymbol). These symbols abstract over finite
sets of instances with unknown cardinality. This addition
may seem very simple at first, but is key for our symbolic
executor: it allows us to range over sets without prematurely
concretizing their cardinality, contained objects, or their
structure and aliasing.

Set Expressions and Set Constraints. Set symbols can be
combined using symbolic set expressions:

SetExpr3e ::= X

? | ; | {x?
0, . . . , x

?
n} | e1[e2 | e1\e2 | e1\e2

The symbolic set expressions mimic the set expressions of
TRON, presented in Sect. 3, but without match expressions
and with support for literal set constructors over simple
symbolic references {x?

1, . . . , x
?
n}. The meaning of the latter

is a set of a fixed cardinality n, whose all elements are
distinct (so, as a side effect, it also precludes aliasing between
symbols listed). We use it to concretize the cardinality and
content of sets during iteration.

Set expressions are embedded into constraints in a stan-
dard manner, using subset and equality constraints:

BoolExpr3b ::= e1 ✓ e2 | e1 = e2 | ¬b | b1 ^ b2

During symbolic execution the set comprehensions and refer-
ence symbols interplay to our benefit, allowing to describe
assumptions about sets more lazily. For example, consider the
constraint that equates two sets of cardinality 3 of unknown
references: {x?

1, x
?
2, x

?
3} = {y?1, y?2, y?3}. Generating this con-

straint allows to avoid deciding prematurely, which of the six
possible aliasing configurations between x

i

s and y

j

s we are
seeing, something which would not scale if done repeatedly.

Containment Constraints. A special feature of our sym-
bolic executor is its ability to reason about the deep contain-
ment constraints of the manipulated data structures, which are



extremely common in language processing (abstract syntax
trees) and in data modeling. Besides eliminating many false
positives, reasoning about containment also allows imple-
menting deep matching.

To model deep containment constraints, we define a con-
tainment relation as the union of all links typed by contain-
ment fields, and insist that, for any two objects, their contain-
ments sets (the transitive closure of the containment relation)
are disjoint. Furthermore, we enforce the acyclicity of the
containment relation, ensuring that the irreflexive transitive
closure of containment does not contain the identity pair
for any object. We are using a solver (KodKod) that allows
reasoning about transitive closures.

In order to perform symbolic deep matching, we on-
demand bind a symbolic set of containments to each instance
o used in a deep-matching query against a type c. Descendants
are instances of c reachable by containment links from o. The
set is constrained during execution to contain any referenced
containments of o that have been given symbolic names.

Type Constraints. We introduce type approximation in
our symbolic executor, in order to not concretize types of
instances (objects) prematurely. Many transformation rules
operate on data constrained by types with inheritance, so the
actual type of parameters might be unknown during symbolic
execution. We maintain a bounding constraint on types, and
refine it during execution by-need during branching and
concretization cycles.

A type constraint environment (�) maps each symbolic
reference, set symbol, and each, symbolic instance o to
a type bound hcsin, csexi. The bound restricts the types
of concrete values assignable to a symbol in question. A
type bound is a tuple hcsin, csexi where the first compo-
nent csin is a set of classes that specify the possible su-
pertypes of a symbol and the second component csex is a
set of classes that specify excluded supertypes of a sym-
bol, e.g. h{Expr}, {ThisExpr,FieldAccessExpr}i repre-
sents all expressions (subtypes of Expr) that are not ’this’
and field access expressions (not subtypes of ThisExpr or
FieldAccessExpr).

We only consider type bounds hcsin, csexi that are well-
formed. That is: (i) the set of possible super-types csin cannot
be empty, and (ii) none of the super-types is excluded: there
is no class c 2 csin which is a subtype of an excluded super-
type c

0 2 csex. We also maintain an invariant that the set
of possible super-types csin given by � is a singleton for
symbolic instances. We will simply write c as a shorthand for
h{c}, {c0 | c0 gen c}i when the type of an element is precisely
known (basically a type constraint stating that an object’s
type is a subtype of c but not of any of its subtypes).

Symbolic Heaps. A symbolic heap combines all types of
constraints discussed above to describe possible concrete
heaps and typings that could have been created during the exe-
cution. We define a symbolic heap to be a tuple hz, `, d,�, bi,
where z 2 Symbol ! Instance is a symbolic reference

M? : Method

methods

F? : Field

fields

name

name
name

c? : Class

n1
? : String

f1? : Field

n2
? : String

n3
? : Stringf2? : Field

o1

o2

o3

Symbolic references z = [c

? 7! o1, f
?
1 7! o2, f

?
2 7! o3]

Symbolic instances
` = [ ho1, namei 7! n

?
1, ho1,methodsi 7! M

?
, ho1, fieldsi 7!

F

? ] {f?
1}, ho2, namei 7! n

?
2, ho3, namei 7! n

?
3]

Containment constraints d = [] (not accumulated yet)
Type constraints � = [o1 7!Class, o2 7!Field, o3 7!Field,

c

? 7! Class, n

?
1 7! String, f

?
1 7! Field, n

?
2 7! String,

f

?
2 7! Field, n

?
3 7! String,M

? 7! Method, F

? 7! Field]

Path condition b = true (not accumulated yet)

Figure 5: An example heap for an initial state of an execution

environment—partial mapping of symbolic references to
symbolic instances that they are constrained to point to;
` 2 Instance⇥ Field ! SetExpr collects the symbolic in-
stances, by mapping fields of symbolic instances to symbolic
set expressions; d is an environment storing deep contain-
ment constraints d 2 Instance⇥ Class ! SetExpr for all
symbolic instances, � is the type constraint environment, and
b is the path constraint so far, in the execution leading to this
symbolic heap.

An example symbolic heap is presented in Fig. 5 using
both the above syntax and a diagram2. Dot vertices (•)
denote symbolic instances, white circles (�) denote symbolic
references and large double-stroked white circles (}) denote
symbolic reference sets. .

Satisfiability of Symbolic Heaps We say that h is satis-
fiable if there is at least a pair of a concrete heap h and
type environment � that are consistent with the constraints
present in h. To check the consistency of the concrete
heap h and type environment � against the constraints in h

(h,�
m

h) we need a model m 2 (Symbol ! Instance) [
(SetSymbol ! } (Instance)) which assigns to each sym-
bolic reference a concrete instance, and to each symbolic
reference set a concrete set of instances; we assume that sym-
bolic instances are mapped directly one-to-one to concrete in-
stances. The symbolic reference environment z is satisfied by
model m, if m is an extension of z, i.e., 8x 2 dom z.z(x) =

m(x). The symbolic shape environment ` is consistent with
heap h, if they agree on the structure of all defined links given
the model m, i.e. 8ho, fi 2 dom `.m(`(o, f)) = h(o, f);
here the application of m to set expressions is extended to

2 We use our own diagram notation for objects instead of the UML one
because it is more compact and allows us to neatly represent non-standard
concepts like symbolic values and containment.
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Figure 6: One of the paths when symbolically executing the example Rename-Field refactoring, starting with the symbolic state
presented in Fig. 5. Double-stroked arrows represent deep containment constraints.

work by replacing all sub symbolic references and symbolic
reference sets in the set expression with their value in m.
The heap h and type environment � are consistent with the
deep containment constraints d if d capture all necessary
descendants for each class c for a particular instance o, i.e.
m (d(o, c)) =

n

o

0 | o owns+
h

o

0 ^ �(o

0
) gen

⇤
c

o

, where for
two instances o, o0 then o owns

h

o

0 iff there exists exactly one
containment field f 2 Field� such that h(o, f) = o

0.
The symbolic type environment � is consistent with the

concrete type environment � if each symbolic expression
(symbolic reference, symbolic reference set or symbolic
instance) has a type bound that is consistent with the types
assigned in � given mapping m; a type bound hcsin, csexi
is consistent with a type c if there exist a c

0 2 csin such
that c is a subtype of c0 (c gen

⇤
c

0) and there doesn’t exist
a c

00 2 csex which c is a subtype of (¬ (c gen

⇤
c

00
)). Finally,

logical constraints in b are consistent with the model m if the
expression m(b) we get by substituting all symbols in b with
m is true.

One symbolic heap is stronger than the other if all models
(here all satisfying concrete heaps) of the former are also
models of the latter. For conciseness, we let hz, `, d,�, b1i^b2
mean hz, `, d,�, b1 ^ b2i.

4.2 Manipulating Symbolic State During Execution
Fig. 6 shows an example path of the symbolic executor when
executing the Rename-Field refactoring from Fig. 2b starting
with the symbolic state presented in Fig. 5. The execution
proceeds in the following steps:

• The initial statement on line 5 replaces the old field
(represented by symbol f?

1 ) with the new field (f?
2 ), such

that the ‘fields’ reference of the target class (c?) now points
at f?

2 instead of f?
1 .

• Then we perform a deep matching on line 6, prompting the
symbolic executor to create a deep containment constraint,
represented by a double-stroked arrow ()), with type
FieldAccessExpr assigning a symbolic set reference FE?

0

(not shown in Figure) to the location assigned to c

?.
• In order to iterate over the elements of FE?

0, we non-
deterministically chose to partition it into disjoint symbol
fe? and symbolic set FE?

1, executing the body of the
foreach with faexpr assigned to fe?.

• To check the condition of the if-statement at lines 7-8, we
perform a couple of field accesses, which triggers lazy
initialization to creates two new symbolic instances: one
which is assigned to the symbolic reference fe? and one
which is assigned to its target field.

• We non-determinstically chose to execute the then

branch—further constraining the values of the fields of
fe?—executing the field update statement at line 9, which
updates the field access expression to point at the new
renamed field instances.

• Finally, we are ready for another iteration at line 6, and
this time non-deterministically chose to stop, further
constraining FE?

1 to be ; (thus disappearing in the figure).

We shall now define how these (and other execution steps)
are realized. We start discussing the basics of the presentation
format and the simple rules. Then we proceed to the four ma-
jor ideas in our symbolic executor: lazy initialization during
heap access and modification, containment handling when
updating containment links, lazy iteration in foreach-loops,



and deep containment constraints for handling matching
expressions.

Basics. During the execution we maintain a store � map-
ping variable names to symbolic set expressions. We use two
symbolic evaluation functions for TRON’s set (E [[e]]� = e)
and Boolean expressions (B[[b]]� = b). They take concrete
expressions with a store, and return resulting symbolic ex-
pressions by syntactically substituting all variables with their
symbolic values as defined by �. For example, we have
B[[x ✓ y]][x 7! {x?}[{z?}, y 7! Y

?
] = {x?}[{z?} ✓ Y

?.
The main judgement has the following format:

hs,�, hi �! h�0
, h

0i, denoting that the statement s

evaluated in the symbolic store � and heap h, produces
a new symbolic store �

0 and heap h

0.The basic symbolic
execution rules for statements are shown in Fig. 7, including
assignments, sequencing, branching, object creation and the
fix-loop. These steps are essentially the same as in other
existing symbolic executors. For straight-line statements
the branch condition b remains unchanged during execution
(SKIP, AGN, SEQ, NEW). For branching statements it is
amended (cf. IFT, IFF, FIXS and FIXD). Any execution
continues as long as the heap is satisfiable, so satisfiability of
h is an implicit premise in all the rules. The branching rules
are also non-deterministic; the non-determinism corresponds
to branching (back-tracking) in the symbolic executor.
Finally, the NEW rule, creates a new object of type c by
allocating a symbolic instance and a symbolic reference x

?

pointing to it. All fields of the new instance are initialized to
be empty sets.

Loops with unbounded iteration count give rise to infinite
paths in symbolic execution (for instance by considering
larger and larger inputs). In order for the symbolic execution
algorithm to terminate, we bound the number of paths to be
explored: FIXD can only be applied a bounded number of
times in a given execution of a given loop.

Lazy Initialization and Field Access. The rule for sym-
bolic execution of field access is as follows:

ACC

singleton (E [[e]]�, h) 3 hx?
, h

00i
inst(x

?
, h

00
) 3 ho, h0i h

0
= hz0, `0, d0,�0

, b

0i
hx := e.f,�, hi �! h�[x 7! `

0
(o, f)], h

0i

Symbolically executing a field access x := e.f requires
three steps. The first step is to symbolically evaluate e to
a symbolic set expression e, and then using the singleton

function3 to get a single symbol x? representing the value
of e; if e is not already a single symbol, then the singleton

function will generate a fresh symbol x? with the correct
type and add the constraint e = x

? to the heap, returning a
new heap if satisfiable. The second step is to lazily assign
a symbolic instance o to x

? (if not already assigned) using
the inst function, which non-deterministically either creates
a new symbolic instance o with the right type and shape, or

3 All our auxiliary functions are formally defined in App. B.

picks an existing symbolic instance o with compatible type
bounds to treat aliasing. The last step is to look up the value
of f of the assigned symbolic instance o in the spatial part of
the heap `

0 assigning the resulting value to variable x.

Containment and Field Updates. The symbolic execution
of a field update statement e1.f := e2 follows a similar
pattern to field access:

UPD

singleton (E [[e1]]�, h) 3 hx?
, h

000i
inst(x

?
, h

000
) 3 ho, h00i

update(o, f, E [[e2]]�, h00
) = h

0

he1.f := e2,�, hi �! h�, h0i

After evaluating and resolving e to a symbolic instance o,
the update function is used to update field f of o to point
to the evaluated value of e2 in the spatial constraints:

update(o, f, e,hz, `, d,�, bi) =

8
>>><

>>>:

hz, `[ho, fi 7! e], d,�, bi
if f 2Field 

hz, `0[ho, fi 7! e], d0,�0
, b ^ b

0i
if f 2Field�

where `

0 = disown(e, `)

hd0,�0
, b

0i = dc-containment(e, c, z, d,�)

If f is a containment field we must further ensure that o is the
unique owner of e which update does by calling disown

and dc-containment.

disown(e, `) =
⇥
ho, fi 7! do-f(e0, e)

��hho, fi, e0i 2 graph `
⇤

where do-f(e0, e) =

(
e

0 if f 2 Fields 
e

0 \ e if f 2 Fields�

The disown function presented above modifies each con-
tainment link in the spatial constraints ` to exclude the target
symbolic expression e. The dc-containment function anal-
ogously first excludes e from all deep containment constraints
to ensure that there are no stale references to the values of e,
and then tries to correctly propagate the effects of the assign-
ment of e back to the containment constraints. The latter is
done as follows: for every containment constraint d(o, c) = e

0

with the same type as e or a super-type of it, we generate a new
set symbol X? with the target type, replace e0 with it and then
add the constraint X?

= e

0 _X

?
= e[ e

0 to the heap, which
signifies that e might have been added to the deep contain-
ment constraints of o; this highlights an interesting interaction
between containment links and deep containment constraints
which is not immediately obvious, but is necessary to main-
tain consistency while still keeping a high-level of symbolic
abstraction. For subtypes of c, we do almost the same but use
the constraint (X?

= e

0 _ X

?
= e

0 [ Y

?
) ^ e = Y

? ] Z

?

instead, where Y

? and Z

? are fresh set symbols with Y

?

having type c and Z

? having the type of e excluding c (in a
type bound); this ensures that we refer to all elements in e of
type c and only those.

Lazy Iteration with First-class Set Expressions. Two
novel ideas of ours are first-class symbolic set expressions,



SEQ

hs1,�, hi �! h�00
, h

00i hs2,�00
, h

00i �! h�0
, h

0i
hs1; s2,�, hi �! h�0

, h

0i
NEW

x

?
, o

† fresh z

0
= z[x

? 7! o

†
]

�

0
= �[x

? 7! c, o

† 7! c] `

0
= `[ho†, fi 7! ; | f 2 fields(c)]

hx := new c,�, hz, `, d,�, bii �! h�[x 7! {x?}], hz0, `0, d,�0
, bii

IFT
hs1,�, h ^ B[[b]]�i �! h�0

, h

0i
hif b then s1 else s2,�, hi �! h�0

, h

0i
FIXS

hs,�, hi �! h�0
, h

0i
hfix e do s,�, hi �! h�0

, h

0 ^ E [[e]]� = E [[e]]�0i

IFF
hs2,�, h ^ ¬B[[b]]�i �! h�0

, h

0i
hif b then s1 else s2,�, hi �! h�0

, h

0i
FIXD

hs,�, hi �! h�00
, h

00i
hfix e do s,�

00
, h

00 ^ E [[e]]� 6= E [[e]]�00i �! h�0
, h

0i
hfix e do s,�, hi �! h�0

, h

0i

SKIP

hskip,�, hi �! h�, hi
AGN

hx := e,�, hi �! h�[x 7! E [[e]]�], hi

Figure 7: Symbolic execution rules for standard statements (� is a symbolic variable store, h is a symbolic heap)

and lazy iteration over these. In particular, consider the oper-
ational rule for the foreach-loop below:

FOR

init(me, h) = he, &i
x

7!E [[e]]� ` hs,�, h, &i each��! h�0
, h

0
, &

0i
hforeach x 2 me do s,�, hi �! h�0

, h

0i

The first step is to use the init function to get the expression e

to be iterated over, and initialize a control state & used during
iteration depending on the kind of matching expression me
provided; we will treat & abstractly for now, and define it
precisely later in this section. The other step is to use the
each��!-judgement to iterate over the values of e depending on
& , executing the foreach-body s at each iteration. The two
rules for the each��!-judgement, are provided below:

FORB
next(e, h, &) 3 hbreak, h0i

x

7!

e ` hs,�, h, &i each��! h�, h0
, &i

FORC

next(e, h, &) 3 hconthx?
, e

0
, &

00i, h000i
hs,�[x 7! x

?
], h

000i �! h�00
, h

00i
x

7!

e

0 ` hs,�00
, h

00
, &

00i each��! h�0
, h

0
, &

0i

x

7!

e ` hs,�, h, &i each��! h�0
, h

0
, &

0i
Both of the above rules depend on the next function which
target expression e, current control state & and heap h provides
a set of possible next actions; a possible action is either
of form hbreak, h0i which signals that iteration should stop
in heap h

0, or is of form hconthx?
, e

0
, &

0i, h0i which signals
that an iteration should happen with symbol x?, afterwards
continuing iteration over e

0 (disjoint from x

?) in the new
control state &

0 and heap h

0. The first rule of the each��!-
judgement check whether the set of next possible actions
include break and if so it will stop iteration with possibly
updated heap h

0. The second rule checks whether cont is a
possible next action, then executes the loop body s with x

?

bound to the range variable x, finally continuing iteration
over e’ in the updated states.

Now, observe how laziness is achieved with two key
ideas: we never explicitly concretize me, leaving the level of
concretization required to be decided by the next function
according to the control state & , and we iterate using a
symbolic reference x

? without requiring an assignment of
a symbolic instance (to treat possible aliasing) as this point.
Furthermore, by parameterizing the rules for foreach over
functions init and next, it would be easy to add new kinds
of expressions without affecting the rules.

Type-Directed Matching with Containment Constraints.
We will now discuss how the control state & and functions
init and next interact with matching expressions. We define
the control state as follows:

&

?
::= ns | mshci | ms⇤hc, e, di

Each alternative stores the required state to execute a given
matching expression: ns is used for ordinary iteration, mshci
is used for shallow matching of elements against c and
ms⇤hc, e, di is used for deep matching of elements against
type c, storing possibly more elements to be iterated over
in e and a copy of deep containment constraints d; the copy
of containment constraints is kept in order to retrieve the
deep containment constraint values that were available before
iteration, which would represent the concrete objects that
would have been matched by a concrete deep match operation.
The init is therefore defined to map each expression to its
initial control state:

init(e, h) = he, nsi init(e match c, h) = he,ms(c)i
init(e match

⇤
c, hz, `, d,�, bi) = he,ms⇤(c, ;, d)i

The next function is more interesting since it calculates
the possible next actions for iteration. For straightforward
iteration, the next function is defined as follows:

next(e, h, ns) = {hbreak, (h ^ e = ;)i|(h ^ e = ;) sat} [
n

hconthx?
, X

?
, nsi, h0i

�

�

�

partition(e, h) = hx?
, X

?
, h

0i
o



It states that there are two possible actions: we can stop
iterating if it is possible to constraint e to be ;, and we can try
to use partition to split e into a symbol x? and a disjoint
set symbol X? and then continue iteration with that. The
partition function essentially generates fresh symbol x?

and set symbol X? with the right types adding the constraint
e = x

? ]X

? to h, returning a new heap if valid.
For matching iteration, next is defined as follows:

next(e, h,mshci) = {hbreak, (h ^ e = ;)i|(h ^ e = ;) sat} [
⇢

hbreak, h0i
�

�

�

�

partition(e, h) = hx?
, X

?
, h

00i^
match(x

?
, X

?
, c, h

00
) 3 hff, h0i

�

[
⇢

hconthx?
, X

?
,

mshcii, h0i

�

�

�

�

partition(e, h) = hx?
, X

?
, h

00i ^
match(x

?
, X

?
, c, h

00
) 3 htt, h0i

�

In this control state, there are up to three possible actions:
one where e is constraint to ;, and two where partition is
used to get x? and X

?, which are then matched against c?
using match. The match function returns a set of states
each indicating whether matching x

? against c was successful:
if htt, h0i is included then h

0 constraints the type of x? to be
a subtype of c, and if hff, h0i is included then h

0 constraints
the type bounds of x

? and X

? to exclude c as a possible
supertype. A match is always successful if the type of x?

is a subtype of c, always fails when the c is unrelated to or
excluded from type bounds of x?, and allows both when the
type of x? is a supertype of c.

Finally, the definition of next for deep matching is:

next(e0, h0,ms⇤hc, e00, di) = (lfp � 7! next-ms�)(e0, e
0
0, h)

where next-ms�(e, e
0
, h

0
) = next(e

0
, h ^ e = ;, ns) [

S

8

>

<

>

:

�(X

?
, e

0 [ e

00
, h

0
)

�

�

�

�

�

�

�

partition(e, h) = hx?
, X

?
, h

000i ^
match(x

?
, X

?
, c, h

000
) 3 hff, h00i ^

dcs(x

?
, c, d, h

00
) 3 he00, h0i

9

>

=

>

;

[

8

>

<

>

:

hconthx?
, X

?
,

ms⇤hc, e0 [ e

00
, dii, h0i

�

�

�

�

�

�

�

partition(e, h) = hx?
, X

?
, h

000i^
match(x

?
, X

?
, c, h

000
) 3 htt, h00i^

dcs(x

?
, c, d, h

00
) 3 he00, h0i

9

>

=

>

;

There are again three possible actions in this control state.
The first is to try to constraint e to ; like in the other cases,
but this time we must continue to iterate over e0 which was
used to collect deep containment constraint values during
iteration. The second possible action is to use partition

and match on c, where the match was unsuccesful; we use
the dcs function to assign a location o to x

? and lookup the
deep containment constraint value d(o, c) = e

00 (creating
it in the provided heap if non-existing), then adding it to
the control state and continue iterating over the rest X?;
note that since x

? did not match the target type c we do not
consider it for iteration. The final possible action is where
the match was successful and so we use the x

? for the next
iteration; we still need to consider possible descendants of
x

? of type c and so use dcs to get the deep containment
constraint value and add it to the control state. Observe how
the use of deep containment constraints allows us to provide
a higher-level abstraction over structures focusing only on

instances of the target type, and without explicitly considering
all intermediate shapes of data.

4.3 Relating Concrete and Symbolic Semantics
To recover a deterministic semantics for programs from our
provided non-deterministic operational symbolic semantics,
one could define the symbolic semantics of a program as the
set of all output pairs of symbolic stores and heaps obtained
from non-deterministically executing each different feasible
path in the program.

S[[s]]h�, hi = {h�0
, h

0i|hs,�, hi �! h�0
, h

00i}

A useful property to show is then that the deterministic sym-
bolic semantics is sound with regards to the concrete seman-
tics, i.e.: If 9m.� = m(�) ^ �, h

m

h and S[[s]]h�, hi = M

then for all h�, hi 2 M there exists an �

0, �
0
, h

0
such that we

have a concrete execution4 hs,�,�, hi =) h�0
,�

0
, h

0i and
exists a model m0 such that �0

= m

0
(�

0
) and �

0
, h

0 m

0

h

0.

5. Evaluation
We implemented our technique in a prototype tool5, which
we evaluate to show the concrete benefits of our technique.

5.1 Test Generation
White-box test generation is a classical application of sym-
bolic execution, and we aim to use it as an example for
evaluating our symbolic execution algorithm. We have built a
white-box test generator and compare its effectiveness against
a baseline black-box test generator.

We aim to compare the test generators according to their
effectiveness, which is how well a test suite exercises the
transformation-under-test (TUT). We use branch coverage as
the target metric, which we define for TRON constructs as
follows: for if-statements both branches must be taken, for
fix-loops we check whether it is run one or more times6 and
for foreach-loops we check whether it is run zero, one or
more times.

White-box Test Generator. The white-box test generator
is a simple extension of the symbolic execution algorithm
presented in Sect. 4, requiring only two new additions:

1. Memoising a copy of the spatial constraints which values
are not modified by field updates, thus keeping track of
the initial structure of input.

2. A translator between the output model given by the model
finder to concrete data usable by the target TRON program.

Black-box Test Generator. The black-box test genera-
tor optimizes towards meta-model coverage, which is the
literature-recommended metric (Wang et al. 2006; Finot et al.

4 The concrete semantics is available for review in App. A
5 https://github.com/models-team/SymexTRON
6 fix-loops must run the body at least once, according to the semantics



2013). A test suite is said to have full meta-model coverage
if each subtype of relevant classes is present in at least in
one test case, and each relevant field is instantiated with each
valid multiplicity (i.e. zero, one or many).

Subject Programs. The subject programs were selected
according to three criteria: be an interesting representative
variety of realistic transformations, be independently speci-
fied to avoid bias, and be feasible to implement in TRON. To
fulfill the first criterion, we chose transformations from two
categories: model transformations and refactorings. For the
second criterion, we ported the model transformations from
the ATL transformation zoo7 and chose the refactorings from
Fowler’s classic collection (Fowler 1999). The third criterion
is achieved by picking suitably sized transformations that
satisfy our resource and design constraints, since it takes
time to manually port complex transformations correctly
(despite language similarity) and TRON lacks abstractions
for modularity that full languages have. We ended up with
3 model transformations and 4 refactorings, all of which we
describe below.

Refactorings.
• An extended version of the Rename field refactoring used

as our running example.
• Rename method: renames a target method in a class, and

ensures that all calls to the correct overloading of this
method (with the right types) must refer to the updated
name.

• Extract superclass: creates a common superclass of two
classes with similar structure ensuring that all common
fields are pulled up and that both classes inherit from it.

• Replace delegation with inheritance: Makes a class inherit
directly from a type instead of using a field for delegation,
updating all method calls targeting that field to use this as
a target instead.

Model Transformations.
• The Families to Persons model transformation

(Fam2Pers), converts a model of a traditional family with
a mother, father and possibly children to a collection of
individuals with explicit gender (male or female).

• The classical Class to Relational model transformation
(Class2Rel), which converts an object-oriented class
model to a relational database schema.

• The Path expression to Petri net model transformation
(Path2Petri), which converts a path expression with states
and transitions to a full Petri net with named places,
different types of arcs and weighted transitions.

The source code of all the programs is included in App. C.

Porting Transformations to TRON. By design TRON is a
minimal language, and so there are non-core transformation

7 https://www.eclipse.org/atl/atlTransformations/

languages features that must be handled when porting trans-
formations from fully-featured languages to TRON. In particu-
lar, three features had to be handled for the considered subject
programs: functions, implicit tracing links and circular data
dependencies (the latter two present in model transformation
languages like ATL). When a transformation is ported TRON
one must take care to correctly inline function calls, which
is done by replacing the calls with the function body, substi-
tuting the parameters with the provided arguments, renaming
local variables to avoid clashes, and converting any explicit
recursion to use the ‘foreach’-statement or ‘fix’-statement. To
handle tracing links one must take care to augment the meta-
model to include them explicitly, and to explicate assignment
to the tracing links on object creation in the transformation;
for circular data dependencies one must ensure to separate
the object creation phase from the actual translation phase.

Set-up. The experiment was set-up to automatically run
both test generators automatically on all the described subject
programs. The white-box test generator was bounded in the
number of iterations (2, except for Fam2Pers which uses 3
due to meta-model constraints) and instances considered by
the model finder (6 for model transformations, 10 for refac-
torings), and a reasonable time-out of 1 hour was put in place.
We also added light-weight support for bidirectional fields in
the model finder to better support the model transformations.
The prototype symbolic executor, was implemented in Scala
2.11.7 (Odersky and Rompf 2014) and the evaluation was
run on a 2.3 GHz Core i7 MacBook Pro (OS X 10.11). The
external model finder KodKod was configured to use the
parallel SAT solver Plingeling (Biere 2014).

Test Generation Results. We ran a series of toy programs
exercising the various constructs of TRON as a warm up for
our test generators; the white-box test generator achieved
100% code coverage for all programs beating the black-box
test generator, and all under 30 seconds of execution time.

Table 2 shows the results of running the test generators
on the selected subject programs (model transformations and
refactorings).

Refactorings. The white-box test generator achieves better
code coverage than the baseline black-box test generator for
all the refactorings, reaching 100% coverage for two. We
hypothesise that refactorings do many targeted modifications
of complex models, making it hard to generate tests that
cover the required parts without access to the transformation
code; The test generated by black-box had high meta-model
coverage (see Tbl. 2) but did not fully exercise the transfor-
mation, in contrast to the more focused tests generated by the
white-box test generator.

Due to the nature of symbolic execution, the white-box test
generator was unsurprisingly slower than the black-box test
generator. We believe that the higher precision in bug finding
offsets the runtime cost; test generation is an occasional
offline task and 1 computer hour is not unreasonable to use



Program LOC Meta-model coverage (%) Branch coverage (%) Time (s)

Black-box White-box Black-box White-box Black-box White-box

RenameField 53 + 12 = 65 96.55 70.69 60.00 100.00 141.5 336.6
RenameMethod 53 + 28 = 81 96.55 93.10 26.67 93.33 141.7 3600.0
ExtractSuper 53 + 29 = 82 98.28 31.03 75.00 100.00 124.8 386.4
ReplaceDelegation 53 + 30 = 83 100.00 85.19 47.06 76.47 115.5 3600.0

Fam2Pers 21 + 56 = 77 100.00 88.00 100.00 100.00 4.8 135.4
Path2Petri 42 + 58 = 100 100.00 37.50 88.89 33.33 1.8 3600.0
Class2Rel 34 + 100 = 134 100.00 100.00 70.83 75.00 3.8 3600.0

Table 2: Results of running the test generators on subject programs. Here LOC indicates lines of code, where the first component
of the summation is the size of the data model and the second component is the size of the transformation.

compared to the many hours a programmer would otherwise
have spent on the same task.

Model Transformations. The white-box test generator
achieved good results for model transformations, performing
better than the black-box test generator for the Fam2Pers
and Class2Rel transformations, and worse for the Path2Petri
transformation. We suspect that the black-box test generator
performs well on model transformations because they primar-
ily translate structured data according to their meta-model
types, without relying on complex constraints and cases.
Therefore, having a test suite with high meta-model cov-
erage will generate the necessary different types to trigger the
right execution paths resulting in acceptable branch coverage.
The white-box test generator performed less impressively on
model transformations than refactorings because the symbolic
executor did not reach the right paths before the time-out
triggered. The sequential composition of complex for-loops
results in an explosion of paths to be explored, and so it takes
significantly more time to explore the whole program and
generate interesting tests.

Comparing Coverage Criteria. The black-box test genera-
tor optimizes towards achieving maximal meta-model cover-
age (see Tbl. 2), but seems to achieve mixed branch coverage
results, and although it performed better for model transfor-
mations than for refactorings, it never reached full branch
coverage. This indicates that there is little guarantee that high
meta-model coverage ensures high branch coverage, which
is an interesting experience for building both white-box and
black-box tools.

The symbolic executor achieved high branch coverage for
most subjects without achieving the same high meta-model
coverage—the lowest being 31.03% meta-model coverage
for the ExtractSuper refactoring that we achieved full branch
coverage for—which indicates that there is no correlation the
other way as well. It would of course require a more extensive
empirical study to conclusively affirm our hypothesis.

5.2 Comparison with Symbolic Executors for
Object-Oriented Languages

Two of the best known and well-supported symbolic execu-
tors for object-oriented programming languages are Sym-
bolic PathFinder (Pasareanu et al. 2013) and Microsoft Intel-
liTest/Pex (Tillmann and de Halleux 2008). We will describe
our experiences trying to encode various high-level transfor-
mation features—sets, containment and deep matching—and
the difficulties faced when these features are not handled
first-class.

Symbolic Support for Sets. The first challenge we faced
was how to symbolically encode sets in traditional symbolic
executors. Symbolic PathFinder does not directly support
standard Java collections like HashSet or TreeSet, and using
those collections during symbolic execution leads to errors:
a symbol does not have a hash value, and it is not possible
to symbolically compare two objects. One could try a more
cumbersome encoding by using lists and handling inequal-
ity constraints explicitly, but it is unclear how to generate
interesting instances of such sets automatically. Pex tries to
dynamically construct instances of sets using arrays, but it
is hard in practice to make it generate an array of distinct
elements that is usable to construct an interesting set.

We treat set values first-class which exploits the support
of set theories in model finders like KodKod and SMT
solvers (Kröning et al. 2009). We believe that implement-
ing this could be beneficial for these traditional symbolic
executors as well.

Enforcing Deep Containment Constraints. Another chal-
lenge is enforcing containment-like constraints with acyclic-
ity and non-sharing for abstract syntax trees. Traditional sym-
bolic executors support deep containment constraints neither
directly nor indirectly. Hypothetically, acyclicity constraints
could be enforced statically by giving all objects unique
identifiers and fixing an ordering between contained objects
and parents; however, this requires both the management
of a complex system on top of existing dynamic structures,
and it is unclear how to efficiently handle dynamic to such
links. In contrast, first class support of these constraints in



TRON makes it easy to handle dynamic updates and allows
specialized techniques to be used to handle such constraints.

Deep Matching and Visitors. Deep matching is straight-
forward to encode using reflection, but that approach is not
handled well by symbolic executors, and so is to be avoided.
Traditionally traversal of abstract syntax is done using re-
cursive visitors, which uses plain classes and thus is better
supported.

However, this approach is non-optimal from a symbolic
execution point of view, since to reach the relevant part of an
abstract syntax tree—like a field access expression—one has
to consider all intermediate shapes—i.e., classes, methods,
different kinds of statements and containing expressions in
our example—which hits a combinatorial explosion, even
with reasonably small bounds.

In contrast, we abstract away intermediate shapes with
deep containment constraints, which allows reasoning about
only the parts of the data structure we are interested in.
Transformations like refactorings often perform local changes
on the abstract syntax trees, and so this approach seems
especially beneficial in those cases.

5.3 Threats and Limitations
The main threat to validity of the experiment is that we
implemented the subject programs ourselves, introducing the
possibility of bias and errors in the implementation. For the
model transformations, we mitigated this by choosing exist-
ing ones from ATL, and for the refactorings we chose a num-
ber of standard ones from Fowler’s authoritative book (Fowler
1999). Furthemore, minor implementation mistakes are of
lesser importance since the number of found errors is not an
evaluation criterion. Inozemtseva and Holmes (Inozemtseva
and Holmes 2014) show that test coverage is not a strongly
correlative measure for effectiveness. However, arguably a
test suite which has low code coverage is going to miss bugs
because it simply does not visit code present in some of the
branches. The black-box test generator has been implemented
by us optimizing for the standard meta-model coverage met-
ric (Finot et al. 2013; Wang et al. 2006) to avoid bias, since
we could not find an existing third-party tool that was suitable
for our purposes. We are not experts on Symbolic PathFinder
and Pex, and could have missed better ways to encode high-
level features. We mitigated this by systematically reading
the available documentation, and searching on forums and
mailing lists for answers to similar challenges.

6. Related Work
Symbolic Execution of High-level Transformation Lan-
guages. Simple symbolic execution algorithms (Lucio and
Vangheluwe 2013) exist for significantly less expressive trans-
formation languages like DSLTrans, which bounds loops and
does not permit dependent state and loop iterations. This lack
of expressiveness allows the symbolic executor to be heavily

specialized and quick, but the algorithm is hard to generalize
for more expressive Turing-complete languages like TRON.

More complex whitebox-based algorithms are presented
by ATLTest (González and Cabot 2012) and TETRA
Box (Schönböck et al. 2013). These tools only support a class
of transformations that can not modify input state. Therefore,
it is not possible to easily express complex transformations
like the refactorings considered in this paper. Furthermore, the
method presented in this paper, is fully-formalized and evalu-
ated, showing applicability of our framework for a broader
range of transformations.

Test Generation for Transformations. The latest survey
on verification of model transformations (Rahim and Whittle
2015) shows that most test generation techniques for model
transformations focus on black-box testing, which do not
account for concrete transformation semantics and thus may
fail to cover program statements as shown in our evaluation.
There is a test generation tool for Maude (Riesco 2010, 2012)
based on bounded narrowing (practically, symbolic execution
for rewriting languages). However, complex transformations
are hard to write in the style of term-rewriting systems—since
they modify object graphs—and the object-oriented extension
is not as far as we understand supported by the test generator.
A black-box test generation tool called Dolly (Mongiovi et al.
2014) is used to test C and Java based refactoring engines
with promising results. As our evaluation results indicate that
white-box based techniques have better effectiveness than
black-box based ones, it could be interesting to see whether
we could adapt some of our novel ideas for a language like
Java and increase the number of bugs found.

7. Conclusion
We have presented a symbolic execution technique for high-
level transformation languages. The technique is formalized
and demonstrated for TRON, a language designed as a study
vehicle for languages that support type-directed querying and
transformation.

The evaluation shows that the prototype symbolic executor
achieves good code coverage when used as a test generator.
Not only is symbolic execution feasible for high-level trans-
formation languages, but also the obtained white-box test
generator beats the baseline black-box test generator on code
coverage for all but one subject, often achieving full coverage.

We intend to implement our symbolic execution algorithm
for a relevant subset of a real-world programming language
like the ones mentioned in the introduction. Since our eval-
uation shows that it is relatively cheap to generate random
initial test input with acceptable coverage, we believe that it
might be fruitful to look at hybrid white-box approaches like
Dynamic Symbolic Execution (Korel 1990; Godefroid et al.
2005) for such task to increase performance.
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A. Concrete Semantics
The concrete semantics is presented below.
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M[[me]]h�,�, hi = os x

7!os ` hs,�,�, hi each
==) h�0

,�
0
, h

0i

hforeach x 2 me do s,�,�, hi =) h�0
,�

0
, h

0i

EFORE

x

7!; ` hs,�,�, hi each
==) h�,�, hi

EFORM
hs,�[x 7! {o}],�, hi =) h�00

,�
00
, h

00i x

7!

os ` hs,�00
,�

00
, h

00i each
==) h�0

,�
0
, h

0i

x

7!{o} ] os ` hs,�,�, hi each
==) h�0

,�
0
, h

0i



B. Auxiliary Functions

singleton(e, h) =

(

{hx?
, hi} if e = {x?}

mk-singleton(e, h) otherwise

mk-singleton(e, h) =
n

hx?
, h

0i
�

�

�

h

0 sat
o

where x

? fresh

h = hz, `, d,�, bi

�0 = �[x? 7! types(e,�, z)]

h

0 = hz, `, d,�0
, b ^ e = {x?}i

inst(x?
, h) =

(

{hz(x?), hi} if x? 2 dom z

mk-inst(x?
, h) [ alias-inst(x?

, h) otherwise

where h = hz, `, d,�, bi

mk-inst(x?
, h) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ho, h0i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

c 2 csin ^
hfs,�00i = mk-fields(fields(c),�) ^

`

0 = ` [ho, fi 7! e|hf, ei 2 fs] ^

�0 = �00[o 7! h{c}, {c0| c

0
gen

⇤
c ^

c

0 2 csex
}i] ^

h

0 = hz[x? 7! o], `0, d,�0
, bi ^ h

0 sat

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

where o fresh

h = hz, `, d,�, bi

hcsin, csexi = �(x?)

mk-fields = (lfp � 7! mk-fields0�)(;)

mk-fields0�(fse, fsc,�) =

(

�(fse [ hf,X?i, fs0c,�
0) if fsc = hf, ci ] fs0c

hfse,�i otherwise

where X

? fresh

�0 = �[X? 7! c]

alias-inst(x?
, h) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ho, h0i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

o 2 O ^ h{c0}, cs00outi = �(o?) ^

cs0out = cs00out [
⇢

c

�

�

�

�

c 2 csout ^
c gen⇤ c

0

�

^

�0 = �[
x

? 7! ?,

o 7! h{c0}, cs0outi
] ^

h

0 = hz[x? 7! o, `, d,�0
, bi ^ h

0 sat

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

where hcsin, csouti = �(x?)

O =

8

>

<

>

:

o

�

�

�

�

�

�

�

h{c0}, cs0outi = �(o) ^
9c 2 csin(c gen

⇤
c

0 ^

@c00 2 cs0out(c gen

⇤
c

00))

9

>

=

>

;

dc-containment(e, c, z, d,�) = (lfp � 7! dc-reown�)(e, c, graph d

0
, ;, z,�, true)

where d

0 =
⇥

ho, c0i 7! e

0 \ e

�

�hho, c0i, e0i 2 graph d

⇤

dc-reown�(e, c, dcs, dcs00, z,�, b) =

8

>

<

>

:

�(e, c, dcs0, ,�0
, b ^ b

0)

where hdc,�0
, b

0i = dc-reown-1(e, c, dc, z,�)
if dcs = dc ] dcs0

⇥

ho, c0i 7! e

00�
�hho, c0i, e00i 2 dcs00

⇤

otherwise

dc-reown-1(e, c, hho, c0i, e0i, z,�) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

hhho, c0i, e0 [ X

?i,�
h

X

? 7! c

i

, X

? = ; _ X

? = ei if c <: c0

hhho, c0i, e0 [ X

?i,�

2

6

4

X

? 7! c,

Y

? 7! c

0
,

Z

? 7! hcsin, csex [ c

0i

3

7

5

,

(X? = ; _ X

? = Y

?)^

e = Y

? ] Z

?
i if c0 <: c ^ c 6= c

0

hhho, c0i, e0i,�, truei otherwise

where X

?
, Y

?
, Z

? fresh

hcsin, csexi = types(e,�, z)



match(x?
, X

?
, c, hz, `, d,�, bi) =

�

htt, hz, `, d,�0
, bii

�

�(9c0 2 csin.c
0
<: c _ c <: c0) ^ (@c0 2 csex.c

0
<: c)

 

[
�

hff, hz, `, d,�00
, bii

�

�(9c0 2 csin.c ⌅: c

0) _ (9c0 2 csex.c
0
<: c)

 

where hcsin, csexi = types-1(x?
,�, z)

hcs0in, cs0exi = �(X?)

�0 =

(

�[x? 7! hc,
�

c

0�
�

c

0 2 csex ^ c

0
<: c

 

i] if x?
/2 dom z

�[o 7! hc,
�

c

0�
�

c

0 2 csex ^ c

0
<: c

 

i] otherwise

�00 =

(

�[x? 7! hcsin, csex [ ci, X? 7! hcs0in, cs0ex [ ci] if x?
/2 dom z

�[o 7! hcsin, csex [ ci, X? 7! hcs0in, cs0ex [ ci] otherwise

dcs(x?
, c, d, h) =

n

dcs

0(h0)
�

�

�

inst(x?
, h) 3 ho, h0i

o

where dcs

0(hz0
, `

0
, d

0
,�0

, b

0i) =

(

hd0(o, c), hz0
, `

0
, d

0
,�0

, b

0ii if ho, ci 2 dom d

0

hX?
, hz0

, `

0
, d

0[ho, ci 7! X

?],�0[X? 7! c], b0ii otherwise

X

?fresh

types = lfp � 7! e,�, z 7!

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�(X?) if e = X

?

h;, ;i if e = ;
types-1(x?

1,�, z) t · · · t types-1(x?
n ,�, z) if e = {x?

1, . . . , x
?
n }

�(e1) t �(e2) if e = e1 [ e2

�(e1) t �(e2) if e = e1 \ e2

�(e1) if e = e1 \ e2

types-1(x?
,�, z) =

(

�(z(x?)) if x? 2 dom z

�(x?) otherwise

hcsin, csexi t hcs0in, cs0exi = htype-ub(csin, cs0in), type-ub(csex, cs0ex)i

where type-ub(cs, cs0) =
�

c

�

�

c 2 cs [ cs0 ^ @c0 2 cs [ cs0.c <: c0
 



C. Subject programs in TRON
Data model for RenameField, RenameMethod, ExtractSuper,
ReplaceDelegation:

1 class Package {
2 classes :� Class?

3 }
4 }lass Class {
5 name : String
6 super : Class
7 fields :� Field?

8 methods :� Method?

9 }
10 class Field {
11 name : String
12 type : Class
13 }
14 class Method {
15 name : String
16 params :� Parameter?

17 body :� Statement
18 type : Class
19 }
20 class Parameter {
21 name : String
22 type : Class
23 }
24 class Statement {}
25 class IfStatement extends Statement {
26 then :� Statement
27 else :� Statement
28 cond :� Expr
29 }
30 class Return extends Statement {
31 value :� Expr
32 }
33 class Assign Statement {
34 left :� AssignableExpr
35 right :� Expr
36 }
37 class Expr {
38 type : Class
39 }
40 class AssignableExpr extends Expr { }
41 class FieldAccessExpr extends AssignableExpr {
42 field_name : String
43 target :� Expr
44 }
45 class MethodCallExpr extends Expr {
46 method_name : String
47 target :� Expr
48 args :� Arg?

49 }
50 class Arg {
51 name : String
52 value :� Expr
53 }

RenameField:
1 class_fields := class.fields;
2 class.fields := (class_fields \ old_field) [ new_field;
3 foreach faexpr 2 package match? FieldAccessExpr do
4 faexpr_field_name := faexpr.field_name;
5 old_field_name := old_field.name;
6 faexpr_target := faexpr.target;
7 faexpr_target_type := faexpr_target.type;
8 if faexpr_field_name = old_field_name ^
9 class = faexpr_target_type then

10 new_field_name := new_field.name;
11 faexpr.field_name := new_field_name
12 else skip

RenameMethod:
1 class_methods := class.methods;
2 class.methods := (class_methods \ old_method) [ new_method;
3 foreach mcexpr 2 package match? MethodCallExpr do
4 mcexpr_method_name := mcexpr.method_name;
5 old_method_name := old_method.name;
6 old_method_params := old_method.params;

7 mcexpr_target := mcexpr.target;
8 mcexpr_target_type := mcexpr_target.type;
9 mcexpr_args := mcexpr.args;

10 paramsmatched := new Any;
11 foreach omp 2 old_method_params do
12 parammatched := ;;
13 omp_name := omp.name;
14 foreach mcea 2 mcexpr_args do
15 mcea_name := mcea.name;
16 if omp_name = mcea_name then
17 parammatched := paramsmatched
18 else skip;
19 if parammatched = ; then
20 paramsmatched := ;
21 else skip;
22 if mcexpr_method_name = old_method_name ^
23 class = mcexpr_target_type ^
24 ((¬(old_method_params = ;) ^ mcexpr_args = ;) _
25 paramsmatched = ;) then
26 new_method_name := new_method.name;
27 mcexpr.method_name := new_method_name
28 else skip

ExtractSuper:
1 sclass := new Class;
2 package_classes := package.classes;
3 package.classes := package_classes [ sclass;
4 class1.super := sclass;
5 class2.super := sclass;
6 sclass.name := sc_name;
7 new_sclass_fields := ;;
8 rem_class1_fields := ;;
9 rem_class2_fields := ;;

10 class1_fields := class1.fields;
11 class2_fields := class2.fields;
12 foreach c1f 2 class1_fields do
13 foreach c2f 2 class2_fields do
14 c1f_name := c1f.name;
15 c2f_name := c2f.name;
16 c1f_type := c1f.type;
17 c2f_type := c2f.type;
18 if c1f_name = c2f_name ^ c2f_type = c2f_type then
19 scf := new Field;
20 scf.name := c1f_name;
21 scf.type := c1f_type;
22 new_sclass_fields := new_sclass_fields [ scf;
23 rem_class1_fields := rem_class1_fields [ c1f;
24 rem_class2_fields := rem_class2_fields [ c2f
25 else
26 skip;
27 class1.fields := class1_fields \ rem_class1_fields;
28 class2.fields := class2_fields \ rem_class2_fields;
29 sclass.fields := new_sclass_fields

ReplaceDelegation:
1 class_fields := class.fields;
2 field_type := field.type;
3 class.super := field_type;
4 field_type_methods := field_type.methods;
5 class_methods := class.methods;
6 class_new_methods := ;;
7 foreach ftm 2 field_type_methods do
8 foreach cm 2 class_methods do
9 ftm_name := ftm.name;

10 cm_name := cm.name;
11 if ¬(ftm_name = cm_name) then
12 class_new_methods := class_new_methods [ cm
13 else skip;
14 class.methods := class_new_methods;
15 foreach mcexpr 2 class match? MethodCallExpr do
16 mcexpr_target := mcexpr.target;
17 MCEXPR_TARGET := ;;
18 foreach mcx in mcexpr_target match FieldAccessExpr do
19 MCEXPR_TARGET := mcx;
20 if ¬(MCEXPR_TARGET = ;) then
21 mcexpr_target_target := mcexpr_target.target;
22 mcexpr_target_target_type := mcexpr_target_target.type;
23 mcexpr_target_field_name := mcexpr_target.field_name;
24 field_name := field.name;
25 if field_name = mcexpr_target_field_name ^



26 class = mcexpr_target_target_type then
27 mcexpr.target := mcexpr_target_target
28 else skip
29 else skip;
30 class.fields := class_fields \ field

Data models for Fam2Pers:
1 // Families meta model
2 class Family {
3 lastName : String
4 father :� Member opposite familyFather
5 mother :� Member opposite familyMother
6 sons :� Member? opposite familySon
7 daughters :� Member? opposite familyDaughter
8 }
9 class Member {

10 firstName : String

11 familyFather : Family? opposite father

12 familyMother : Family? opposite mother

13 familySon : Family? opposite sons

14 familyDaughter : Family? opposite daughters
15 }
16 // Persons meta model
17 class Person {
18 fullName : String
19 }
20 class Male extends Person { }
21 class Female extends Person { }

Fam2Pers:
1 persons := ;;
2 foreach member 2 families match? Member do
3 self_familyMother := member.familyMother;
4 self_familyDaughter := member.familyDaughter;
5 // Start inlined isFemale helper
6 if ¬(self_familyMother = ;) then
7 isFemale := new Any
8 else if ¬(self_familyDaughter = ;) then
9 isFemale := new Any

10 else
11 isFemale := ;;
12 // End inlined isFemale helper
13 if ¬(isFemale = ;) then
14 female := new Female;
15 self_familyFather := member.familyFather;
16 self_familyMother := member.familyMother;
17 self_familySon := member.familySon;
18 self_familyDaughter := member.familyDaughter;
19 // Start inlined familyName helper
20 if ¬(self_familyFather = ;) then
21 familyName := self_familyFather.lastName
22 else if ¬(self_familyMother = ;) then
23 familyName := self_familyMother.lastName
24 else if ¬(self_familySon = ;) then
25 familyName := self_familySon.lastName
26 else
27 familyName := self_familyDaughter.lastName;
28 // End inlined familyName helper
29 member_firstName := member.firstName;
30 fullName := new Concat;
31 fullName.s1 := member_firstName;
32 fullName.s2 := familyName;
33 female.fullName := fullName;
34 persons := persons [ female
35 else
36 male := new Male;
37 self_familyFather := member.familyFather;
38 self_familyMother := member.familyMother;
39 self_familySon := member.familySon;
40 self_familyDaughter := member.familyDaughter;
41 // Start inlined familyName helper
42 if ¬(self_familyFather = ;) then
43 familyName := self_familyFather.lastName
44 else if ¬(self_familyMother = ;) then
45 familyName := self_familyMother.lastName
46 else if ¬(self_familySon = ;) then
47 familyName := self_familySon.lastName
48 else
49 familyName := self_familyDaughter.lastName;

50 // End inlined familyName helper
51 member_firstName := member.firstName;
52 fullName := new Concat;
53 fullName.s1 := member_firstName;
54 fullName.s2 := familyName;
55 male.fullName := fullName;
56 persons := persons [ male

Data model for Path2Petri:
1 // Shared
2 class Element {
3 name : String
4 }
5 // Path expression meta model
6 class PathExp extends Element {
7 transitions :� PETransition?

8 states :� State?

9 }
10 class State extends Element {
11 outgoing : PETransition? opposite source
12 incoming : PETransition? opposite target
13 }
14 class PETransition extends Element {
15 source : State opposite outgoing
16 target : State opposite incoming
17 }
18 // Petri net meta model
19 class PetriNet extends Element {
20 transitions :� PNTransition?

21 arcs :� Arc?

22 place :� Place?

23 }
24 class PNTransition extends Element {
25 outgoing : TransToPlaceArc? opposite source
26 incoming : PlaceToTransArc? opposite target
27 }
28 class Place extends Element {
29 outgoing : PlaceToTransArc? opposite source
30 incoming : TransToPlaceArc? opposite target
31 }
32 class Arc extends Element {
33 weight : Integer
34 }
35 class TransToPlaceArc extends Arc {
36 source : PNTransition opposite outgoing
37 target : Place opposite incoming
38 }
39 class PlaceToTransArc extends Arc {
40 source : Place opposite incoming
41 target : PNTransition opposite outgoing
42 }

Path2Petri:
1 places := ;;
2 transitions := ;;
3 eString := new Empty;
4 int1 := new Int;
5 // First pass to create places
6 foreach st 2 pe match? State do
7 place := new Place;
8 st._Place := place;
9 place.name := eString;

10 places := places [ place;
11 foreach tr 2 pe match? PETransition do
12 pntr := new PNTransition;
13 tr._PNTransition := pntr;
14 tr_name := tr.name;
15 pntr.name := tr_name;
16 pnia := new PlaceToTransArc;
17 tr._PN_IA := pnia;
18 pntr.incoming := pnia;
19 tr_source := tr.source;
20 tr_source_Place := tr_source._Place;
21 pnia.source := tr_source_Place;
22 pnia.target := pntr;
23 pnia.weight := int1;
24 pnoa := new TransToPlaceArc;
25 tr._PN_OA := pnoa;
26 pntr.outgoing := pnoa;
27 pnoa.source := pntr;



28 tr_target := tr.target;
29 tr_target_Place := tr_target._Place;
30 pnoa.target := tr_target_Place;
31 pnia.weight := int1;
32 transitions := transitions [ pntr;
33 // Second pass to link places to arcs
34 foreach st 2 pe match? State do
35 st_Place := st._Place;
36 pnoas := ;;
37 st_incoming := st.incoming;
38 foreach inc 2 st_incoming do
39 inc_PN_OA := inc._PN_OA;
40 pnoas := pnoas [ inc_PN_OA;
41 st_Place.incoming := pnoas;
42 pnias := ;;
43 st_outgoing := st.outgoing;
44 foreach outg 2 st_outgoing do
45 outg_PN_IA := outg._PN_IA;
46 pnias := pnias [ outg_PN_IA;
47 st_Place.outgoing := pnias;
48 pn := new PetriNet;
49 pe_name := pe.name;
50 pn.name := pe_name;
51 pn.places := places;
52 pn.transitions := transitions;
53 arcs := ;;
54 foreach pntr 2 transitions do
55 pnia := pntr._PN_IA;
56 pnoa := pntr._PN_OA;
57 arcs := arcs [ pnia [ pnoa;
58 pn.arcs := arcs

Data models for Class2Rel:
1 // Class meta model
2 class NamedElt {
3 name : String
4 }
5 class Package {
6 classifiers :� Classifier?

7 }
8 class Classifier extends NamedElt { }
9 class DataType extends Classifier { }

10 class Class extends Classifier {
11 isAbstract : Boolean
12 attributes :� Attribute? opposite owner

13 super : Class?

14 }
15 class Attribute extends NamedElt {
16 isMultivalued : Boolean
17 type : Classifier
18 owner : Class opposite attribute
19 }
20 // Relational meta model
21 class Named {
22 name : String
23 }
24 class Schema {
25 tables :� Table?

26 types :� Type?

27 }
28 class Table extends Named {
29 columns :� Column?

30 key : Column
31 }
32 class Column extends Named {
33 type : Type
34 }

Class2Rel:
1 objectIdType := new Type;
2 objectIdType.name := integer_name;
3 schema := new Schema;
4 foreach dt 2 package match? DataType do
5 dt_name := dt.name;
6 if dt_name = integer_name then
7 dt._Type := objectIdType
8 else
9 type := new Type;

10 dt._Type := type;
11 type.name := dt_name;

12 schema_types := schema.types;
13 schema.types := schema_types [ type;
14 idString := new String;
15 objectIdString := new String;
16 foreach at 2 package match? Attribute do
17 at_type := at.type;
18 at_isMultivalued := at.isMultivalued;
19 foreach _ 2 at_type match DataType do
20 if at_isMultivalued = ; then
21 at_name := at.name;
22 at_type_Type := at_type._Type;
23 column := new Column;
24 column.name := at_name;
25 column.type := at_type_Type;
26 at._Column := column
27 else
28 at_owner := at.owner;
29 at_owner_name := at_owner.name;
30 at_name := at.name;
31 at_type_Type := at_type._Type;
32 tableName := new Concat;
33 tableName.s1 := at_owner_name;
34 tableName.s2 := at_name;
35 idName := new Concat;
36 idName.s1 := at_owner_name;
37 idName.s2 := idString;
38 id := new Column;
39 id.name := idName;
40 id.type := objectIdType;
41 value := new Column;
42 value.name := at_name;
43 value.type := at_type_Type;
44 table := new Table;
45 table.name := tableName;
46 table.key := id;
47 table.columns := id [ value;
48 schema_tables := schema.tables;
49 schema.tables := schema_tables [ table;
50 foreach _ 2 at_type match Class do
51 if at_isMultivalued = ; then
52 at_name := at.name;
53 column_name := new Concat;
54 column_name.s1 := at_name;
55 column_name.s2 := idString;
56 column := new Column;
57 column.name := column_name;
58 column.type := objectIdType;
59 at._Column := column
60 else
61 at_owner := at.owner;
62 at_owner_name := at_owner.name;
63 at_name := at.name;
64 tableName := new Concat;
65 tableName.s1 := at_owner_name;
66 tableName.s2 := at_name;
67 idName := new Concat;
68 idName.s1 := at_owner_name;
69 idName.s2 := idString;
70 id := new Column;
71 id.name := idName;
72 id.type := objectIdType;
73 foreignKey := new Column;
74 foreignKey.name := at_name;
75 foreignKey.type := objectIdType;
76 table := new Table;
77 table.name := tableName;
78 table.key := id;
79 table.columns := id [ foreignKey;
80 schema_tables := schema.tables;
81 schema.tables := schema_tables [ table;
82 foreach class 2 package match? Class do
83 class_name := class.name;
84 class_attributes := class.attributes;
85 key := new Column;
86 key.name := objectIdString;
87 key.type := objectIdType;
88 cols := key;
89 foreach at 2 class_attributes do
90 at_isMultivalued := at.isMultivalued;
91 if at_isMultivalued = ; then
92 at_Column := at._Column;
93 cols := cols [ at_Column



94 else skip;
95 table := new Table;
96 table.name := class_name;
97 table.key := key;
98 table.columns := cols;
99 schema_tables := schema.tables;

100 schema.tables := schema_tables [ table

Toy1:
1 containselem := ;;
2 foreach sublist 2 list match? IntList do
3 sublist_data := sublist.data;
4 if elem = sublist_data then
5 containselem := new Any
6 else skip

Toy2:
1 if list = ; then
2 res := new Any
3 else
4 head := list.data;
5 list_next := list.next;
6 if list_next = ; then
7 res := new Any
8 else
9 fix list_next do

10 list_next_next := list_next.next;
11 if list_next_next = ; then
12 tail := list_next.data
13 else
14 list_next := list_next_next;
15 if head = tail then
16 res := new Any
17 else
18 res := ;

Toy3:
1 table := new Table;
2 idcol := new IdColumn;
3 table.id := idcol;
4 table.columns := idcol;
5 class_attributes := class.attributes;
6 foreach attr 2 class_attributes do
7 col := new DataColumn;

8 attrtype := attr.type;
9 col.type := attrtype;

10 tablecolumns := table.columns;
11 table.columns := tablecolumns [ col

Toy4:
1 table := new Table;
2 idcol := new IdColumn;
3 table.id := idcol;table.columns := idcol;
4 foreach attr 2 class match? Attribute do
5 col := new DataColumn;
6 attrtype := attr.type;
7 col.type := attrtype;
8 tablecolumns := table.columns;
9 table.columns := tablecolumns [ col

Toy5:
1 timestamps := ;;
2 foreach ts 2 post match? Timestamp do
3 timestamps := timestamps [ ts

Toy6:
1 foreach sp 2 post match? SinglePost do
2 sp_title := sp.title;
3 sp_title_value := sp_title.value;
4 new_sp_title := new CapitalisedTitle;
5 new_sp_title.value := sp_title_value;
6 sp.title := new_sp_title

Toy7:
1 invitationlist := ;;
2 foreach person 2 contactbook match? Person do
3 isadult := ;;
4 person_age := person.age;
5 person_name := person.name;
6 foreach age 2 person_age match Adult do
7 isadult := new Any;
8 if ¬(isadult = ;) then
9 invited := new Invited;

10 invited.name := person_name;
11 invitationlist := invitationlist [ invited
12 else skip


