
Towards Adaptive Virtual Camera Control

In Computer Games

Paolo Burelli and Georgios N. Yannakakis

Center For Computer Games Research
IT University Of Copenhagen

Rued Langgaards Vej 7 2300 Copenhagen, Denmark
pabu@itu.dk, yannakakis@itu.dk

Abstract. Automatic camera control aims to define a framework to
control virtual camera movements in dynamic and unpredictable virtual
environments while ensuring a set of desired visual properties. We inves-
tigate the relationship between camera placement and playing behaviour
in games and build a user model of the camera behaviour that can be
used to control camera movements based on player preferences. For this
purpose, we collect eye gaze, camera and game-play data from subjects
playing a 3D platform game, we cluster gaze and camera information
to identify camera behaviour profiles and we employ machine learning
to build predictive models of the virtual camera behaviour. The perfor-
mance of the models on unseen data reveals accuracies above 70% for all
the player behaviour types identified. The characteristics of the gener-
ated models, their limits and their use for creating adaptive automatic
camera control in games is discussed.

1 Introduction

In 3D computer games, a virtual camera defines the point of view of the player
on the virtual environment and it mediates her visual perceptions. Therefore,
a wide range of aspects of the player experience, such as interaction and story-
telling are heavily affected by the virtual camera placement and motion [13]. In
games and other 3D applications the camera is either manually controlled by
the player during her interaction or placed and animated a priori by a designer.
However, manual control of the camera often proves challenging for the player as
it increases the complexity of the interaction and, on the other hand, statically
predefined cameras fail to cope with dynamic virtual environments.

These limits have driven the research towards the identification of a new
camera control paradigm: automatic camera control. Within this framework the
camera is controlled using high-level and environment-independent requirements,
such as the visibility of a particular object or the size of that object’s projected
image on the screen. A software module, commonly referred as camera controller,
dynamically and efficiently infers the ideal camera position and motion from
these requirements and the current game state.



The process of finding the virtual camera configuration that best fit a set
of requirements has been widely investigated [8]. On the contrary, the require-
ments themselves have received little attention despite their impact on player
experience [11]. Virtual camera parameters are commonly hand-crafted by game
designers and do not consider player preferences. Including the player in the
definition of these parameters requires the construction of a model of the rela-
tionship between camera motion and player experience [11].

In this paper we investigate player preferences concerning virtual camera
placement and animation, we propose a model of the relationship between cam-
era behaviour, player behaviour and game-play and we evaluate the performance
of this model. For this purpose, data from player gaze and the virtual camera mo-
tion is collected through a game experiment and used to identify and describe
the players’ camera behaviours. In the data-collection experiment the partici-
pants play a three-dimensional platformer game featuring all the stereotypical
aspects of the genre’s mechanics.

2 Background

Early studies on camera control focused on the definition of the camera prop-
erties and investigated the mapping between input devices and camera move-
ment [16]. The main research focus in the field rapidly shifted towards automatic
camera control since direct control of the camera has shown to be problematic
for the user [9].

Several different techniques have been proposed for automatic camera con-
trol, based on a variety of mathematical models; however, the vast majority
of the approaches model the problem as a constrained optimisation problem [8].
These approaches allow the designer to define a set of requirements on the frames
that the camera should produce and on the camera motion. Depending on the
approach, the controller positions and animates one or more virtual cameras in
the attempt to generate a shot or a sequence of shots that satisfy the predefined
requirements.

Requirements for the camera include constraints on camera motion (such
as speed limit), constraints on camera position (such as maximum height), or
constraints on the rendered frames. The last type of camera requirements, in-
troduced by Bares et al. [2], defines required properties on the frames rendered
using the camera such as subject inclusion or subject position within the frame.

2.1 Camera profiles

A large volume of research studies on automatic camera control is dedicated to
the analysis of robust and time-efficient techniques to place and move the camera
to satisfy a set of given requirements. These sets of requirements, usually referred
as camera profiles [5], define the set of constraints and the objective function
that needs to be optimised by the automatic camera control system.



Christianson et al. [7] introduced a language that permits the definition
of shot sequences (idioms) with the desired timings and subjects. Other re-
searchers extended Christianson’s work by connecting shot plans with camera
constraints [1], or by introducing advanced planning techniques to support inter-
active storytelling [6, 10]. While the aforementioned approaches address primar-
ily the issues related to the manual design of camera behaviours for dynamic and
interactive environments, other researchers have investigated approaches which
does not require the contribution of a designer [3].

Yannakakis at al. [17] studied the impact of camera viewpoints on player ex-
perience and built a model to predict this impact. That research study demon-
strates the existence of a relationship between player emotions, physiological
signals and camera parameters. Therefore, in the light of these results, Picardi
et al. [12] investigated the relationship camera and player behaviour in a 3D
platform game. The article demonstrates the existence of a significant relation-
ship between the player’s preferences on camera, measured using a gaze tracker,
and some game-play features such as number of collected items or number of
jumps performed.

In this paper we extend this work by analysing the interplay between past
player behaviour and camera control to automate the generation and selection
of the virtual camera parameters.

2.2 Gaze interaction in games

Eye movements can be recognised and categorised according to speed, duration
and direction [18]. In this paper, we focus on fixations, saccades and smooth

pursuits. A fixation is an eye movement that occurs when a subject focuses at a
static element on the screen; a saccade occurs when a subject is rapidly switching
her attention from one point to another and a smooth pursuit is a movement
that takes place when a subject is looking at a dynamic scene and she is following
a moving object.

Sundstedt et al. [15] conducted an experimental study to analyse players’ gaze
behaviour during a maze puzzle solving game. The results of their experiment
show that gaze movements, such as fixations, are mainly influenced by the game
task. They conclude that the direct use of eye tracking during the design phase
of a game can be extremely valuable to understand where players focus their
attention, in relation to the goal of the game. Bernhard et al. [4] performed
a similar experiment using a three-dimensional first-person shooting game in
which the objects observed by the players were analysed to infer the player’s level
of attention. We are inspired by the experiment of Bernhard at al. [4]; unlike
that study however, we analyse the player’s gaze patterns to model the player’s
camera movements and we model the relationship between camera behaviour,
game-play characteristics and player-behaviour.



(a) Avatar (b) Platform (c) Fuel
Cell

(d) Copper (e) Re-spawn
Point

(f) Jump
Pad

Fig. 1: Main components of the game.

3 The Game

A three-dimensional platform game has been designed and developed as a testbed
for this study1. The game features an alien-like avatar (see Fig. 1a) in a futur-
istic environment floating in the open space. The player controls the avatar and
the camera using keyboard and mouse. Avatar movements, defined in camera-
relative space, are controlled using the arrow keys, and jump and hit actions are
activated by pressing the left and right mouse buttons respectively. The camera
orbits around the avatar at a fixed distance; the player can change the distance
using the mouse wheel and can rotate the camera around the avatar by moving
the mouse.

The environment thought which the avatar moves is composed by floating
platforms . Each platform can be connected to another platform directly, forming
a cluster of platforms, through a bridge or it can be completely isolated, in which
case the avatar is required to jump to move from one platform to the other. Four
main object types may appear on the platforms: fuel cells, coppers, re-spawn
points and jump pads. Fuel cells (see Fig. 1c) are collectable items increasing the
score of the player. Coppers (see Fig. 1d) are opponent non player characters.
Re-spawn points (see Fig. 1e) are small stands placed on some platforms that,
when activated, act as the avatar’s spawn point after he falls from a platform.
Finally, the jump pads (see Fig. 1f) are black and yellow striped areas which
allow the player to perform a longer jump.

The aim of the player is to cross the virtual world until the last platform
while collecting fuel cells and killing coppers to achieve the highest possible
score. However, the player needs also to avoid falling from the platforms and
loosing too much time as this will negatively affect the final score.

The game is preceded by a tutorial level that explains the game controls and
gives an overview of the contribution of the game actions to the score. Moreover,
during the tutorial, the player is walked through all the challenges she will come
across in the game. The game is divided in a series of areas classified into three
categories according to the game-play experience they offer: jump, fight and

1 The game is based on Lerpz, a tutorial game by Unity Technologies —
http://www.unity3d.com



(a) Fight area (b) Jump area (c) Collection area

Fig. 2: The three different area types met in the game.

collection areas. Figure 2a shows a fight area where the main threat is given
by the opponent copper at the centre of the platform. The jump area depicted
in Fig. 2b is composed by several small floating platforms; the player needs to
make the avatar jump across all the platforms to complete the area. Figure
2c shows an area where the main task of the player is to collect the fuel cells
placed around the platform. In total, the game comprises 34 areas containing 14
collection areas, 11 fight areas and 9 jump areas.

4 Experimental Methodology

Our experimental hypothesis is that the way a player controls the virtual camera
depends on what actions she performs in the game and on how she performs
them. We represent the virtual camera behaviour as the amount of time the
player spends framing and observing different objects in the game environment
while playing the game. This representation of behaviour is chosen over a direct
model of the camera position and motion as it describes the behaviour in terms
of the content visualised by the camera and, therefore, it is independent of the
absolute position of the avatar, the camera and other objects.

To get information about the objects observed by the player during the ex-
periment, we used the Eyefollower2 gaze tracker which samples the player’s gaze
at a 120 Hz frequency (60 Hz per eye).

Twenty-nine subjects participated in the experiment. Twenty-four were male,
five were female; the age of the participants ranged between 23 and 34 years.
Statistical data about game-play behaviour, virtual camera movement and gaze
position is collected for each participant. The collection of the data is synchro-
nised to the Eyefollower sampling rate, therefore, both data from the game and
from the gaze tracker are sampled 120 times per second. Each data sample con-
tains: information about the game-play, position and orientation of the camera,
coordinates of the gaze position on the screen and the number and the type of ob-
jects around the avatar. The objects are classified into two categories: close and
far. All the objects reachable by the avatar within the next action are labelled
as close, otherwise as far.

2 developed by LC Technologies, Inc. - www.eyegaze.com



The data is logged only during the time the participants play the game;
this phase is preceded by for each player by the calibration of the gaze tracking
system, a tutorial level and a demographics questionnaire.

5 Extracted Features from Data

The data collected for each game is sorted into three datasets according to the
three area types described in Section 3. Each time a player completes an area two
types of statistical features are extracted from that area: game-play and camera
related features. The features of the first type are the experiment’s independent
variables and encapsulate elements of the player’s behaviour in the area. The
features of the second type describe the camera behaviour for each platform,
therefore, they define the experiment’s dependent variables.

The player’s behaviour is defined by the actions the player performs in each
area or, more precisely, by the consequences of these actions. Hence, the features
extracted describe the interaction between the player and the game though the
avatar’s actions, rather than the sequences of pressed keys. For each area the fol-
lowing features have been extracted: the numbers of fuel cells collected, damage
given, damage received, enemies killed, re-spawn points visited and jumps. The
features are normalised to a range between 0 and 1 using a standard min-max
uniform normalisation.

To model the camera behaviour, we analyse the content visualised by the
camera instead of the camera absolute position and rotation. The presence of a
certain object on the screen, however, does not necessarily imply an intentionality
of the player; e.g. the object might be on the screen only because it is close to an
object the player is interested to. The gaze data available permits to overcome
this limitation since, using the gaze position, it is possible to understand which
object is currently observed among the ones framed by the player. Therefore, we
combine camera movements and gaze coordinates to identify the objects observed
by the player at each frame and we extract the following statistical features: the
relative camera speed as well as the time spent observing the avatar, the fuel
cells close to the avatar, the enemies close to the avatar, the re-spawn points
close to the avatar, the jump pads close to the avatar, the platforms close to the
avatar and the far objects.

The seven features related to the time spent observing objects are calculated
as the sum of the durations of the smooth pursuit and fixation movements of the
eyes [18] during which the gaze position falls within an object’s projected image.
These values are normalised to [0, 1] via the completion time of each area. The
first feature is the average speed S of the camera relative to the avatar and it is
defined as S = (Dc − Da)/T , where Dc is the distance covered by the camera
during the completion of an area, Da is the distance covered by the avatar and
T is the time spent to complete the area.

Each time the avatar leaves an area, the aforementioned features are logged
for that area. The data is then, cleaned from experimental noise by removing all
the records with a duration inferior to 3 seconds and the ones with no platforms



Collection Areas (k = 2)

Records Avatar Fuel Cells Jump Pads Re-spawn Points Far Objects Speed

150 0.595 0.108 0.034 0.113 0.021 3.338
89 0.361 0.125 0.056 0.072 0.012 8.852

Fight Areas (k = 3)

Records Avatar Fuel Cells Coppers Jump Pads Re-spawn Points Far Objects Speed

137 0.674 0.042 0.095 0.049 0.034 0.036 3.283
99 0.676 0.032 0.478 0.044 0.056 0.025 5.293
142 0.250 0.029 0.069 0.030 0.052 0.013 5.927

Jump Areas (k = 3)

Records Avatar Fuel Cells Platforms Far Objects Speed

33 0.759 0.464 0.795 0.202 2.1293
80 0.736 0.166 0.658 0.059 2.7593
29 0.450 0.113 0.559 0.012 5.5854

Table 1: Average camera behaviour features with the number of records of each
cluster. Speed indicates the average camera speed with respect to the avatar.
The remaining features express the time spent observing each object of a type
in an area divided by the time spent completing the area. Highlighted in dark
grey is the feature related to the main task of the area type. The features related
to the other objects close to the avatar are highlighted in light grey.

or no enemies and fuel cells left. The remaining records are sorted into three
separate groups according to the area type and stored into three datasets, con-
taining 239 records for the collection areas, 378 records for the fight areas and
142 records for the jump areas.

6 Camera Behaviour Modelling

To investigate and create a model of the relationship between camera behaviour
and game-play, we analyse the collected data through two steps: identification
and prediction. In the first step we use a clustering technique to extract the
relevant camera behaviours and analyse their characteristics and then, in the
second step, we build a model based on this categorisation able to predict the
correct behaviour given a set of game-play data.

6.1 Behaviour Identification

The number of distinct camera behaviours as well as their internal characteristics
can only be based, in part, on domain knowledge. One can infer camera behaviour
profiles inspired by a theoretical framework of virtual cinematography [10] or
alternatively follow an empirical approach — as the one suggested here — to
derive camera behaviour profiles directly from data. The few existing frameworks
focus primarily on story-driven experiences with little or no interaction, thus are
not applicable in our context. Therefore, we adopt a data-driven approach and



we employ the k-means clustering algorithm on the gaze-based extracted features
for the purpose of retrieving the number and type of different camera behaviours.

Unsupervised learning allows us to isolate the most significant groups of
samples from each dataset. However, k-means requires the number of clusters
k existent in the data to minimise the intra-cluster variance. To overcome this
limitation, the algorithm runs with a progressively higher k value — from 2 to
10 — and the clusters generated at each run are evaluated using a set of five
cluster validity indexes. The algorithm runs 50 times for each k and the run
with the smallest within cluster sum of squared errors is picked. Each selected
partition is evaluated against 5 validity indexes: Davis-Bouldin, Krzanowski-Lai,
Calinski-Harabasz, Dunn and Hubert-Levin. The smallest k value that optimises
at least 3 validity measures out of five is used for the clustering; the chosen k
value is 2 for the collection type areas and 3 for the fight and jump type areas.

As seen in Table 1, the camera behaviour is described with a different feature
set for each area type. The features are selected to match the visual stimuli of-
fered by each area, thus only the features describing observation of objects which
are present in the area type are included in the set. Moreover, for each area type
the features are sorted into 5 categories: camera speed and time spent observing
the avatar, the primary task objects, other close objects and far objects. The
primary task objects highlighted in dark grey in Table 1, represent the time
spent observing objects relative to the main task of each area type, all the other
objects are categorised as secondary. According to this feature categorisation it
is possible to observe three main behaviour types: task focused including the
clusters spending more time observing the task related objects, avatar focused

including the clusters mostly observing the avatar and overview which includes
the clusters evenly observing all the objects in each area. For an in-depth de-
scription of the clusters the reader is referred to our previous study on camera
behaviour modelling through gaze [12]

6.2 Behaviour Prediction

Once the relevant camera behaviour types are identified, we proceed by modeling
the relationship between game-play and camera behaviour types. More precisely,
since the model is intended to select the most appropriate camera behaviour that
fits the player’s preferences in the game, we attempt to approximate the function
that maps the game-play behaviour of the player to the camera behaviour. For
this purpose, we use Artificial Neural Networks (ANNs) which are chosen as a
function known for its universal approximation capacity. In particular, we employ
a different ANN for each area type, instead of one for the whole dataset, to be
able to base each model on the best features necessary to describe the game-play
in that area.

The three fully connected feed-forward ANNs are trained using Resilient
Backpropagation [14] on the game-play data (ANN input) and the camera be-
havior clusters (ANN output) using early stopping for over-fitting avoidance.
The networks employ the logistic (sigmoid) function at all their neurons. The
performance of the ANNs is obtained as the best classification accuracy in 100



Area Fuel Damage Damage Enemies Re-spawn
Type Cells Given Received Killed Points Jumps

Collection 5.02 - - - 1.23 0.76
Fight 1.63 12.42 10.89 24.03 0.49 9.64

Jump 11.98 - - - - 0.53

Table 2: F-distribution values of the inter-cluster ANOVA test on the game-play
features. The threshold for a 5% significance level is F > 3.85 for the collection
areas and F > 2.99 for the jump areas. Values above the threshold appear in
bold.

independent runs using 3-fold cross-validation. While the inputs of the ANN are
selected algorithmically from the set of game-play features the ANN outputs are
a set of binary values corresponding to each cluster of the dataset.

The exact ANN input features, the number of hidden neurons and the number
of previous areas considered in the ANN input are found empirically through
automatic feature selection and exhaustive experimentation. Sequential Forward
Selection (SFS) is employed to find the feature subset that yields the most
accurate ANN model. SFS is a local-search procedure in which a feature is
added at a time to the current feature (ANN input) set until the accuracy of
the prediction increases. Once the best feature set is selected, the best ANN
topology is calculated through an exhaustive search of all possible combinations
of neurons in two hidden layers with a maximum of 30 neurons per layer.

The combination of automatic feature and topology selection is tested on
three different feature sets representing different time horizons in the past: in-
put (game-play features) from one (one step) previous area visited in the past,
input from the previous two areas visited (two step) and the combination of one
previous area in the past with the average features of the rest of the previous
areas visited (one step + average).

7 Results and Analysis

In this section we present and discuss the results in terms of prediction accuracy
of the camera behaviour models created. First, a statistical analysis of the data
is performed to check the existence of a relationship between camera behaviours
and game-play features and to identify the significant ones. Then, the prediction
accuracy of the models is evaluated with respect to the length of the time-series
expressing the past which is considered in the ANN input, the selected feature
set and the network topology.

To isolate the significant features among the ones logged, we perform an
inter-cluster one-way ANOVA for each game-play feature to identify for which
features we can reject the null hypothesis (no statistical difference exists).

As it is possible to see in Table 2, for each area type, at least one feature
demonstrates a significant difference revealing the existence of significant linear
relationships. In the fight areas dataset there is a significant difference in terms of



1S 2S 1S+A

Fight Areas

A
cc
u
ra
cy

1S 2S 1S+A

Jump Areas

All Features Significant Features SFS

1S 2S 1S+A
0

20

40

60

80

100

Collection Areas

Fig. 3: Best 3-fold cross-validation performance obtain by the three ANNs across
different input feature sets and past representations. The bars labelled 1S refer
to the one step representation of the past trace, the ones la- belled 2S refer to the
two step representation and 1S+A to the representation combining one previous
step and the average of the whole past trace.

damage (both given and taken), number of killed enemies and number of jumps.
In the other two area datasets the clusters differ significantly in the number of
fuel cells collected.

The features highlighted by the ANOVA test reveal the existence of a linear
relationship between the current camera behaviour and those features. How-
ever variable relationships, in general, are most likely more complex given that
linearly separable problems are extremely rare. Thus, the aim of the analysis
presented below is the construction of non-linear computational models of cam-
era behaviour via the use of ANNs described in Section 6. Figure 3 depicts the
best performance (3-fold cross validation) of 100 runs for each feature set on the
three representations of the past events described in Section 6.

Each value shown in Figure 3 corresponds to the best topology found. It is
noteworthy that all the selected topologies have at least one hidden layer, con-
firming the non linear nature of the relationship. This aspect is also highlighted,
in Figure 3, by the difference in prediction accuracy between the ANNs that use
the subset of significant features identified through the ANOVA test and the
ANNs using the subset identified through SFS. The latter type of ANNs, yield a
better accuracy regardless of the past representation and game areas. The best
3-fold cross-validation performances achieved for the fight, the jump, and the
collection areas are, respectively, 70.04%, 76.43% and 82.29%. It is worth noting
that in the collection areas, while the first type of ANNs, built solely on the fea-
tures that are found significant by ANOVA, perform even worse than the ones
using the full feature set, indicating that the linear analysis does not capture the
relationship between game-play and camera behaviour accurately.

While, in the collection and jump areas, the ANOVA test indicates the num-
ber of fuel cells collected as the only significant feature, SFS selects the number
of jumps and the number of re-spawn points activated as additional features
for the ANN input. On the other hand, in the collection areas, SFS does not



only select features not indicated by ANOVA (the number of re-spawn points
activated), but it also discards the number of jumps performed.

The results shown in Figure 3 confirm also our supposition that a more
extensive representation of the past events would lead to a better accuracy. In
fact, the best accuracies are achieved when the ANNs use the most extensive
information about the past game-play events.

8 Conclusion

This article introduced the first step towards adaptive virtual camera control in
computer games by proposing a model of camera behaviour and its relationship
to game-play. Camera behaviour is modelled using a combination of informa-
tion about players’ gaze and virtual camera position collected during a game
experiment. The data collected is sorted into three sets of areas according to the
game-play provided to the player. For each group the data is clustered using k-
means to identify relevant behaviours and the relationship between the clusters
and the game-play experience is modelled using three ANNs. The evaluation
of the ANN accuracy in predicting camera-behaviour is analysed with respect
to the number ans type of features used as input to the model. The analysis
reveals that the best prediction accuracies (i.e. 76.43% for jump, 82.29% for
collection and 70.04% for fight) are achieved using a representation of the past
events which includes the previous area and the average features of the other
previously visited areas. Moreover, sequential feature selection reduces vector
size which results in higher accuracies for all ANNs.

While the models constructed from the data show a prediction accuracy way
above chance level, the analysis of collected data also suggests that the game
is visually very complex and a multitude of objects, competing for the player’s
attention, generate noise in the data. This aspect could be limited by reducing
the visual noise in the game. However, this would require to reduce the game
complexity and, thus, also reduce the applicability to other games of the same
genre. The actual version of the game incorporates visually all the standard
features of modern 3D platformers and, besides the aforementioned limitations,
the results give strong indications of the link between camera behaviour models
and game-play in such games.

The same methodology could be used to construct camera behaviour models
for different games such as role-playing games or action games. Models con-
structed using this methodology could be used to dynamically select the camera
behaviour best suiting a certain player and therefore, generating a personalised
game experience. For this purpose, it would be necessary to further investigate
how to translate the camera behaviours identified through this methodology
into camera profiles that could be used by an automatic camera control system.
Moreover, in the future it would be interesting to investigate how to connect the
proposed models to the detected cognitive and affective state of the player, in
order to be able to influence aspects such as fun or attention.



References

1. D. Amerson, S. Kime, and R. M. Young. Real-time cinematic camera control
for interactive narratives. In International Conference on Advances in Computer

Entertainment Technology, pages 369–369, Valencia, Spain, 2005. ACM Press.
2. W. H. Bares, S. McDermott, C. Boudreaux, and S. Thainimit. Virtual 3D camera

composition from frame constraints. In ACM Multimedia, pages 177–186, Marina
del Rey, California, USA, 2000. ACM Press.

3. W. H. Bares, L. S. Zettlemoyer, D. W. Rodriguez, and J. C. Lester. Task-Sensitive
Cinematography Interfaces for Interactive 3D Learning Environments. In Inter-

national Conference on Intelligent User Interfaces, pages 81–88, San Francisco,
California, USA, 1998. ACM Press.

4. M. Bernhard, E. Stavrakis, and M. Wimmer. An empirical pipeline to derive
gaze prediction heuristics for 3D action games. ACM Transactions on Applied

Perception, 8(1):4:1—-4:30, 2010.
5. O. Bourne and A. Sattar. Applying Constraint Weighting to Autonomous Camera

Control. In AAAI Conference On Artificial Intelligence In Interactive Digitale

Entertainment Conference, pages 3–8, 2005.
6. F. Charles, J.-l. Lugrin, M. Cavazza, and S. J. Mead. Real-time camera control

for interactive storytelling. In International Conference for Intelligent Games and

Simulations, pages 1–4, London, 2002.
7. D. Christianson, S. Anderson, L.-w. He, D. Salesin, D. Weld, and M. Cohen. Declar-

ative Camera Control for Automatic Cinematography. In AAAI, pages 148–155.
AAI, 1996.

8. M. Christie, P. Olivier, and J.-M. Normand. Camera Control in Computer Graph-
ics. In Computer Graphics Forum, volume 27, pages 2197–2218, 2008.

9. S. M. Drucker and D. Zeltzer. Intelligent camera control in a virtual environment.
In Graphics Interface, pages 190–199, 1994.

10. A. Jhala and R. M. Young. A discourse planning approach to cinematic camera
control for narratives in virtual environments. In AAAI, number July, pages 307–
312, Pittsburgh, Pennsylvania, USA, 2005. AAAI Press.

11. H. P. Martinez, A. Jhala, and G. N. Yannakakis. Analyzing the impact of camera
viewpoint on player psychophysiology. In International Conference on Affective

Computing and Intelligent Interaction and Workshops, pages 1–6. IEEE, Sept.
2009.

12. A. Picardi, P. Burelli, and G. N. Yannakakis. Modelling Virtual Camera Behaviour
Through Player Gaze. In International Conference On The Foundations Of Digital

Games, 2011.
13. D. Pinelle and N. Wong. Heuristic evaluation for games. In CHI, CHI ’08, page

1453, New York, New York, USA, 2008. ACM Press.
14. M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation

learning: the RPROP algorithm. IEEE, 1993.
15. V. Sundstedt, E. Stavrakis, M. Wimmer, and E. Reinhard. A psychophysical study

of fixation behavior in a computer game. In Symposium on Applied perception in

graphics and visualization, pages 43–50. ACM, 2008.
16. C. Ware and S. Osborne. Exploration and virtual camera control in virtual three

dimensional environments. ACM SIGGRAPH, 24(2):175–183, 1990.
17. G. Yannakakis, H. Martinez, and A. Jhala. Towards Affective Camera Control in

Games. User Modeling and User-Adapted Interaction, 2010.
18. A. L. Yarbus. Eye movements and vision. Plenum press, 1967.


