
Section of Data Science
Machine Learning Research Group

PHD THESIS

Learning and Combinatorial Optimization for
Efficient Container Vessel Stowage Planning

Author:
Jaike van Twiller

Supervisor:
Rune Møller Jensen

Co-Supervisor:
Djordje Grbic

Submitted on
April 7, 2025

Imprint

Project: PhD Thesis
Title: Learning and Combinatorial Optimization for

Efficient Container Vessel Stowage Planning
Author: Jaike van Twiller
Abstract Translation: Rune Møller Jensen
Date: April 7, 2025
Copyright: IT University of Copenhagen

Supervisor:
Rune Møller Jensen
IT University of Copenhagen
Email: rmj@itu.dk

Co-Supervisor:
Djordje Grbic
IT University of Copenhagen
Email: djgr@itu.dk

mailto:rmj@itu.dk
mailto:djgr@itu.dk

iii

iv

v

Acknowledgements

This thesis marks the end of a long journey, and there are many people without
whom I wouldn’t have made it here.

First and foremost, I would like to express my deepest gratitude to my supervisor,
Rune Møller Jensen, for his invaluable guidance and encouragement throughout this
research journey. His expertise in stowage planning and combinatorial optimization,
along with his constructive and insightful feedback, has been instrumental in shap-
ing this thesis.

I am also sincerely grateful to my co-supervisor, Djordje Grbic, who guided me
through the world of machine learning and was consistently generous with his time
— always open to questions, thoughtful discussions and taking the time for feed-
back.

My heartfelt thanks go to the members of my PhD committee—Andrzej Wąsowski,
Trine Krogh Boomsma, and Emma Frejinger—for your time and dedication, critical
insights, and thoughtful feedback throughout this process.

I would also like to acknowledge my mentors during my research stay at HEC Mon-
tréal, Erick Delage and Yossiri Adulyasak. Your hospitality expertise in data-driven
decision-making and all the insightful discussions made the visit a valuable and en-
riching part of my PhD experience.

Additionally, a big thanks to all collaborators on various articles for your sharp ideas
and enjoyable teamwork. Especially to Aga, with whom I shared the majority of this
PhD journey—thank you for all the good talks and mutual support.

Special thanks to my colleagues in the Data Science section and at ITU for the stim-
ulating discussions, warm welcome, and all the enjoyable moments we shared.

To my fellow PhD Club committee members—Laura, Kasper, Kai, Meisam, and
Camilla—thank you for fostering such a supportive and motivating environment.
Our efforts in building a sense of community among PhD students has left a lasting
impact on my experience.

Furthermore, I am truly grateful to my friends for your unwavering support, hu-
mor, and help in escaping the world of academia when needed. In particular, Frans
and Michel, for your feedback, insights, and perspective—your presence has been a
constant source of strength.

Last but certainly not least, I am deeply thankful to my family and my significant
other, Anna, for your unconditional love, patience, and belief in me. Your support
has been the foundation upon which I’ve built this journey.

vi

vii

Abstract

Container shipping plays an essential role in the global transportation of interna-
tionally traded goods, making it a crucial component of the world economy. Due
to the large volume of cargo moved by each vessel, container shipping is also one
of the most environmentally friendly modes of transport, resulting in significantly
lower emissions per tonne of cargo per kilometer compared to alternatives.

A key operational challenge in container shipping is deciding how to efficiently
place containers onto vessels, a task known as stowage planning. This task is critical
yet challenging, involving many factors and constraints that interact in combina-
tionally difficult ways. Due to its complexity, stowage planning is usually split into
two phases: (1) the master planning problem (MPP), which broadly determines how
containers are grouped and placed onboard, and (2) the slot planning problem (SPP),
which assigns individual containers to specific slots.

This PhD research explores how advanced techniques from combinatorial optimiza-
tion (CO) and machine learning (ML) can accelerate decision-making for stowage
planning, especially at the master planning level. The goal is to develop efficient and
practical solutions that bridge the gap between theoretical models and real-world in-
dustry needs, leading to faster and better planning decisions that result in reliable
and efficient supply chains with implications for global trade and environmental
sustainability.

The research comprises four main contributions: (1) a comprehensive literature re-
view, (2) novel problem formulations of the MPP, (3) scalable CO and ML-based
solutions methods, (4) theoretical analysis on computational complexity and math-
ematical soundness.

First, a literature review classifies the single-port and multi-port container stowage
planning problem (CSPP), highlighting key issues such as oversimplified problem
formulations and limited industrial validation. A research agenda is proposed to
address challenges, such as the need for scalable algorithms to solve realistic prob-
lem definitions on benchmark instances, with particular attention to the MPP.

Second, building on these insights, novel problem formulations are provided in the
form of a 0-1 integer program (IP) model that searches in the space of valid paired
block stowage and a Markov decision process and its extension that both decompose
the decision process into sequential steps. Furthermore, this thesis includes paired
block stowage patterns and demand uncertainty in the MPP, which are features to
consider in the MPP.

Third, the findings indicate that the 0-1 IP model outperforms a traditional mixed-
integer programming (MIP) model in terms of optimality and runtime. Regardless,
larger problem instances require more than 10 minutes to solve, which is considered

viii

intractable given the dynamic nature of stowage planning. In contrast, the MDPs ad-
dressed by deep reinforcement learning (DRL) can construct solutions for the MPP
within this timeframe. However, the MDPs do not offer guarantees on optimality
and feasibility, which need to be learned through extensive training. Especially on
feasibility, it is shown that differentiable projection layers are needed to ensure fea-
sibility, while alternatives as reward scaling and feasibility regularization can work
but are hard to balance with other objectives. In the case of specific non-convex con-
straints, action masking in combination with feasibility projection can be applied.

Fourth, this thesis shows that searching in the space of valid block stowage pattern
is an NP-hard task but also demonstrates how a differentiable projection layer based
on violation gradients can minimize the violations of convex inequality constraints.

This research advances both theory and practice in stowage planning by introduc-
ing scalable optimization techniques. It highlights the value of improved problem
formulations and learning-based heuristics for real-world planning problems. These
contributions show how decision-support systems can be enhanced, paving the way
for more resilient and efficient container shipping.

ix

x

xi

Resumé

Containershipping spiller en væsentlig rolle i den globale transport af handelsvarer
og er dermed en afgørende faktor i verdensøkonomien. På grund af den store
mængde gods, der transporteres af hvert skib, er containershipping også en af de
mest miljøvenlige transportformer med betydeligt lavere emissioner pr. ton gods pr.
kilometer end alternativer.

En vigtig driftsudfordring inden for containershipping er at beslutte, hvordan con-
tainere effektivt placeres på skibe. Dette kaldes stuvningsplanlægning. Stuvnings-
planlægning er et kritisk og vanskeligt optimeringsproblem. Det involverer mange
faktorer og begrænsninger, der interagerer kombinatorisk. På grund af dets kom-
pleksitet er stuvningsplanlægning normalt opdelt i to faser: (1) the master planning
problem (MPP), som i vid udstrækning bestemmer, hvordan containere grupperes
og placeres ombord, og (2) the slot planning problem (SPP), som tildeler individuelle
containere til bestemte positioner på skibet.

Denne ph.d.-afhandling undersøger, hvordan avancerede metoder inden for kom-
binatorisk optimering (CO) og machine learning (ML) kan anvendes til stuvnings-
planlægning, især i forhold til master planning. Målet er at udvikle effektive og
praktiske løsninger, der bygger bro mellem teoretiske modeller og industriens be-
hov for hermed at opnå hurtigere og bedre planlægningsbeslutninger, der resulterer
i mere effektive og bæredygtige forsyningskæder i den globale handel.

Forskningen har fire hovedbidrag: (1) en omfattende litteraturgennemgang, (2) nye
problemformuleringer af MPP, (3) skalerbare CO- og ML-baserede løsningsmetoder,
(4) teoretisk analyse af beregningsmæssig kompleksitet og matematisk korrekthed.

Med hensyn til (1) klassificerer en litteraturgennemgang stuvningsproblemet i forhold
til stuvning i en enkelt og flere havne (CSPP) og fremhæver problemstillinger så-
som overforenklede problemformuleringer og begrænset industriel validering. Der
foreslås en forskningsagenda for at tackle udfordringer såsom behovet for skalerbare
algoritmer til at løse realistiske MPP instanser.

På denne baggrund bidrager (2) med nye problemformuleringer i form af et 0-1
heltalsprogram (IP), der søger i et rum af gyldige paired block stuvninger, og en
Markov-beslutningsproces (MDP) og dens udvidelse, der begge nedbryder beslut-
ningsprocessen i sekventielle trin. Desuden inkluderes paired block stuvningsmøn-
stre og efterspørgselsusikkerhed i MPP’en.

Med hensyn til (3) indikerer resultaterne, at 0-1 IP-modellen overgår en traditionel
MIP-model (Mixed-Integer Programming) med hensyn til optimalitet og kørselstid.
Uanset hvad kræver større probleminstanser mere end 10 minutter at løse, hvilket er
lang tid for mange praktiske anvendelser. I modsætning hertil kan MDP’erne løses
a deep reinforcement learning (DRL) inden for denne tidsramme. DRL metoderne

xii

garanterer dog ikke optimalitet og korrekthed. Især med hensyn til korrekthed er
det nødvendigt at anvende differentierbare projektionslag, mens alternativer som
belønningsskalering og korrekthedsregulering kan fungere, men er svære at bal-
ancere i forhold til andre mål. I tilfælde af specifikke ikke-konvekse begrænsninger
kan der anvendes maskering i kombination med projektion.

Med hensyn til (4) viser denne afhandling, at søgning i et rum med gyldig block
stuvning er NP-hårdt. Et differentierbart projektionslag baseret på overtrædelses-
gradienter kan dog minimere overtrædelserne af konvekse ulighedsbegrænsninger.

Denne afhandling fremmer både teori og praksis inden for stuvningsplanlægning
ved at introducere skalerbare optimeringsteknikker. Den fremhæver værdien af
forbedrede problemformuleringer og læringsbaserede heuristikker for planlægn-
ingsproblemer i den virkelige verden. Disse bidrag viser, hvordan beslutningsstøttesys-
temer kan forbedres og bane vejen for en mere modstandsdygtig og effektiv contain-
ertransport.

xiii

xiv

xv

Samenvatting

Containervervoer speelt een essentiële rol in het wereldwijde transport van interna-
tionaal verhandelde goederen en vormt daarmee een cruciale schakel in de werelde-
conomie. Door de grote hoeveelheden vracht die per schip vervoerd worden, is het
ook een van de meest milieuvriendelijke transportmethoden, met aanzienlijk lagere
emissies per ton vracht per kilometer dan alternatieve vervoerswijzen.

Een belangrijke operationele uitdaging in het containervervoer is het efficiënt plaat-
sen van containers aan boord van schepen, een taak die bekend staat als stuwage-
planning. Deze taak is cruciaal maar uitdagend vanwege de vele factoren en restric-
ties die op combinatorisch complexe wijze met elkaar interageren. Door deze com-
plexiteit wordt stuwageplanning meestal opgesplitst in twee fasen: (1) het meester
planning probleem (MPP), dat bepaalt hoe containers in grote lijnen worden gegroepeerd
en geplaatst, en (2) het stuwlocatie planning probleem (SPP), dat individuele containers
aan specifieke posities toewijst.

Dit promotieonderzoek onderzoekt hoe geavanceerde technieken uit combinatorische
optimalisatie (CO) en machine learning (ML) het beslissingsproces voor stuwage-
planning kunnen versnellen, met name op het niveau van masterplanning. Het doel
is om efficiënte en praktische oplossingen te ontwikkelen die de kloof tussen the-
oretische modellen en werkelijke industriële behoeften overbruggen. Dit leidt tot
snellere en betere planningsbeslissingen, met als resultaat betrouwbare en efficiënte
toeleveringsketens met positieve gevolgen voor wereldhandel en duurzaamheid.

Het onderzoek bestaat uit vier hoofdonderdelen: (1) een uitgebreide literatuurstudie,
(2) nieuwe probleemformuleringen van het MPP, (3) schaalbare oplossingsmetho-
den gebaseerd op CO en ML, en (4) theoretische analyses omtrent computationele
complexiteit en wiskundige onderbouwing.

Ten eerste classificeert de literatuurstudie het enkel-haven en multi-haven container
stuwage planning probleem (CSPP), en benoemt belangrijke knelpunten zoals te
simplistische probleemformuleringen en beperkte industriële validatie. Een onder-
zoeksagenda wordt voorgesteld om uitdagingen aan te pakken, waaronder de be-
hoefte aan schaalbare algoritmes die realistische probleemdefinities op referentie-
instanties kunnen oplossen, met bijzondere aandacht voor het MPP.

Ten tweede worden, op basis van deze inzichten, nieuwe probleemformuleringen
gepresenteerd in de vorm van een 0-1 geheeltallig programmeringsmodel (IP) dat
zoekt in de ruimte van geldige stuwage in gekoppelde blokken, en een Markov
beslissingsproces (MDP) en diens uitbreiding die het beslissingsproces opsplitst in
sequentiële stappen. Verder bevat dit proefschrift stuwage patronen in gekoppelde
blokken en vraagonzekerheid als elementen van het MPP.

xvi

Ten derde tonen de resultaten aan dat het 0-1 IP-model beter presteert dan een tra-
ditioneel gemengd geheelgetallig programmingsmodel (MIP) op het vlak van opti-
maliteit en rekentijd. Toch blijken grotere probleeminstanties meer dan 10 minuten
nodig te hebben om op te lossen, wat als niet toelaatbaar wordt beschouwd gezien
de dynamiek van stuwageplanning. Daarentegen kunnen de MDP’s, opgelost via
deep reinforcement learning (DRL), binnen deze tijdslimiet oplossingen genereren
voor het MPP. Echter, MDP’s bieden geen garanties op optimaliteit en haalbaarheid,
wat via intensieve training moet worden geleerd. Met name voor haalbaarheid bli-
jkt dat differentiabele projectielagen nodig zijn om deze te waarborgen, terwijl alter-
natieven zoals het schalen van belongen en het regulariseren van haalbaarheid ook
kunnen werken, maar moeilijk in balans te brengen zijn met andere doelstellingen.
In het geval van specifieke niet-convexe restricties kan actie-maskering in combi-
natie met haalbaarheidsprojectie worden toegepast.

Ten vierde toont dit proefschrift aan dat zoeken in de rruimte van geldige stuwagepa-
tronen in gekoppelde blokken een NP-moeilijke taak is, maar ook hoe een differ-
entiabele projectielaag gebaseerd op schedingen van gradiënten kan helpen bij het
minimaliseren van schendingen van convexe haalbaarheid regios.

Dit onderzoek levert zowel theoretische als praktische bijdragen aan stuwageplan-
ning door schaalbare optimalisatietechnieken te introduceren. Het onderstreept het
belang van verbeterde probleemformuleringen en leergestuurde heuristieken voor
realistische planningsproblemen. Deze bijdragen tonen aan hoe beslissingsonderste-
unende systemen kunnen worden versterkt, en effenen het pad naar een veerkrachtigere
en efficiëntere containervaart.

xvii

xviii

xix

Contents

Acknowledgements v

Abstract vii

Resumé xi

Samenvatting xv

Contents xix

List of Figures xxv

List of Tables xxvii

List of Abbreviations xxix

1 Introduction 2
1.1 Research Motivation . 2
1.2 Thesis Statement . 4
1.3 Thesis Contributions . 4
1.4 List of Publications and Dissemination 6
1.5 Thesis Outline . 8

2 Background 10
2.1 Containers . 10
2.2 Vessel Characteristics . 11
2.3 Liner Shipping Business . 14

2.3.1 Service Network and Voyage . 14
2.3.2 Fleet Management . 15
2.3.3 Uptake Management . 15
2.3.4 Cargo Flow Management . 15
2.3.5 Stowage Planning . 15

2.4 Supply Chain . 16
2.4.1 Hinterland Transport . 16
2.4.2 Container Terminal and Yard Management 16
2.4.3 Berth Allocation . 17
2.4.4 Quay Crane Scheduling . 17
2.4.5 Stowage Planning . 18
2.4.6 Load Sequencing . 18
2.4.7 Vessel Sailing . 18
2.4.8 Discharge Sequencing . 18
2.4.9 Hinterland Transport . 19

xx

3 Preliminaries 22
3.1 Foundations of Combinatorial Optimization 22

3.1.1 Definitions . 22
3.1.2 Applications . 24
3.1.3 Solution Methods . 24
3.1.4 Challenges and Limitations . 27

3.2 Introduction to Machine Learning . 27
3.2.1 Definitions . 27
3.2.2 Applications . 29
3.2.3 Solution Methods . 30
3.2.4 Challenges and Limitations . 32

3.3 Fundamentals of Reinforcement Learning 32
3.3.1 Definitions . 32
3.3.2 Applications . 35
3.3.3 Solution Methods . 35
3.3.4 Challenges and Limitations . 39

4 Literature Review 42
4.1 Introduction . 42
4.2 Container Stowage Planning Problem 43
4.3 Classification Scheme . 47
4.4 Literature Review . 49

4.4.1 k-Shift and Related Problems . 50
4.4.2 Multi-Port Container Stowage Planning 51

Master Planning . 54
Slot Planning . 60

4.4.3 Single-Port Container Stowage Planning 64
4.4.4 Computational Complexity . 65
4.4.5 Other Relevant Publications . 66

4.5 Research Agenda . 67
4.5.1 Representation Challenge . 67
4.5.2 Solution Methods . 68
4.5.3 Future Work . 68

k-Shift and Related Problems . 70
Multi-Port Container Stowage Planning 70
Single-Port Container Stowage Planning 71

4.6 Conclusion . 72

5 Integer Programming Model 74
5.1 Introduction . 74
5.2 Related Work . 75
5.3 Mathematical Programming Models of the MPP 76

5.3.1 Definitions and Assumptions . 77
5.3.2 Allocation Planning Model . 77
5.3.3 Template Planning Model . 81
5.3.4 Template Planning is NP-hard 82

5.4 Results . 83
5.5 Conclusion . 85

6 Exploring Deep Reinforcement Learning 88
6.1 Introduction . 88

xxi

6.2 Related Work . 89
6.3 Problem Formulation of Master Bay Planning Problem 90

6.3.1 MIP Model of the MBPP . 91
6.4 Solving MBPP with Reinforcement Learning 92

6.4.1 Proximal Policy Optimization Architecture 93
6.4.2 Hyperparameter Tuning . 95

6.5 Results . 96
6.6 Conclusion . 98

7 Deep Reinforcement Learning under Uncertainty 100
7.1 Introduction . 100
7.2 Definitions and Notation . 102
7.3 Related Work . 102
7.4 Markov Decision Processes . 103

7.4.1 Formal MDP . 103
7.4.2 Decomposed MDP . 105

7.5 Proposed Architecture . 105
7.5.1 Encoder-Decoder Model . 106
7.5.2 Feasibility Regularization in Actor-Critic Loss 107
7.5.3 Feasibility Layers . 108

7.6 Experimental Results . 109
7.6.1 Experimental Setup . 109
7.6.2 Policy Performance . 110
7.6.3 Managerial Insights . 112

7.7 Conclusion and Future Directions . 112

8 Deep Reinforcement Learning under Uncertainty at Scale 114
8.1 Introduction . 114
8.2 Related Work . 116

8.2.1 Container Stowage Planning . 116
8.2.2 Stochastic Programming . 117
8.2.3 Machine Learning for Optimization Problems 118

8.3 Problem Formulation . 119
8.4 Deep Reinforcement Learning Framework 124

8.4.1 Formal Markov Decision Process 124
8.4.2 Decomposed Markov Decision Process 126
8.4.3 Proposed Architecture . 126

Encoder-Decoder Model . 127
Feasibility Mechanisms . 129
Deep Reinforcement Learning Implementation 131

8.5 Experimental Results . 132
8.5.1 Experimental Setup . 132
8.5.2 Policy Performance . 133
8.5.3 Ablation Study . 135
8.5.4 Managerial Insights . 135

8.6 Conclusion . 138

9 Conclusion and Future Directions 140
9.1 Conclusion . 140
9.2 Discussion . 141
9.3 Ethical Considerations . 143

xxii

9.4 Future Directions . 143

Bibliography 146

A Appendices of Literature Review 161
A.1 Experimental Results of Multi-Port Planning 161
A.2 Network-Flow Model . 162

B Appendices of DRL under Uncertainty 164
B.1 MDP of Master Planning Problem . 164

B.1.1 Sets and Parameters . 164
B.1.2 Formal MDP . 165

Feasible Region . 165
B.1.3 Decomposed MDP . 166

Transitions . 166
Feasible Region . 167
Substituting Load Operations for Actions 168
Feasible Region for Actions . 168

B.1.4 MPP Constraints . 168
Demand Constraints . 169
Capacity Constraints . 169
Stability Constraints . 169

B.1.5 Auxiliary Variables . 170
B.2 Feasibility Mechanisms . 171

B.2.1 Log Probability Adjustments . 171
Weighted Scaling Projection Layer. 171
Violation Projection Layer. 172
Policy Clipping . 173

B.2.2 Violation Projection Layer . 173
B.3 Instance Generator . 175
B.4 Multi-Stage Stochastic MIP . 176

B.4.1 Multi-Stage Scenario Tree . 176
B.4.2 MIP Formulation . 176

B.5 Deep RL Implementation Details . 178
B.5.1 PPO Algorithm . 178
B.5.2 SAC Algorithm . 179
B.5.3 Hyperparameters . 180
B.5.4 Additional Experiments . 180

C Appendices of DRL under Uncertainty at Scale 184
C.1 MPP Parameters . 184
C.2 Instance Generator . 184
C.3 Implementation Details of AI2STOW . 185

C.3.1 SAC Algorithm . 185
C.3.2 Projection Layers . 187

Violation Projection . 187
Policy Clipping . 189
Convex Program Layer . 189

C.3.3 Hyperparameters . 190
C.4 Additional Experiments . 190

xxiii

xxiv

xxv

List of Figures

1.1 Trend of global container volumes . 3

2.1 Dimensions of 40DC container . 11
2.2 Container vessel layout with coordinate system 12
2.3 Trend of largest container ships in TEU capacity 13
2.4 Container vessel voyage . 14
2.5 Layout of yard and quay areas in a container terminal 17

4.1 Vessel side view and stress force graph 44
4.2 Vessel bay front view . 44
4.3 Metacentric height (GM). 46
4.4 Hierarchical decomposition of stowage planning 50
4.5 Execution time over number of ports analysis 54
4.6 Illustration of common TCG calculation error 68
4.7 Synthesis of solution methods used in sub-problems of CSPP 69

6.1 Overview of master bay planning MDP 94
6.2 Training performance metrics on Gaus-MBPP instances 97

7.1 Deep reinforcement learning architecture with feasibility projection . . 106
7.2 Layers of the encoder and the actor-critic decoder 107
7.3 Sensitivity analysis of scenario size and demand spread 113

8.1 Hierarchical decomposition of stowage planning 117
8.2 Deep reinforcement learning architecture with feasibility projection . . 127
8.3 Layers of the encoder and the actor-critic decoder 128
8.4 Sensitivity analysis across scenario size and distribution shift 137

C.1 Simulated demand for NP = 4 by instance generator 186
C.2 Simulated demand for NP = 5 by instance generator 186
C.3 Simulated demand for NP = 6 by instance generator 186

xxvi

xxvii

List of Tables

4.1 Classification scheme . 48
4.2 Experimental results of exact methods for the k-shift problem 52
4.3 Classification of multi-port container stowage planning problems . . . 53
4.4 Classification of master planning problems 54
4.5 Common sets for the MPP . 55
4.6 Common parameters of the MPP . 55
4.7 Runtime comparison of relaxed MPP models without stability 58
4.8 Runtime comparison of MPP models without stability 59
4.9 Aggregated results of relaxed assignment model to complete problem 59
4.10 Aggregated results of assignment model to complete problem 60
4.11 Classification of slot planning problems 60
4.12 Slot planning methods summary . 63
4.13 Classification of single-port container stowage planning 65

5.1 Sets of the MPP . 78
5.2 Parameters of the MPP . 78
5.3 Summary metrics of vessels . 83
5.4 Summary metrics of instances . 83
5.5 Experimental comparison allocation and template model 84
5.6 Experimental comparison of expected objective values 85

6.1 Experimental comparison between PPO and MIP 98

7.1 Experimental results comparing DRL methods with baselines 111

8.1 Sets of the MPP . 120
8.2 Parameters of the MPP . 120
8.3 Decision variables of the MPP . 122
8.4 Experimental results comparing the AI2STOW with baselines 134
8.5 Ablation study of AI2STOW components 135

A.1 Multi-port planning reported results . 161

B.1 Feasibility mechanisms and relation to constraints 171
B.2 Environment parameters . 181
B.3 Hyperparameters for projected and vanilla PPO and SAC 182
B.4 Evaluation of tuning feasibility regularization hyperparameter 183

C.1 MPP parameters . 184
C.2 Hyperparameters AI2STOW . 190
C.3 Evaluation of memory use scenario tree stochastic MIP model 191

xxviii

xxix

List of Abbreviations

AC Actor critic
AGV Automated guided vehicle
AI Artificial intelligence
AM Attention model
AM-P Projected attention model
B&B Branch-and-bound
BM Bending moment
BS Block stowage
BW Ballast water
CI Crane intensity
CNN Convolutional neural network
CO Combinatorial optimization
CP Constraint programming
CPU Central Processing Unit
CSPP Container stowage planning problem
CV Coefficient of variation
DC Dry containers
DG Dangerous goods
DP Dynamic programming
DRL Deep reinforcement learning
DWT Dead weight tonnage
FF Feedforward layer
FFN Feedforward network
FR Feasibility regularization
ft Feet
FT Fuel tanks
GA Genetic algorithm
GAE Generalized advantage estimation
GPU Graphics Processing Unit
GM Metacentric height
HC Highcubes
HO Hatch overstowage
IMDG International maritime dangerous goods
IMO International Maritime Organization
in Inches
IP Integer programming
JSSP Job shop scheduling problem
LCG Longitudinal center of gravity
LNS Large neighborhood search
LOS Line of sight
LWT Lightship weight
MAE Mean absolute error

xxx

MBPP Master bay planning problem
MC Monte Carlo
MDP Markov decision process
MHA Multi-head attention
MIP Mixed integer programming
ML Machine learning
MLP Multi-layer perceptron
MPP Master planning problem
MSE Mean squared error
NN Neural network
NP Nondeterministic polynomial-time
OOG Out-of-gauge
OR Operations research
P Polynomial-time
PBS Paired block stowage
PC Policy clipping
PG Policy gradients
POD Port-of-discharge
POL Port-of-load
PPO Proximal policy optimization
RL Reinforcement learning
RNN Recurrent neural network
ROB Remaining onboard
SA Self-attention
SAC Soft actor critic
SF Sheer force
SGD Stochastic gradient descent
SL Supervised learning
SMIP Stochastic mixed integer programming
SPP Slot planning problem
SSL Semi-supervised learning
TCG Transversal center of gravity
TD Temporal difference
TEU Twenty-foot equivalent units
TSP Travelling salesperson problem
UL Unsupervised learning
VCG Vertical center of gravity
VP Violation projection
VRP Vehicle routing problem
WB Ballast water tanks
WS Weighted scaling

List of Abbreviations 1

2

Chapter 1

Introduction

This chapter sets the stage for the thesis by introducing the motivation of the re-
search. Subsequently, it provides a thesis statement with the research objectives,
summarizes the contributions of this dissertation, and lists relevant publications and
research dissemination. Finally, it outlines the thesis structure to guide the reader
through the upcoming chapters.

1.1 Research Motivation

Over the past 70 years, container shipping has transformed from a small-scale, labor-
intensive operation into a highly efficient system that underpins global trade and
modern consumerism [104]. The breakthrough came in 1956 when Malcolm McLean
refitted a tanker vessel to carry 58 containers on a voyage from Newark, New Jersey,
to Houston, Texas. Beyond refitting the vessel, McLean invented the modern stan-
dardized container and developed the automation processes for handling cargo in
port operations. Both innovations drastically reduced cargo handling costs, spark-
ing the container revolution and reshaping the global logistics landscape [133].

Ever since, global container volumes have continuously increased, reflecting the
growing reliance on this mode of transportation for international trade [209], as
shown in Figure 1.1. In recent years, container shipping was responsible for trans-
porting approximately 45% of annual goods, valued at $8.1 trillion [215], cementing
its status as a cornerstone of the global supply chain. Despite its critical role, many
individuals are unaware of the range of essential goods carried by container vessels,
including but not limited to medicine, medical equipment, food supplies, electron-
ics, clothing, industrial machinery, automotive parts, and key raw materials [104].
Without the support of container shipping, our world would be unrecognizable, as
it serves as the backbone of modern commerce and daily life.

Despite being a critical service in our modern world, container shipping has a signifi-
cant environmental impact, with annual CO2 emissions reaching 204 million tonnes
[138, 201]. To put this into perspective, the average person in Denmark emits 6.9
tonnes of CO2 annually, making the total emissions from container shipping equiv-
alent to those of 29.5 million people, exceeding the combined population of Scan-
dinavia estimated at 28 million. However, container vessels are considered an en-
vironmentally friendly mode of transport due to their relatively low emissions per
tonne of cargo transported. This efficiency is largely attributed to the scale of the
vessels, which allows for significant emission savings. Consequently, improved uti-
lization of vessel capacity enables the transportation of greater cargo volumes on

1.1. Research Motivation 3

2010 2012 2014 2016 2018 2020 2022
0

200

400

600

800

1,000

Years

Vo
lu

m
e

in
M

ill
io

n
TE

U
s

FIGURE 1.1: Trend of global container volumes [216]

existing voyages, further reducing environmental impact. Recognizing this poten-
tial, the European Commission has identified container shipping as a key player in
the global green transition [67].

Container shipping involves multiple interconnected planning problems, such as
pre-marshalling [87], berth allocation [146], quay crane scheduling [83], and con-
tainer vessel stowage planning [160]. Each planning problem addresses a specific
aspect of the container shipping supply chain, sharing similar yet distinct charac-
teristics and complexities. Moreover, the solutions to these problems are intercon-
nected, with the output of one often serving as an input or influence for another. The
details of this supply chain will be discussed in Chapter 2. Furthermore, these plan-
ning problems are traditionally modeled as combinatorial optimization (CO) prob-
lems, characterized by an objective function and a set of hard constraints. While CO
methods are well-suited for handling constraints, they often face challenges in scal-
ing efficiently when dealing with large problem sizes or highly complex constraint
structures.

Due to its myriad combinatorial aspects and large scale, the container stowage plan-
ning problem (CSPP) is arguably one of the most complex interconnected planning
problems. The main objective is to assign container cargo to available vessel capac-
ity while maximizing cargo revenue and minimizing operational costs, subject to
many combinatorial aspects such as capacity limits, seaworthiness rules, port ter-
minal availability, stowage rules, planning strategies and demand uncertainty [104].
In this mix of combinatorial aspects, we have at least one NP-hard aspect [18, 211],
while other aspects are yet to be analyzed. The existing literature exhibits signifi-
cant variability in problem formulations, assumptions, and solution methods, com-
pounded by the scarcity of publicly available data [7, 160, 130]. This suggests addi-
tional work is needed to advance the field of stowage optimization.

The CSPP solution provides decision support to human planners overseeing the
planning of container vessel voyages. This planning process can extend over sev-
eral weeks, particularly for long-haul routes such as the 30- to 45-day journey from
Asia to Europe. As vessels approach ports, planners receive additional container
bookings. However, the absence of a no-show penalty for container bookings in-
troduces uncertainty regarding the arrival of booked containers. This uncertainty
gradually diminishes and is fully resolved by a predefined cut-off time at the port,

4 Chapter 1. Introduction

beyond which late cargo is rejected. Consequently, the human planner must dynam-
ically update the stowage plan as new information becomes available. To support
this process, decision-support systems must operate with relatively short runtimes
to accommodate frequent updates and ensure efficient planning.

Current decision-support systems are limited by their inability to generate realis-
tic solutions to the CSPP. Consequently, stowage planning heavily depends on hu-
man expertise to produce adequate plans, often leading to suboptimal outcomes
in terms of profitability and sustainability. This reliance highlights a significant re-
search gap as human-led planning struggles to account for the intricate complexities
of the CSPP. Given the critical role of efficient stowage planning in global supply
chains, there is an urgent need for advanced decision-support systems capable of
addressing these challenges and enhancing efficient decision-making.

In recent years, machine learning (ML) has been increasingly applied to CO prob-
lems, giving rise to the subfield of ML4CO [27]. ML4CO enhances traditional CO
methods by either integrating with them to improve efficiency or replacing them
entirely in certain applications. Key strategies include learning-based heuristics for
faster approximations, guided search to prioritize promising solutions, and end-to-
end learning for direct problem-solving. While ML4CO has demonstrated promis-
ing results in improving decision-making for CO problems, it still faces challenges
such as generalization across problem instances, data requirements, and computa-
tional efficiency. Despite these hurdles, ML4CO holds significant potential for ad-
vancing decision-support systems in stowage planning, offering more adaptive and
scalable solutions for this complex, large-scale optimization problem.

1.2 Thesis Statement

The primary objective of this PhD thesis is to support decision-making in stowage
planning by exploring scalable solution methods in ML and CO in order to generate
solutions to (subproblems of) the CSPP efficiently.

To achieve the primary objective, the thesis has the following sub-objectives:

1. Investigate the existing literature on stowage planning to explore current solu-
tion approaches and identify research gaps.

2. Develop novel problem formulations for (sub)problems of the CSPP to lever-
age mathematical modeling techniques from ML and CO to enhance efficiency.

3. Compare ML- and CO-based solution methods on synthetic and real-world
data to evaluate optimality, efficiency, and feasibility.

4. Examine the theoretical properties of the proposed formulations and solution
methods to understand computational complexity and guarantee mathemati-
cal soundness.

1.3 Thesis Contributions

This thesis presents several contributions to stowage optimization and ML4CO. The
key contributions are summarized below.

1.3. Thesis Contributions 5

• In the article [221], we conducted a comprehensive literature review on con-
tainer vessel stowage planning. In particular:

– We introduce a classification scheme to analyze single-port and multi-
port CSPPs. We also examine the hierarchical decomposition of CSPPs
into master and slot planning problems.

– We highlight the limited number of publications in this field and identify
key challenges in assessing the industrial applicability of existing solution
methods due to oversimplified problem formulations.

– We propose a research agenda that advocates for more representative
problem definitions and the development of new benchmark instances
where necessary.

• In the article [220], we propose a novel 0-1 integer program (IP) for the master
planning problem (MPP) that searches within the space of valid paired block
stowage patterns, named template planning. Specifically:

– The model introduces a novel integration of paired block stowage while
ensuring sufficient vessel capacity and incorporating crane makespan,
trim, and bending moment constraints.

– We show that searching for valid paired block stowage patterns is an NP-
hard component.

– Our results demonstrate that template planning outperforms traditional
allocation-based approaches in terms of optimality and runtime efficiency
while maintaining a sufficiently accurate representation of master plan-
ning constraints and objectives.

• In the article [219], we explore the application of deep reinforcement learning
(DRL) and present a proof of concept demonstrating its ability to optimize a
deterministic, small-scale yet non-trivial MPP. More precisely:

– This work is the first attempt to formulate the MPP as a Markov Decision
Process (MDP), incorporating reward-scaling to enforce constraints.

– We show that a DRL method can train a model to efficiently find reason-
able solutions, serving as preliminary evidence of the potential value of
DRL in stowage planning.

• In the article [217], we develop a DRL framework with feasibility projection
to solve the MPP under demand uncertainty with dynamic operational con-
straints, in which:

– We develop a novel MDP for MPP under demand uncertainty, incorpo-
rating problem-specific constraints. To address data scarcity, we release
the environment as an open-source implementation1.

1https://github.com/OptimalPursuit/navigating_uncertainty_in_mpp

https://github.com/OptimalPursuit/navigating_uncertainty_in_mpp

6 Chapter 1. Introduction

– We incorporate differentiable projection layers, including weighted scal-
ing, policy clipping, and violation projection, to enforce inequality con-
straint satisfaction in DRL frameworks.

– Our experiments demonstrate that our policy efficiently generates adap-
tive and feasible solutions under demand uncertainty, significantly out-
performing well-known DRL methods and a multi-stage stochastic MIP
model.

– Our decision-support policy transcends deterministic models, enabling
dynamic and uncertainty-informed planning in a critical part of the global
supply chain.

• In the article [218], we extend the DRL framework proposed in [217] to incor-
porate paired block stowage patterns and solve problem instances involving
realistic vessel sizes and practical planning horizons. Particularly:

– We extend the original MDP with blocks to include paired block stowage
patterns: an industrially relevant planning strategy often overlooked in
existing stowage planning research [221]. The extended implementation
is released in the existing open-source repository1.

– We integrate an action-masking mechanism to enforce non-convex paired
block stowage constraints in combination with projection layers to mini-
mize convex feasibility violations in the DRL framework.

– Experiments show that AI2STOW learns adaptive and feasible policies,
outperforming baselines from stochastic programming and DRL in both
objective quality and computational efficiency. The evaluation also in-
cludes a comparison of different projection layer configurations.

– AI2STOW can generalize well to larger problem instances, offering de-
cision support for a realistic-sized vessel and operational planning hori-
zons. These findings underscore the potential of DRL-based approaches
in developing scalable algorithms for stowage planning.

1.4 List of Publications and Dissemination

The contributions of this thesis have resulted in the following publications, each of
which is included as a chapter:

• Jaike van Twiller, Agnieszka Sivertsen, Dario Pacino, and Rune Møller Jensen.
2024. Literature survey on the container stowage planning problem. European Jour-
nal of Operational Research [221].

• Jaike van Twiller, Agnieszka Sivertsen, Rune Møller Jensen, and Kent H An-
dersen. 2024. An Efficient Integer Programming Model for Solving the Master Plan-
ning Problem of Container Vessel Stowage. International Conference on Compu-
tational Logistics [220].

• Jaike van Twiller, Djordje Grbic, and Rune Møller Jensen. 2023. Towards a
Deep Reinforcement Learning Model of Master Bay Stowage Planning. International

1.4. List of Publications and Dissemination 7

Conference on Computational Logistics [219].

• Jaike van Twiller, Yossiri Adulyasak, Erick Delage, Djordje Grbic, and Rune
Møller Jensen. 2025. Navigating Demand Uncertainty in Container Shipping: Deep
Reinforcement Learning for Enabling Adaptive and Feasible Master Stowage Plan-
ning. Under Review [217].

• Jaike van Twiller, Djordje Grbic, and Rune Møller Jensen. 2025. AI2STOW:
End-to-End Deep Reinforcement Learning to Construct Master Stowage Plans under
Demand Uncertainty. Under Review [218].

Additionally, a contribution is made to the following publication, which is not in-
cluded in this thesis:

• Mathias Offerlin Herup, Gustav Christian Wichmann Thiesgaard, Jaike van
Twiller, and Rune Møller Jensen. 2022. A Linear Time Algorithm for Optimal
Quay Crane Scheduling. International Conference on Computational Logistics
[83].

Furthermore, the research conducted throughout this thesis has been disseminated
at various academic conferences and workshops. The research was presented in
plenary sessions at:

• 25th DNV Nordic Maritime Universities Workshop. 2025. Deep Reinforcement
Learning for Revenue Management under Uncertainty in Master Stowage Planning
on Container Vessels. Lyngby, Denmark.

• International Conference on Computational Logistics. 2024. An Efficient Integer
Programming Model for Solving the Master Planning Problem of Container Vessel
Stowage. Monterrey, Mexico.

• European Conference on Operational Research. 2024. An End-to-End Deep Re-
inforcement Learning Model for Master Stowage Planning on Container Vessels. Lyn-
gby, Denmark.

• Odysseus Workshop. 2024. Deep Reinforcement Learning for Master Bay Stowage
Planning. Carmona, Spain.

• Journées d’Optimzation. 2024. An End-to-End Deep Reinforcement Learning
Model for Master Stowage Planning on Container Vessels. Montréal, Canada.

• International Conference on Computational Logistics. 2023. Towards a Deep
Reinforcement Learning Model of Master Bay Stowage Planning. Berlin, Germany.

• International Conference on Computational Logistics. 2022. Deep Reinforce-
ment Learning for Master Bay Planning on Container Vessels. Barcelona, Spain.

Another part of the research was presented in poster sessions at:

• D3A 2.0 Conference. 2024. An End-to-End Deep Reinforcement Learning Model
for Master Stowage Planning on Container Vessels. Nyborg, Denmark.

• Nordic AI Meet. 2023. Towards a Deep Reinforcement Learning Model of Master
Bay Stowage Planning. Copenhagen, Denmark.

8 Chapter 1. Introduction

1.5 Thesis Outline

Each chapter in this dissertation is self-contained with respect to terminology, defi-
nitions, and mathematical notation. Therefore, while overlap between chapters may
exist, their specific meanings or usage could differ based on context.

The remainder of the dissertation is organized as follows:

• Chapter 2 provides background on the container shipping industry.

• Chapter 3 introduces preliminary knowledge on CO, ML and RL, essential for
understanding the remainder of the thesis.

• Chapter 4 reviews existing research on container vessel stowage planning,
identifying research gaps and proposing a unified research agenda.

• Chapter 5 proposes a 0-1 IP model for solving the MPP by searching in the
space of valid paired block stowage patterns

• Chapter 6 explores the use of DRL to solve a small-scale MPP based on reward
scaling of objectives and constraints.

• Chapter 7 develops an MDP with explicit action constraints for the MPP under
demand uncertainty, which is addressed by a DRL framework with projection
layers for action feasibility.

• Chapter 8 extends the DRL framework of Chapter 7 to include paired block
stowage and solve the MPP under demand uncertainty for a realistic-sized
vessel and operational planning horizons.

• Chapter 9 summarizes the key findings, discusses their implications, provides
some ethical considerations, and outlines future research directions in stowage
optimization.

1.5. Thesis Outline 9

10

Chapter 2

Background

This chapter provides essential background information on container shipping and
container vessel stowage planning, including:

• Container dimensions and types (Section 2.1).

• The structure and layout of container vessels (Section 2.2).

• The business of liner shipping (Section 2.3).

• The supply chain of a typical container shipment (Section 2.4).

To avoid redundancy, this will not cover the CSPP and its subproblems in detail,
which will be discussed in Chapter 4. However, some overlap with the background
sections of the articles in Chapters 4 through 7 is inevitable. For a comprehensive
overview of container vessel stowage planning, the reader is referred to [104].

2.1 Containers

All containers will adhere to ISO standards, ensuring compatibility across multiple
modes of transport and facilitating efficient (un)loading [97]. Container dimensions
are measured in imperial units—feet (ft) and inches (in). The regular lengths are 20
ft, 40 ft, and 45 ft, while typical heights are 8 ft 6 in for standard containers (DC), and 9
ft 6 in for highcube containers (HC). The width is standardized at 8 ft. Common short-
hand notations are 20DC, 20HC1, 40DC, 40HC, 45DC1, and 45HC. Figure 2.1 shows
the dimensions of a 40DC container. Most containers conform to ISO-standardized
dimensions and require no special handling. Their structure consists of corner cast-
ings connected by vertical corner posts and horizontal beams, forming a skeletal
frame. The enclosure is made of steel panels for structural integrity and protection,
while the floor is typically marine-grade plywood or steel reinforced by structural
beams. Depending on cargo needs, containers may feature fully enclosed panels for
protection or partial enclosures (e.g., open-top, ventilated) for specialized transport.

However, several containers require special handling, often referred to as specials.
One of the most prevalent specials is the refrigerated container (reefer), which must be

1These container dimensions are rarely seen in practice.

2.2. Vessel Characteristics 11

40 ft

8 ft 6 in

8 ft

FIGURE 2.1: Dimensions of 40DC container

connected to a power outlet to maintain temperature-sensitive cargo. Another spe-
cial is the out-of-gauge (OOG) container, which exceeds standard container dimen-
sions. OOG containers require specific stowage practices to ensure proper place-
ment on the vessel. Furthermore, dangerous goods are defined by the International
Maritime Dangerous Goods (IMDG) code [96]. IMDG containers are classified into
specific hazard classes, each with corresponding safety regulations. Operationally,
this means that IMDG cargo must adhere to strict segregation rules to ensure safety
onboard the vessel. Each container has a port of load (POL) and a port of discharge
(POD), also referred to as an origin-destination pair or transport. It is important to note
that containers are either loaded with cargo or empty, awaiting redistribution across
the globe. Containers can be grouped into weight classes based on their total weight.
When containers share the same dimensions, destination, special type, and weight
class, they are generally interchangeable, providing flexibility in the planning pro-
cess.

2.2 Vessel Characteristics

The structure of a container vessel is shown in Figure 2.2. The vessel’s bow, also
called the fore, is at the right-hand side of the figure, while the stern, or aft, is on
the left-hand side. The vessel’s bottom, known as the hull, has a convex shape that
enhances hydrodynamic efficiency, buoyancy, and structural integrity by reducing
resistance, optimizing load distribution, and ensuring stability in diverse conditions.
The bow also features the bulbous bow, which reduces wave resistance and improves
fuel efficiency by modifying water flow around the hull. To hold cargo, container
vessels have a cellular, grid-like structure. Each cell can accommodate one 40/45
ft container or two 20 ft containers. The position of one 20 ft container is called a
slot. A vertical arrangement of cells is called a stack. Cells are organized in a three-
dimensional coordinate system (bay, row, tier):

• Bays divide the vessel longitudinally (fore to aft).

• Rows run transversely (side to side).

• Tiers represent vertical stacking levels.

12 Chapter 2. Background

The indexing system is standardized [104]. Each bay has three possible indices: an
even index (e.g., ‘02’) for a 40 ft container or odd indices for 20 ft container slots (e.g.,
‘01’ for the fore slot and ‘03’ for the aft slot). Each tier is assigned an even number, with
below-deck tiers starting at 02 and increasing upwards, while on-deck tiers typically
start at 80 or 82 and continue in even increments. Each row is numbered relative to
the centerline (00) of the vessel. Even numbers are assigned to the port side (left),
while odd numbers are assigned to the starboard side (right), increasing outward.

40' Bay No.
39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 09 07 05 03 01 20' Bay No.

92
90
88
86
84
82

12
10
08
06
04
02

10
08
06
04
02
00
01
03
05
07
09

Row No.

WB

WB

Tier No.
Below
Deck

WB
WB

WB

26303438

Tier No.
On Deck

020610141822

WB

FT

Hatch cover Lashing bridge

(A) Side and top view

31 29

* * * * * * * * *
* * * * * * * * *

WB WB

26

W
B

W
B

Lashing
bridge

Reefer
slot

Hatch
cover

(B) Front view

FIGURE 2.2: Container vessel layout with coordinate system [221]

Moreover, on-deck and below-deck container cells are separated by hatch covers,
which provide structural support and protect the cargo hold. Consequently, the
hatch covers also limit the height of below-deck stacks. Depending on the vessel’s
size and design, each bay typically contains one to four hatch covers. When access
to below-deck containers is required, the hatch cover and all containers stacked on
top must be removed. The arrangement of containers placed either on top or under-
neath a hatch cover is named a block. Figure 2.2 also show the positions of fuel tanks
(FT) and ballast water tanks (WB).

2.2. Vessel Characteristics 13

1970 1980 1990 2000 2010 2020

5,000

10,000

15,000

20,000

25,000

Years

TE
U

C
ap

ac
it

y

FIGURE 2.3: Trend of largest container ships in TEU capacity [140]

The primary metric for measuring container vessel capacity is the Twenty-foot Equiv-
alent Unit (TEU). Figure 2.3 illustrates the evolution of the largest container ships,
with modern vessels reaching capacities of close to 25,000 TEUs. This substantial
growth over the past 50 years highlights the increasing reliance on container ship-
ping to support global trade and supply chain demands. Beyond TEU capacity,
vessels have a limited number of reefer slots with power outlets for reefers, denoted
by ∗ in Figure 2.2. Furthermore, a vessel’s total load is further constrained by its
deadweight tonnage (DWT), the combined weight of cargo, fuel, ballast water, and
provisions, alongside the structural mass of the ship named lightship weight (LWT).
These capacity metrics impact the overall vessel utilization, stability, and buoyancy.

Containers are secured onboard vessels using multiple methods to ensure safety
and stability. First, twistlocks are mechanical locking devices inserted into the cor-
ner castings of containers, securely locking containers stacked vertically. However,
twistlocks alone are insufficient to withstand the significant forces encountered at
sea. Second, below-deck containers are stabilized by vertical frames known as cell
guides, into which standard-size containers slide, providing structural support and
preventing lateral movements. Third, containers stacked on deck are secured using
lashing rods, which connect containers in the lower tiers to fixed structures known
as lashing bridges. These rods help stabilize stacks by limiting excessive movement
caused by the vessel’s motions, wind, and rough sea conditions. However, lash-
ing rods have dynamic weight limits; excessive stress due to high stacks or severe
weather conditions can compromise the overall safety.

Furthermore, stability is crucial for container vessels to safely withstand dynamic
forces experienced at sea. Due to their exceptional size, container vessels are partic-
ularly susceptible to stability concerns. Ensuring adequate stability requires careful
management of cargo distribution, ballast water, and loading conditions. Several
critical parameters influencing vessel stability include the center of gravity, which
influences metacentric height (GM) and transversal stability; vessel trim, which affects
manoeuvrability and fuel efficiency; listing, representing lateral inclination due to
uneven loading; draft, controlling the immersion depth of the vessel; and structural
forces such as shear force, bending moment and torsion moment, which affect the in-
tegrity and structural safety of the hull. Based on the current cargo load, ballast
water is used to maintain stability and optimize fuel efficiency. When lightly loaded,
ballast is added to lower the center of gravity and reduce rolling (tilting rotation

14 Chapter 2. Background

on longitudinal axis); when fully loaded, it is minimized to prevent excessive draft
(depth of the vessel below the waterline). It also helps balance uneven cargo distri-
bution to ensure stability. Ballast operations must comply with IMO regulations [93],
and modern vessels use ballast water treatment systems to minimize environmental
impact. More details on stability and ballast water are provided in Chapter 4.

2.3 Liner Shipping Business

Container carriers are typically liner shipping companies operating container vessels
on fixed schedules along established trade routes.

2.3.1 Service Network and Voyage

Liner shipping companies design and optimize their service networks to provide
reliable and cost-effective transportation solutions [37]. This involves selecting trade
routes, determining port rotations, and deciding on the service frequency. A well-
structured network ensures that vessels operate efficiently by balancing transit times
with operational costs while meeting market demand. Strategic partnerships, such
as vessel-sharing agreements and alliances, play a crucial role in expanding service
coverage and improving economies of scale. In some cases, vertical integration of
the supply chain, such as investments in inland logistics and terminal operations,
can further improve the reliability and efficiency of the service network.

In the liner shipping network, a voyage refers to a container vessel following a sched-
uled route and arriving sequentially at multiple ports, similar to a maritime bus ser-
vice. Figure 2.4 provides a graphical representation of a voyage, where nodes repre-
sent ports and arcs indicate sailing legs. At each port, containers are discharged and
(re)loaded, enabling their (trans)shipment to subsequent destinations.

FIGURE 2.4: Container vessel voyage [198]

Voyages typically originate in supply surplus regions, such as Asia, and sail toward
high-demand regions, such as Europe. A common journey from Asia to Europe takes
between 30 and 45 days. In industry terms, the fronthaul refers to the sailing leg
from loading regions to discharge regions, while the backhaul is the return leg to the
loading regions. Due to trade dynamics, the fronthaul typically carries large cargo

2.3. Liner Shipping Business 15

volumes, whereas the backhaul has lower cargo loads and a higher proportion of
empty containers. This directional flow of containers creates a global imbalance,
requiring the redistribution of empty containers to loading regions.

2.3.2 Fleet Management

Each liner shipping company operates a fleet of vessels to service its network, re-
quiring decisions about fleet management. This includes acquiring, chartering, re-
purposing and retiring vessels based on market conditions. Ultimately, liner ship-
ping must align their fleet capacity with the fluctuating global demand for container
shipments to maintain the reliability and efficiency of their services.

2.3.3 Uptake Management

Uptake management involves optimizing cargo bookings to maximize vessel capac-
ity utilization and revenue through dynamic pricing, contract management, and
real-time forecasting. Typically, long-term contracts ensure higher and less volatile
container volumes but generate lower revenue, whereas spot cargo offers lower but
more volatile volumes with the potential for higher revenue due to market-driven
pricing. Due to the lack of no-show fees, both customer types face inherent uncer-
tainty, often leading to double bookings and frequent no-shows. Carriers balance
long-term contracts with spot bookings while implementing overbooking strategies
to mitigate the effects of no-shows. Forecasting models analyze historical trends to
adjust bookings dynamically, while digital platforms provide real-time monitoring,
enabling proactive adjustments for disruptions, congestion, and schedule changes.

2.3.4 Cargo Flow Management

Cargo flow management ensures efficient container movement across the network by
coordinating vessel schedules, terminal operations, and intermodal transport to min-
imize delays and bottlenecks. Key tasks include monitoring cargo allocation, man-
aging transshipments, and balancing container repositioning to prevent equipment
shortages. A core focus is balancing global container flows to minimize reposition-
ing costs and ensure equipment availability in key regions. Digital tracking and
AI-driven analytics provide real-time visibility, enabling proactive responses to dis-
ruptions, while collaboration with ports, hinterland logistics, and alliance partners
optimizes routing and cost efficiency.

2.3.5 Stowage Planning

Throughout a voyage, stowage planners are human experts responsible for allocat-
ing containers to available slots on the vessel. Their primary objective is to ensure
the efficient and safe transportation of containers while balancing multiple objec-
tives, including maximizing cargo uptake and minimizing operational costs such as
terminal and fuel costs. Additionally, stowage plans must account for various con-
straints, including space and weight limits, hydrostatic stability requirements, lash-
ing force restrictions, the segregation of hazardous materials, and stowage stacking
rules. Moreover, factors as vessel size, voyage length with port rotations, uncertain
cargo demand, and terminal operation efficiency significantly impact stowage plan-
ning. A detailed discussion of objectives and constraints is provided in Chapter 4.

16 Chapter 2. Background

When the vessel is sailing to a port, the planner receives updated information on the
container demand. In general, the closer the vessel is to the port, the more accurate
the information. The planner must continuously revise the stowage plan in response
to these updates. To support this dynamic process, decision-support systems should
deliver results within short runtimes, ideally under 10 minutes, to handle frequent
changes and maintain efficient planning. Nonetheless, the information remains in-
herently uncertain, as cargo often does not arrive at the port before the cargo cut-off
time. This deadline is set some hours before the arrival of the vessel, which ensures
there is some time to perform a deterministic plan for the single port. To accommo-
date future uncertainty, planners utilize planning strategies, such as block stowage
patterns and maximizing available space. Block stowage involves grouping contain-
ers according to their destination ports or similar handling requirements, supporting
efficient planning, smooth terminal operations and simplified vessel stability. Maxi-
mizing available space helps planners retain flexibility, allowing them to accommodate
additional cargo or rearrange containers efficiently when unexpected changes occur.
These strategies collectively help mitigate the effects of uncertain and fluctuating
container demand.

2.4 Supply Chain

To illustrate the supply chain of container shipping, consider the following shipment
from a factory in Shenzhen, China, to a retailer in Copenhagen, Denmark.

2.4.1 Hinterland Transport

The journey begins in Shenzhen, China, where a manufacturer loads the goods into
a sealed 40 ft container. The cargo is then transported to a nearby port by hinterland
transport - the inland leg connecting the production sites to the ports. Depending
on the available infrastructure and logistics networks, this transport may involve
barges, trains, trucks, or a combination of these modes.

2.4.2 Container Terminal and Yard Management

Upon arrival at the Shenzhen port terminal, the container undergoes customs clear-
ance before being assigned a location in the yard. Figure 2.5 illustrates the layout
of the yard and quay in a typical container terminal. The yard serves as the storage
area where containers are organized based on shared characteristics, such as des-
tination, container type, or special cargo requirements, as discussed in Section 2.1.
To optimize yard utilization and efficiency, containers are often grouped and peri-
odically rearranged through a process called pre-marshalling. This helps minimize
retrieval time, reduce terminal congestion, and streamline transport to the quay
cranes. Within the yard, cranes and forklifts are responsible for moving containers,
and placing them onto trucks or automated guided vehicles (AGVs) for transport to
the quay. The quay acts as the interface between the terminal and the vessels. Often,
it is equipped with multiple quay cranes that can operate container vessels simul-
taneously. The smooth operation of quay cranes is essential for minimizing vessel
turnaround times and ensuring timely container transfer. Additional terminal com-
ponents, such as gates and rail facilities, are crucial for the efficient movement of
cargo in and out of the port. These facilities ensure that containers can be processed
quickly, maintaining a steady flow of inbound and outbound cargo. To maintain op-
erational efficiency, the terminal defines several key parameters, including berthing

2.4. Supply Chain 17

time windows, a minimum number of quay crane moves, a maximum number of
free restows, i.e., containers discharged and reloaded onto the vessel, and various
handling fees.

Yard
area

Vehicle
area

Quay
area

Vessel

Quay crane Transfer pointsYard crane Vehicles

FIGURE 2.5: Layout of yard and quay areas in a container terminal

2.4.3 Berth Allocation

As our container awaits its departure, berth allocation assigns its vessel a berth slot
at the terminal. At any time, multiple vessels can be berthed, meaning that this
planning process is crucial for reducing transport time between yard storage and
the quay cranes’ operating vessels. Arrival delays or processing time of ships might
hinder a vessel from berthing at the originally planned position.

2.4.4 Quay Crane Scheduling

Provided yard arrangements and berth allocation, quay crane scheduling determines
the number of cranes assigned to each vessel and the order of discharge and loading

18 Chapter 2. Background

operations. The schedule considers contractual agreements between the vessel op-
erator and the terminal, ensuring a minimum number of crane moves is met. Conse-
quently, the terminal plans quay cranes to operate on various berthed vessels during
the day, optimizing crane utilization and makespan.

2.4.5 Stowage Planning

A stowage plan is based on the availability of quay cranes and the vessel’s arrival
condition to assign containers to the vessel’s available capacity. This plan must com-
ply with seaworthiness and safety regulations, ensuring proper weight distribution
and vessel stability, which also affects fuel consumption. At the same time, the plan
seeks to maximize the utilization of available vessel capacity throughout the voy-
age. The stowage plan must remain flexible to accommodate demand uncertainty,
ensuring sufficient capacity for future port calls.

From a terminal perspective, stowage plans should minimize restows and the quay
crane makespan. Restows occur when containers on top of stacks block access to
containers below, necessitating their removal and reloading. This process causes
unnecessary movements of the quay crane, potentially leading to delays and addi-
tional operational costs. Efficient stowage planning also means minimizing the quay
crane makespan, i.e., the time required for the quay crane(s) to operate the vessel.
Prolonged crane operations risk exceeding the vessel’s berthing window, leading to
costly delays and terminal fees.

2.4.6 Load Sequencing

Once the vessel has berthed and the stowage plan is ready, the terminal initiates
the load sequence, moving our container to the quay crane for placement on board.
In practice, the terminal selects containers that align with the stowage plan while
considering type and weight constraints. Although minor deviations may occur,
the operational load ensures compliance with the stowage plan to prevent major
violations.

2.4.7 Vessel Sailing

Departing from Shenzhen, the vessel prioritizes fuel efficiency and navigational
safety en route to its next destination. Trim optimization reduces hydrodynamic
resistance by sailing slightly bow-down through cargo distribution and ballast ad-
justments, while slow steaming lowers speed to cut fuel consumption, costs, and
emissions. The captain generally follows the shortest route but may deviate due to
weather, piracy risks, or regulatory constraints. Weather routing leverages favorable
currents and avoids extreme conditions, while compliance with traffic separation
schemes [95] and emission control areas further influences navigation [94].

2.4.8 Discharge Sequencing

Similar to load sequencing, the quay crane discharges containers from the vessel
once berthed at the port of Hamburg, Germany. The container is placed in the ter-
minal’s stacking area, after which it undergoes customs inspections and clearance
before being released for inland transport.

2.4. Supply Chain 19

2.4.9 Hinterland Transport

The container is transported by, e.g., truck to the retailer’s distribution center in
Copenhagen, Denmark. Upon arrival, the seal is broken, and the goods are un-
packed. The empty container is returned to the port, awaiting its next journey.

20 Chapter 2. Background

2.4. Supply Chain 21

22

Chapter 3

Preliminaries

This chapter provides the reader with preliminary knowledge required for reading
this thesis, including:

• The foundations of CO (Section 3.1).

• An introduction to ML (Section 3.2).

• The fundamentals of RL (Section 3.3).

3.1 Foundations of Combinatorial Optimization

This section introduces several fundamental concepts of CO. While it does not pro-
vide a comprehensive overview, it offers essential background knowledge. Readers
seeking a detailed introduction to CO and heuristics should consult [74, 183, 228].

3.1.1 Definitions

Combinatorial optimization (CO) is a branch of mathematical optimization where
the set of feasible solutions is discrete or can be reduced to a discrete structure. For-
mally, a CO problem with constraints is defined as follows:

min
x∈X
F (x) (3.1)

subject to: Gi(x) ≤ bi, ∀i ∈ I (3.2)
Hj(x) = cj, ∀j ∈ J , (3.3)

where:

• X is a finite or countably infinite set of feasible solutions.

• F : X → R is the objective function to be optimized.

• Gi : X → R are inequality constraints with bounds bi for indices i in the set I.

• Hj : X → R are equality constraints with values cj for indices j in the set J.

3.1. Foundations of Combinatorial Optimization 23

A common class of combinatorial optimization problems is integer programming
(IP), which is formulated as:

min
x∈Zn

cTx (3.4)

subject to: Ax ≤ b, (3.5)
A ∈ Rm×n (3.6)
b ∈ Rm (3.7)
xi ∈ Z , (3.8)

where:

• x ∈ Zn is the integer decision variable vector of size n.

• c ∈ Rn is the cost coefficient vector of size n.

• A ∈ Rm×n is the constraint coefficient matrix of size m× n.

• b ∈ Rm is the constraint bound vector of size m.

• xi ∈ Z for general IPs, or xi ∈ {0, 1} for binary integer programming (0-1 IP).

Additionally, linear relaxations of IPs are often used in solution methods by allowing
x ∈ Rn. Whenever the decision variables include both integer (xi ∈ Z, xi ∈ {0, 1})
and continuous values (xi ∈ R), then a mixed integer program (MIP) is obtained.

Furthermore, the computational complexity of problems varies depending on their
specific characteristics. Complexity is often expressed in Big-O notation O(f (n)),
which describes an algorithm’s upper bound growth rate as a function f (n) of input
size n. Problems are categorized into the following complexity classes [14]:

• Polynomial-time (P): The class of decision problems that can be solved by a de-
terministic Turing machine in polynomial time. That is, there exists a constant
k such that for every instance ω ∈ I, the problem can be solved in timeO(|ω|k).

• Nondeterministic polynomial-time (NP): The class of decision problems for which
a given solution x can be verified in polynomial time by a deterministic Turing
machine. Formally, a decision problem I is in NP if there exists a polynomial-
time verifier V(ω, x) such that:

ω ∈ I ⇐⇒ ∃x such that |x| = O(poly(|ω|)) and V(ω, x) ∈ O(poly(|ω|)).
(3.9)

Here, ω ∈ I represents a problem instance, and x is a certificate (proposed
solution) whose size is polynomially bounded in the size of the input.

• NP-hard: The class of problems that are at least as hard as the hardest problems
in NP. A problem I is NP-hard if for every decision problem I′ ∈ NP, we have:

I′ ≤poly I. (3.10)

24 Chapter 3. Preliminaries

That is, there exists a polynomial-time computable function Ψ such that for
every instance ω of I′,

ω ∈ I′ ⇐⇒ Ψ(ω) ∈ I. (3.11)

In other words, solving I efficiently allows us to solve all problems in NP ef-
ficiently. NP-hard problems may neither be decision problems nor belong to
NP; they can be optimization problems or even undecidable.

• NP-complete: The class of decision problems that are both in NP and NP-hard.
A problem I is NP-complete if:

I ∈ NP and ∀I′ ∈ NP, I′ ≤poly I. (3.12)

That is, I is a decision problem for which a proposed solution can be verified
in polynomial time, and to which every other decision problem I′ in NP can be
reduced in polynomial time.

3.1.2 Applications

There is a wide range of applications across various scientific disciplines. Several
key application areas include but are not limited to:

• Networks and graphs: Shortest paths, spanning trees, multi-commodity flow,
graph partitioning [3]; network design [37], and facility location [99], and in-
fluence maximization [114] in, e.g., telecommunications, transport, and social
networks.

• Scheduling and timetabling: Flow shop, open shop, job shop scheduling (JSSP),
resource-constrained scheduling, crew scheduling (e.g., airlines, hospitals, rail-
ways) [171]; university timetabling [38], and cloud task scheduling [173].

• Logistics and resource allocation: Traveling salesperson (TSP), vehicle routing
problems (VRP) [129]; knapsack variations, and bin packing [144]; applied in
supply chains, transport, and e-commerce.

• Finance and economics: Portfolio optimization, risk-aware financial optimiza-
tion [143]; combinatorial auctions [181], and market equilibria [154].

• Energy and infrastructure: Unit commitment, economic dispatch, optimal power
flow [229]; renewable energy planning, smart grids, and electric vehicle charg-
ing [80].

3.1.3 Solution Methods

To solve CO problems, solution methods are categorized into three main groups:
exact algorithms, approximation algorithms, and (meta-)heuristics. Although this
is not an exhaustive list, an overview of common algorithms in each category is
provided to establish a foundational understanding of existing CO methods.

Exact Algorithms

Exact methods find optimal solutions with optimality and feasibility guarantees.

3.1. Foundations of Combinatorial Optimization 25

A classical exact algorithm for solving CO problems optimally is branch-and-bound
(B&B). This method explores the solution space by solving a linear relaxation, re-
cursively partitioning it into smaller subproblems (branching), and eliminating sub-
optimal solutions using upper and lower bounds (bounding) [128]. This process
constructs a search tree with a branching factor B and solution size or depth n. In
the worst case, B&B explores the entire search tree, leading to an exponential time
complexity of O(Bn). To improve efficiency, B&B can be extended in different ways.
Branch-and-cut (B&C) integrates cutting planes in the framework, adding valid in-
equalities to tighten the relaxation and accelerate pruning [164]. Branch-and-price
(B&P) embeds column generation in the framework, solving the LP relaxation over
a restricted variable set and iteratively introducing new variables via a pricing sub-
problem until an optimal solution is reached [25]. Note that both methods operate
within the B&B search tree, hence, the worst-case time complexity remains exponen-
tial.

Dynamic programming (DP) is a technique that breaks problems into sequential sub-
problems that exhibit optimal substructures and overlapping subproblems [26]. By
recursively solving subproblems and storing their solutions in memory, DP avoids
redundant computations, often achieving polynomial-time complexity O(nk). How-
ever, DP’s main drawback is its high memory consumption. As n grows, memory
requirements can quickly exceed modern hardware capacities, making it impractical
for large-scale CO problems. Techniques like state space reduction, iterative DP, and
bitmasking are often used to mitigate these limitations.

Constraint programming (CP) is an exact approach that models CO problems as a set
of variables, domains, and constraints, solving them via systematic search and con-
straint propagation [180]. Similar to B&B, CP explores the solution space by pruning
infeasible regions using domain reduction, backtracking, and constraint inference.
CP is particularly suited for highly constrained discrete problems, where constraint
propagation significantly reduces search effort. However, its worst-case complexity
remains exponential O(Bn), making scalability a challenge. Techniques like global
constraints, hybrid CP-IP models, and heuristic-guided search improve efficiency.

Approximation Algorithms

Using approximation algorithms, bounded suboptimal solutions can be found with
feasibility guarantees and reduced time complexity.

Greedy algorithms iteratively construct solutions by making local optimal decisions,
such that the complete solution might be near the global optimum [183]. Typically
useful if local decisions contribute to the global optimum, otherwise it likely un-
derperforms. Often, greedy algorithms use sorting or priority queues, giving it a
worst-case complexity of O(n log n). Relaxation and rounding performs a linear re-
laxation of a discrete problem, after which the fractional solution is rounded into
a feasible discrete solution [228]. This ensures feasibility while maintaining an ap-
proximation guarantee. The relaxation determines complexity, typically O(nk) for
LP relaxations, where C indicates polynomial complexity. The primal-dual method
constructs primal and dual solutions simultaneously, ensuring feasibility and main-
taining an approximation ratio [223]. Dual variables guide the near-optimal primal
solution. The worst-case complexity is typically polynomial, ranging O(m log n) to
O(nk), depending on the problem, with m being the number of constraints. The

26 Chapter 3. Preliminaries

dual fitting method scales a dual LP solution to derive an approximation bound, en-
suring feasibility by weak duality [100]. It provides logarithmic or constant-factor
approximations, with polynomial time complexity, usuallyO(m) toO(m log n) with
m being the number of constraints.

Heuristics and Metaheuristics

The main idea of (meta-)heuristics is efficiently generating solutions without or with
weak optimality or feasibility guarantees. For the sake of brevity, common (meta-
)heuristics are grouped.

First, search-based heuristics iteratively improves candidate solutions by making mod-
ifications. The time complexity can be introduced as O(n × E × (EV + VL)), with
solution size n, number of iterations E, and time to evaluate EV and verify VL solu-
tions. Common examples of these search-based heuristics include:

1. Hill climbing: Incremental changes to progressively enhance solutions, but tends
to get stuck in local optima [183].

2. Local search: A heuristic that explores the neighboring state of a current solution
and accepts the neighbor state if it offers an improvement [183].

3. Simulated annealing: Inspired by the physical process of heating and slowly
cooling materials. In early stages, the heuristic accepts worse solutions to es-
cape local optima (high temperature), after which it becomes more selective over
time (lower temperature) [121].

4. Tabu search: A memory structure, i.e. tabu list, is used to prevent the heuristic
from revisiting recently explored areas to encourage exploration of new parts
of the solution space [75].

5. Neighborhood search: Search strategies that dynamically alter the search scope.
Large neighborhood search (LNS) reconstructs parts of the solution to explore
wider areas [172], whereas variable neighborhood search (VNS) incrementally per-
turbs the solution and systematically varies the neighborhood structure to en-
hance diversity in the search process [149].

Second, population-based heuristics operate by evolving a group of candidate solu-
tions simultaneously. The time complexity of these algorithms can be expressed as
O(PS× n× E× (EV + VL), where PS represents the population size, n the solution
size, E the number of generations (iterations), EV the time to evaluate the objective
function for each solution, and VL the time to verify each solution’s feasibility. Well-
known examples of population-based heuristics include:

1. Genetic algorithm (GA): Inspired by natural selection, where solutions evolve
through crossover and mutation. Parents are selected from the population to
undergo crossover, creating offspring that inherit traits. Mutations introduce
random variations to maintain exploration of the solution space [84].

2. Evolutionary strategies: Similar to GA, but focuses on self-adaptation rather
than crossovers [30].

3. Particle swarm optimization: Inspired by the swarm intelligence of flocks of birds

3.2. Introduction to Machine Learning 27

or schools of fish. Each solution (particle) moves through the solution space by
updating its velocity based on both its local best-known position and the best-
known global position of the swarm, balancing exploration and exploitation
[115].

4. Ant colony optimization: Inspired by the behavior of ants. Solutions are built
probabilistically based on pheromone trails, where stronger pheromone lev-
els reinforce better solutions over iterations, guiding future searches toward
optimal paths [61].

Third, hybrid methods integrate exact, approximation, and (meta-)heuristic tech-
niques to exploit individual strengths while mitigating weaknesses. The time com-
plexity varies based on the integrated algorithms. Common hybrid approaches are:

• Matheuristics: Combining exact methods with (meta-)heuristics to efficiently
navigate large search spaces while maintaining feasibility [142].

• Decomposition-based heuristics: Splitting a large problem into smaller subprob-
lems solved with different techniques, such as exact solvers for smaller sub-
problems and heuristics for larger, complex ones [226, 85].

• Hyper-heuristics: A high-level strategy to select or generate heuristics dynami-
cally to solve a problem, often adapting to different instances [39].

• Hybrid (meta-)heuristics: Combining multiple (meta-)heuristics within a unified
framework to leverage their complementary strengths [71].

3.1.4 Challenges and Limitations

CO methods face exponential search spaces, making exact approaches computation-
ally infeasible for large instances, even with refinements like B&C and B&P. Memory
constraints in DP and CP further limit scalability, as storing large state spaces quickly
exceeds hardware capacities. Approximation algorithms offer quality guarantees
but can be computationally expensive, while heuristics and metaheuristics improve
efficiency at the cost of optimality and feasibility guarantees and require extensive
tuning. Bridging theory and practice remains challenging, as CO techniques often
assume static and explicit formulations, whereas real-world applications involve un-
certainty and dynamic environments that expand these formulations and the search
space. Hence, addressing such challenges is inherently difficult.

3.2 Introduction to Machine Learning

This section introduces several fundamental concepts in machine learning (ML). For
a comprehensive, formal introduction to pattern recognition and ML, readers are
advised to consult [33, 76].

3.2.1 Definitions

ML is a subfield of artificial intelligence (AI) that enables systems to learn and make
decisions based on pattern recognition and data analysis. Within ML, there are dif-
ferent types of learning problems.

28 Chapter 3. Preliminaries

In supervised learning (SL), some parameterized function fθ : X → Y maps input
xi ∈ X to prediction ŷi ∈ Y. For each input xi, a target value yi ∈ Y exists. Hence,
the aim is to minimize the difference between the target and the prediction through
some loss function L.

min
θ

N

∑
i=1
L(fθ(xi), yi) (3.13)

In unsupervised learning (UL), the objective is to model the underlying structure
or distribution of input data X without labeled target values. This is typically for-
mulated as an optimization problem where the model parameters θ are learned by
minimizing an unsupervised loss function Lu:

min
θ
Lu(fθ(X)). (3.14)

In semi-supervised learning (SSL), a dataset of labeled and unlabeled samples exists.
The objective is to leverage the unlabeled data to improve the model’s performance
while minimizing the loss of labeled data. A common approach is to minimize both
a supervised loss L on labeled data and an unsupervised loss Lu on the unlabeled
data, weighted by a regularization parameter λr:

min
θ

M

∑
i=1
L(fθ(xi), yi) + λr

N

∑
j=M+1

Lu(fθ(xj)), M < N. (3.15)

In contrast to the tasks discussed above, reinforcement learning (RL) involves learn-
ing an optimal policy through interactions with an environment. Section 3.3 will be
dedicated to RL. Some datasetD = {(xi, yi)}N

i=1 is commonly split into three subsets:

• Training set (Dtrain): Used to optimize the model parameters θ by minimizing
the loss function.

• Validation set (Dval): Used to tune hyperparameters and assess model perfor-
mance during training, helping to prevent overfitting.

• Test set (Dtest): Used for inference to measure performance on unseen data.

Given some task (e.g., SL task), a parameterized function fθ and a dataset Dtrain =
{(xi, yi)}N

i=1, training aims to find the parameters θ∗ that minimize loss L:

θ∗ = arg min
θ

N

∑
i=1
L(fθ(xi), yi). (3.16)

The parameters θ are iteratively updated during training using an optimization algo-
rithm. Gradient-based optimization techniques, such as stochastic gradient descent
(SGD) and its variants (e.g., Adam, AdaGrad, AdaMax), are commonly used due
to their efficiency, scalability, and ability to handle high-dimensional spaces [118].
While alternatives to gradient-based methods are used in ML, they are beyond the
scope of this thesis. A key component of gradient-based optimization is backpropaga-
tion, which efficiently computes gradients by propagating errors backward through

3.2. Introduction to Machine Learning 29

the network using the chain rule. These gradients guide parameter updates, facili-
tating convergence to local or global minima. The update rule is:

θ ← θ − η∇θ

N

∑
i=1
L(fθ(xi), yi), (3.17)

where η ∈ (0, 1] is the learning rate, and ∇θ denotes the loss gradient.

During training, the model fθ is periodically evaluated on the validation set Dval =
{(xj, yj)}M

j=1 to assess its performance. The evaluation is based on some metricM:

M(fθ ,Dval) =
1
M

M

∑
j=1
M(fθ(xj), yj), (3.18)

whereM is a task-specific metric, such as the F1-score for classification or R-squared
for regression. The validation process aids in hyperparameter tuning and model
selection, ensuring optimal performance before the final evaluation on the test set.

Once training is complete, the parameters θ∗ are used to make predictions on unseen
data x′ ∈ Dtest. This process, known as inference, does not involve updating θ but
only evaluating fθ∗ on new inputs:

ŷ′ = fθ∗(x′). (3.19)

Generalization refers to the ability of a parameterized function fθ to perform well on
unseen data. This is influenced by the bias-variance trade-off: models with high
bias tend to underfit, failing to capture underlying patterns, while models with high
variance are prone to overfitting, struggling to perform reliably on new instances.
Regularization, often implemented through the addition of penalty terms to the loss,
limits the model’s complexity and reduces overfitting.

3.2.2 Applications

ML techniques are widely applied across various fields, enabling automated decision-
making and pattern recognition from data. Some key application areas include:

• Computer vision: Image classification, object detection [116]; generative models
for images [119]; facial recognition and manipulation, and deepfake detection
[213].

• Natural language and speech processing: Chatbots and virtual assistants, lan-
guage translation [156]; sentiment analysis, text summarization, speech recog-
nition, and document classification [233, 157].

• Healthcare and bioinformatics: Medical imaging analysis, disease diagnosis, per-
sonalized treatment drug discovery and development [214] and personalized
health monitoring [20].

• Predictive analytics and forecasting: Demand prediction, stock market prediction,
financial modeling [141]; energy consumption forecasting [174], and climate
modeling [68].

30 Chapter 3. Preliminaries

• Fraud detection and cybersecurity: Banking fraud detection and prevention [79];
spam and phishing detection, malware and intrusion detection [62], and bio-
metric authentication [117].

• Recommendation and Personalization: Personalized recommendations (e.g., e-
commerce, news feeds, media streaming and personal wellness) [122].

• Ethics, fairness, and explainability: Bias mitigation and fairness, explainability
and transparency of AI, auditing and compliance of AI, ethical and responsible
AI, privacy and human-centered design [199].

3.2.3 Solution Methods

Loss functions define the learning objective by quantifying errors, guiding the op-
timization process in various ML tasks. The appropriate choice of a loss function
depends on the nature of the task. Below, we discuss commonly used loss functions
for different yet common learning tasks. For regression tasks, a widely used loss
function is the mean squared error (MSE), which penalizes larger errors more heav-
ily, making it effective for continuous-valued predictions but sensitive to extreme
values.

LMSE = ∥ fθ(x)− y∥2
2 =

1
N

N

∑
i=1

(fθ(xi)− yi)
2. (3.20)

Alternatively, the mean absolute error (MAE) provides a more balanced penalty across
all errors and is more robust to outliers. However, its non-differentiability at zero can
pose optimization challenges.

LMAE = ∥ fθ(x)− y∥1 =
1
N

N

∑
i=1
| fθ(xi)− yi| . (3.21)

A compromise between MSE and MAE is the Huber loss, which maintains differen-
tiability while being less sensitive to outliers. It introduces a threshold parameter d
that determines the transition from a quadratic loss to a linear loss, balancing sensi-
tivity to large errors with robustness.

LHuber =
1
N

N

∑
i=1

{
1
2 (fθ(xi)− yi)

2, if | fθ(xi)− yi| ≤ d,
d(| fθ(xi)− yi| − 1

2 d), otherwise.
(3.22)

For classification tasks, the cross-entropy loss (CE) is commonly used, as it measures
the difference between predicted and true probability distributions. This makes it
particularly effective for categorical classification problems where the model outputs
probabilities for different classes.

LCE = − 1
N

N

∑
i=1

C

∑
c=1

yi,c log fθ(xi)c. (3.23)

An extension of cross-entropy loss is the focal loss, designed to address class im-
balance by focusing more on hard-to-classify examples. The parameter ψ controls
the down-weighting of well-classified examples, thereby enhancing performance on

3.2. Introduction to Machine Learning 31

imbalanced datasets.

LFL = − 1
N

N

∑
i=1

C

∑
c=1

(1− fθ(xi)c)
ψyi,c log fθ(xi)c. (3.24)

For tasks such as compression and dimensionality reduction, the reconstruction loss
is often used. This ensures that the reconstructed data closely resembles the original
input, preserving essential information while reducing dimensionality.

LRec = ∥x− fθ(x)∥2
2 =

1
N

N

∑
i=1

(xi − fθ(xi))
2. (3.25)

Depending on the learning task, various learning algorithms can be implemented.
We categorize ML methods into two groups. Classical ML refers to traditional al-
gorithms that rely on predefined features and structured data for prediction and
decision-making. Classical ML models require manual feature engineering and are
relatively interpretable compared to methods discussed below [33].

Deep learning refers to a class of models based on neural networks (NNs) [76]. These
are computational models inspired by the human brain and composed of layers of
interconnected neurons that process data hierarchically. They are trained using back-
propagation, which computes gradients of the loss function to optimize parameters
via gradient-based methods. While NNs are one of many tools in the ML toolbox,
they warrant special attention due to their versatility and recent breakthroughs that
have significantly advanced various scientific domains, e.g., large language models
[156], DNA sequencing [45], and protein folding [106]. Common examples of DL
models include:

• Multilayer perceptrons (MLPs): Basic neural networks composed of multiple
fully connected layers, capable of modeling complex nonlinear relationships
in data. They serve as foundational structures in deep learning [76].

• Convolutional neural networks (CNNs): Networks specifically designed to pro-
cess grid-like data, such as images, using convolutional layers to capture spa-
tial patterns. CNNs efficiently identify hierarchical features by exploiting spa-
tial locality [131].

• Encoder-decoder models: Neural architectures that convert input data into com-
pact latent representations (encoding) and reconstruct or generate outputs from
these representations (decoding). These models are useful for tasks with struc-
tured outputs [204].

• Variational autoencoders: Models that extend the encoder-decoder framework
by encoding input data into probabilistic latent representations. Unlike stan-
dard encoder-decoder architectures, VAEs specifically learn latent distribu-
tions, enabling the generation of diverse and novel outputs through sampling
[119].

• Generative adversarial: Models consisting of two competing neural networks, a
generator creating synthetic data and a discriminator evaluating its authentic-
ity. This adversarial approach drives continuous improvement in generated
data [77].

32 Chapter 3. Preliminaries

• Graph neural networks: NNs tailored for graph-structured data, explicitly de-
signed to capture relationships among nodes and edges. They effectively han-
dle relational information and structural dependencies within interconnected
data [120].

• Recurrent neural networks: NNs designed to process sequential or time-dependent
data by maintaining internal hidden states. They can model temporal depen-
dencies in sequential data well [182].

• Pointer networks: NNs that produce variable-length outputs by directly refer-
encing elements from input data. Their architecture allows for the dynamic
selection of input elements as outputs [224].

• Transformers: Neural architectures that employ attention mechanisms to model
relationships in sequential data. They overcome traditional sequential process-
ing limitations by enabling parallel computation, thereby capturing long-range
dependencies efficiently [222].

The time complexity of training models can be expressed as O(n × Ntrain ×MP×
E), where n is the input dimensionality, Ntrain is the number of training samples,
MP is the number of model parameters, and E is the number of epochs (iterations).
Similarly, the time complexity of inference can be given byO(n×Ntest×MP), where
Ntest is the number of test samples. While complexity varies across architectures, DL
models generally scale with these key factors, with additional variations based on
specific operations (e.g., convolutional layers, attention mechanisms).

3.2.4 Challenges and Limitations

Despite its success, ML faces several challenges and limitations that impact its reli-
ability and applicability. One major concern is generalization, where models trained
on specific datasets may fail to perform well on unseen data. Additionally, data
quality and availability remain critical, as biased, noisy, or insufficient data can hin-
der model performance. Interpretability is another key issue, particularly in deep
learning, where complex models often act as black boxes, making it difficult to un-
derstand their decision-making processes. Furthermore, computational cost and scal-
ability pose constraints, as training state-of-the-art models requires significant com-
putational resources. Lastly, ethical and fairness concerns, such as bias and privacy
risks, highlight the need for responsible AI development and deployment.

3.3 Fundamentals of Reinforcement Learning

This section introduces several foundational topics in RL, which might not be com-
prehensive. Readers seeking an in-depth introduction to RL are referred to [205].

3.3.1 Definitions

Reinforcement learning (RL) is a branch of ML where an agent interacts with an
environment to learn an optimal policy through trial and error. Instead of relying
on labeled data, RL optimizes decision-making by maximizing cumulative rewards
based on environmental feedback. Typically, RL addresses a sequential decision-
making problem, which is formulated as a Markov Decision Process (MDP) defined
by the tuple (S, A, P, R, γ), where:

3.3. Fundamentals of Reinforcement Learning 33

• S is the set of states representing possible configurations of the environment.

• A is the set of actions the agent can take.

• P(s′ | s, a) is the stochastic transition function P : S× A→ ∆(S) of moving from
state s ∈ S to next state s′ ∈ S after taking action a ∈ A. The deterministic
transition function is T(s, a), where T : S× A→ S.

• R(s, a) defines the reward, either a deterministic reward function R : S× A → R

or a stochastic probability distribution over possible rewards R(s, a) ∼ PR(s, a).

• γ ∈ (0, 1) is the discount factor, balancing immediate and future rewards. It
ensures convergence in infinite-horizon problems and stabilizes learning in
finite-horizon settings.

A policy can either be described as:

• Deterministic policy π(s): A function π : S→ A that directly maps each state to
an action.

• Stochastic policy π(a | s): A probability distribution over actions given a state,
where π : S→ ∆(A).

The objective J is to find an optimal action policy π∗ that maximizes the expected cu-
mulative reward, also known as the return.

max
π

J(π) = Eπ

[
∞

∑
t=0

γtrt

]
(3.26)

The expected return over an infinite time horizon at time step t is given by:

Gt =
∞

∑
k=0

γkrt+k+1, (3.27)

where Gt represents the discounted sum of future rewards starting from time step t,
with γ controlling the weight of future rewards and rt = R(at, st) step-wise reward of
state st and action at at time step t.

To assess the quality and update a policy π, we define value functions that estimate
the expected return under that policy:

• State value function (or value function) Vπ(s): The expected return when starting
from state s and following policy π:

Vπ(s) = Eπ [Gt | st = s] . (3.28)

• State-action value function (or Q function) Qπ(s, a): The expected return when
starting from state s, taking action a, and subsequently following policy π:

Qπ(s, a) = Eπ [Gt | st = s, at = a] . (3.29)

34 Chapter 3. Preliminaries

Algorithm 1 illustrates a generic training process for RL algorithms, while Algo-
rithm 2 describes a generic inference process.

Algorithm 1 Training of RL Algorithm
Input: EnvironmentM, dataset D, policy π, value functions V, Q, horizon T, train-
ing iterations Ntrain
Output: Optimized policy π∗

1: Initialize policy π and value function V
2: for each training iteration ι = 1, . . . , Ntrain do
3: if Online RL then
4: Collect trajectory (s0, a0, r0, . . . , sT) by interacting withM using π
5: else if Offline RL then
6: Sample trajectory (s0, a0, r0, . . . , sT) from dataset D
7: end if
8: Compute return Gt
9: Update value functions to support policy update V(st), Q(st, at)

10: Update policy π(at | st)
11: end for
12: Return optimized policy π∗

Algorithm 2 Inference of RL Algorithm
Input: EnvironmentM, policy π∗, horizon T, test episodes Ntest
Output: Performance metrics

1: for each test episode ι = 1, . . . , Ntest do
2: Observe initial state s0
3: for each step t = 0, . . . , T or until termination do
4: Select action at based on the trained policy:
5: if Deterministic inference then
6: at ← arg maxa π∗(a | st)
7: else if Stochastic inference then
8: Sample at ∼ π∗(a | st)
9: end if

10: Execute at, observe next state st+1
11: end for
12: Compute episodic return Gι = ∑T

t=0 γtrt
13: end for
14: Return performance metrics

Unlike traditional ML, an RL agent must balance exploration, taking new actions
to gather information, and exploitation, using existing knowledge to maximize re-
wards, throughout training. A deterministic policy inherently prioritizes exploita-
tion, whereas stochastic policies are often used to encourage exploration.

Generalization in RL helps prevent overfitting and ensures agents perform well in
unseen states. However, RL often lacks explicit test sets, making agents prone to
memorizing trajectories instead of truly generalizing. Several techniques improve
robustness and sample efficiency:

3.3. Fundamentals of Reinforcement Learning 35

• Pretraining involves learning simpler tasks before tackling more complex ones.
By progressively building knowledge, agents can acquire useful representa-
tions, making it easier to solve difficult tasks.

• Domain randomization introduces variations in environment parameters during
training, exposing agents to diverse conditions. This technique is particularly
useful in scenarios where training occurs in simulations, ensuring that agents
can generalize effectively to real-world environments.

• Meta-learning trains agents to quickly adapt to new tasks by optimizing for fast
learning. Instead of learning a single policy, agents learn how to generalize
across tasks, improving their ability to handle novel scenarios.

• Transfer learning accelerates adaptation by pretrained policies, value functions,
or feature representations. This reduces the need for exploration when encoun-
tering new but related tasks. The objective minimizes policy divergence:

min
πθt

Eπθs
[D(πθs ∥ πθt)] , (3.30)

where D(· ∥ ·) quantifies the shift between policies (e.g., KL-divergence).

3.3.2 Applications

Despite these challenges, RL has led to breakthroughs in areas such as robotics, game
playing, and autonomous control.

• Robotics and Automation: Self-driving cars, adaptive cruise control, collision
avoidance systems, robotic arm manipulation, autonomous vehicles, and en-
ergy efficiency improvements [206].

• Gaming and simulations: Real-time game decision-making [150], boardgame en-
gines [196], and digital twins [186]

• Data-driven decision-making: Algorithmic trading, risk management systems,
pricing strategies [81]; decision-making under uncertainty [184], combinatorial
optimization [147].

• Healthcare and life sciences: AI-driven treatment strategies, drug discovery, med-
ical image analysis [234].

• Smart infrastructure and scientific research: Smart devices, energy management
[197]; spacecraft control [212], sustainable agriculture [207], and scientific dis-
covery [231].

3.3.3 Solution Methods

RL algorithms can be categorized into model-based and model-free methods. Model-
based RL constructs an explicit model of environment dynamics, estimating or using
the transition function P(s′ | s, a) for planning. Model-free RL, in contrast, learns di-
rectly from experience. While it is often less sample-efficient - requiring more data
to learn a task - it is more practical since transition dynamics are usually unknown.

36 Chapter 3. Preliminaries

Another key distinction is between online and offline RL. Online RL continuously in-
teracts with the environment and is categorized into on-policy and off-policy meth-
ods. On-policy methods update using only recent data in an experience buffer, ensuring
learning stability but reducing sample efficiency. Off-policy methods leverage a replay
buffer for better sample reuse, improving efficiency but increasing instability. In con-
trast, offline RL learns from a fixed dataset without environment interaction, which
is useful in real-world applications where data collection is costly or unsafe.

Traditional RL methods perform well in theory but struggle with high-dimensional
problems due to poor generalization and sample inefficiency. Deep RL (DRL) ad-
dresses these limitations by leveraging NNs as function approximators for value
functions (Vϕ, Qϕ) or policies (πθ), where θ, ϕ represent model parameters. This
enables agents to learn directly from raw sensory inputs without requiring hand-
crafted features. DRL allows for generalization in high-dimensional spaces but also
introduces new challenges, such as training instability, high variance, and signifi-
cant computational demands due to sample inefficiency. DRL has also led to several
scientific breakthroughs, e.g., mastering the game of Go [196], fast chip design [148]
and autonomous drone racing [110].

Value-based methods optimize a value function to derive a policy indirectly and are
commonly used for discrete spaces [26, 205]. As an illustration, the following value-
based algorithms are presented using state values V(s), though similar approaches
apply to state-action values Q(s, a) as well:

• Dynamic programming (DP): A class of model-based algorithms (e.g., value iter-
ation, policy iteration) that recursively update value functions using the Bell-
man expectation equation:

Vπ(s) = ∑
a∈A

π(a | s)∑
s′

P(s′ | s, a)
[
R(s, a) + γVπ(s′)

]
. (3.31)

The Bellman optimality equation defines the optimal value function:

V∗(s) = max
a∈A

∑
s′

P(s′ | s, a)
[
R(s, a) + γV∗(s′)

]
, (3.32)

from which the optimal policy π∗ is derived. DP requires a known transition
model and updates all states iteratively, making it computationally feasible
only for manageable state spaces. Its sample complexity is relatively efficient
at O(|S|2|A|/(1− γ)).

• Monte Carlo methods (MC): Model-free algorithms (e.g., first-visit MC, off-policy
MC with importance sampling) that estimate value functions by averaging re-
turns over complete episodes. MC requires simulating an entire episode before
updating the value function:

V(s)← V(s) + η(Gt −V(s)), (3.33)

where Gt is the cumulative reward from time t to the episode’s end. While MC
provides unbiased estimates, it suffers from high variance, making it less sample-
efficient. On-policy MC typically has a sample complexity of O(|S||A|/(1−
γ)2), while off-policy MC, which introduces additional variance, requires more
samples at O(|S||A|/(1− γ)3).

3.3. Fundamentals of Reinforcement Learning 37

• Temporal Difference Learning (TD): A class of model-free methods (e.g., SARSA,
Q-learning) that update value estimates incrementally using the TD error:

δt = rt + γV(st+1)−V(st). (3.34)

Values are then updated in a single step (referred to as TD(0)), while TD(t)
represents updates over t + 1 steps:

V(st)← V(st) + ηδt. (3.35)

TD incorporates bootstrapping, allowing updates before an episode concludes.
This makes TD generally more sample-efficient than MC methods in practice,
even though their worst-case sample complexities remain similar: O(|S||A|/(1−
γ)2) for on-policy learning and O(|S||A|/(1 − γ)3) for off-policy learning.
However, TD introduces bias since it relies on estimates of future values rather
than complete returns.

Policy-based methods (e.g., REINFORCE, natural policy gradients) directly optimize
the policy π(a | s), making them effective for high-dimensional and continuous
action spaces [205]. These model-free methods explicitly learn the optimal policy by
interacting in simulation environments through various techniques:

• Policy gradients (PG): A parameterized policy πθ is optimized by maximizing
the objective:

∇θ J(θ) = Eπθ
[Gt∇θ log πθ(at | st)] . (3.36)

The policy parameters are updated via:

θ ← θ + η ∑
t
∇θ log πθ(at|st)Gt. (3.37)

However, PG methods suffer from high variance, making training unstable.
PG methods are also relatively inefficient, with a high sample complexity of
O(1/(1− γ)4).

• Variance reduction: To improve stability without impacting sample complexity,
a control variate (or baseline) b(st) is subtracted from Gt without altering the
expected gradient, yielding the modified update:

∇θ J(θ) = Eπθ
[(Gt − b(st))∇θ log πθ(at | st)] . (3.38)

A common choice for b(st) is Vπ(st), leading to the advantage function:

At = Gt −Vπ(st), (3.39)

measuring the relative benefit of an action compared to the expected return.

Actor-critic methods (AC) combine policy-based and value-based approaches, lever-
aging a critic to estimate a value function for variance reduction and an actor to op-
timize the policy based on advantage estimates [188, 78, 205]. Unlike pure policy
gradient methods, actor-critic updates are more stable due to the critic’s guidance,

38 Chapter 3. Preliminaries

improving convergence. The actor’s objective is:

J(θ) = Eπθ
[Aπ(s, a) log πθ(a | s)] . (3.40)

Generalized Advantage Estimation (GAE) is common in AC methods to further refine
learning by smoothing advantage estimates, balancing bias and variance through
[187]:

AGAE
t =

∞

∑
l=0

(γλ)lδt+l , (3.41)

where λ ∈ [0, 1] controls the tradeoff: λ = 1 recovers Monte Carlo estimation with
high variance, while λ = 0 reduces to TD(0) with low variance but high bias.

AC methods fall into two main categories:

• On-policy actor-critic (e.g., A2C, PPO) updates both actor and critic using data
collected under the current policy, ensuring stability but limiting sample reuse,
leading to a sample complexity of O(1/(1− γ)3).

• Off-policy actor-critic (e.g., SAC, TD3, DDPG) improves sample efficiency by
leveraging a replay buffer, significantly reducing interactions with the envi-
ronment and achieving a lower sample complexity of O(|S||A|/(1− γ)2).

In addition to the RL algorithms, exploration strategies play a crucial role in learning
optimal policies [205, 183]. Common techniques include:

• Epsilon-greedy: With probability ϵ, choose a random action; otherwise, choose
the best-known action.

π(a | s) =

{
arg max

a
Q(s, a), with probability 1− ϵ,

random action, with probability ϵ.
(3.42)

For continuous actions, Gaussian noise N (0, σ) is added to the chosen action:

π(a | s) = arg max
a

Q(s, a) +N (0, σ). (3.43)

• Boltzmann exploration: For discrete actions, use softmax to probabilistically se-
lect actions based on state-action estimations Q and temperature τ:

π(a | s) =
eQ(s,a)/τ

∑a′ eQ(s,a′)/τ
. (3.44)

In continuous spaces, stochastic policies sample from, e.g., Gaussian distribu-
tions parameterized by estimated mean µ(s) and standard deviation σ(s):

π(a | s) = N (µ(s), σ(s)). (3.45)

• Entropy regularization: Encourages stochastic policies by maximizing entropy:

π(a | s) = arg max
π

Eπ[Gt] + αH(π). (3.46)

3.3. Fundamentals of Reinforcement Learning 39

where Eπ[Gt] is the expected return under policy π and H(π) is the entropy
of the policy, given by H(π) = −∑a π(a | s) log π(a | s), and α is the entropy
coefficient, balancing reward maximization and exploration.

• Upper confidence bound (UCB): Encourages exploration by selecting discrete ac-
tions with high uncertainty:

π(a | s) = arg max
a

[
Q(s, a) + c

√
ln t

N(a)

]
, (3.47)

where c ≥ 0 is the exploration coefficient to control the balance between explo-
ration and exploitation, t being the current timestep, N(a) being the selection
frequency of action a.

For continuous actions, stochastic policies with UCB are defined by:

π(a | s) = arg max
a

[µ(s, a) + c · σ(s, a)] , (3.48)

where estimates of mean and standard deviations are defined by µ(s, a), σ(s, a).

3.3.4 Challenges and Limitations

Despite its advancements, RL faces several challenges and limitations that affect
its practical deployment. One major concern is sample inefficiency, as RL models
often require many interactions with the environment to learn effective policies,
making training costly and time-consuming. Additionally, generalization remains a
challenge, as policies trained in simulated environments may struggle to adapt to
real-world scenarios. Exploration-exploitation trade-offs further complicate learning,
as agents must balance trying new actions versus optimizing known rewards. Re-
ward design is another critical issue, as poorly defined reward functions can lead to
unintended or suboptimal behaviors. Furthermore, stability, safety and feasibility con-
cerns arise in real-world applications, where unpredictable agent actions may lead
to failures or hazardous outcomes. Lastly, ethical and deployment risks, such as bias in
learned policies and lack of transparency in decision-making, necessitate responsible
RL practices.

40 Chapter 3. Preliminaries

3.3. Fundamentals of Reinforcement Learning 41

42

Chapter 4

Literature Review

This chapter presents the article: "Literature survey on the container stowage planning
problem" published in the European Journal of Operational Research in 2024 [221].
This study addresses the sub-objective 1 of the thesis.

The literature review synthesizes research on CSPP and its related sub-problems,
identifies key methodological and theoretical challenges, and proposes future re-
search directions to advance the field. The insights gained in this chapter provide
the foundation for the articles discussed in subsequent chapters, ensuring that the ar-
ticles build on existing research and address relevant scientific challenges in stowage
planning research.

This chapter mirrors the content of the article [221], with each section correspond-
ing directly to a section in the original work. The chapter begins in Section 4.1
with an introduction to the article. Section 4.2 provides an overview of the CSPP,
highlighting its relevance and combinatorial complexities. Section 4.3 presents a
classification scheme, distinguishing between single-port and multi-port CSPPs and
exploring their hierarchical decomposition into master planning and slot planning.
Section 4.4 introduces mathematical models for these sub-problems and synthesizes
prior research by classifying and discussing existing work. Section 4.5 outlines a
research agenda, identifying key gaps and future research directions, including re-
fining problem formulations, developing benchmark instances, and enhancing solu-
tion scalability. Finally, Section 4.6 presents the conclusion of the article, whereas the
appendices are found in Appendix A.

4.1 Introduction

Container shipping is an underappreciated business. Most people know little about
container vessels, and the media coverage often focuses on negative aspects. The
truth is that container shipping is the most environmentally friendly mode of trans-
portation with the least CO2 emissions per metric ton of goods shipped per kilome-
ter [92]. Economically, it runs the supply chains of the world, and is in fact believed
to have been more important for globalization than freer markets [208].

From an operations research (OR) point of view, the overall objective of container
shipping is to maximize the utilization of vessels while minimizing operational costs.
Container vessels, however, are challenging. To stow containers on them according
to this objective is a combinatorial optimization problem with an unusually wide
range of complex constraints and objectives including seaworthiness requirements,

4.2. Container Stowage Planning Problem 43

stacking rules, crane utilization, and fuel consumption. For instance, minimizing the
number of containers that block containers in lower stacks tiers is NP-hard [17].

Research on the container stowage planning problem (CSPP) is, unfortunately, scarce
compared to other areas of OR. In this survey article, we were only able to find 54
key contributions in our literature search covering the 67 years that have passed
since the first container vessel sailed in 1956. CSPP studies are challenged in sev-
eral ways. First, container shipping was deregulated about thirty years after the
airline industry when the conference system was outlawed in Europe in 2008. For
that reason, there has been less focus on advanced capacity management systems.
Second, as mentioned above, the domain is unknown to most researchers and it is
only recently that a comprehensive description [104] and benchmark suite [130] was
published. Finally, the problem is highly complex and important aspects are subtle
and hard to model. It is not clear how to study it in a reduced representative form
suitable for scientific research.

In this article, we survey the CSPP literature and propose a research agenda with
directions for future work. Our main conclusion is that while several algorithmic
frameworks and problem decompositions have been investigated, it is still a matur-
ing research area with relatively few publications and a lack of benchmark suites
and problem definition consensus. As a large and sustainable mode of transporta-
tion, this state of affairs is important to change.

4.2 Container Stowage Planning Problem

The CSPP is extensive, and it is beyond the scope of this article to describe it in detail.
For a full introduction, we refer the reader to [104]. This section gives an overview
of the problem and identifies combinatorial aspects that are important to include in
representative models of it.

Shipping lines are similar to bus lines but on water. Their fleet of vessels is assigned
to closed-loop services with fixed schedules. The CSPP is to decide where on the
vessel the booked cargo to load is stowed. It is an operational problem that is solved
by a stowage team. Even though stowage plans are made one port at a time, the
CSPP is multi-port in nature, as the cargo placed in the current port affects the vessel
condition and free capacity in future ports. The input to the CSPP in this multi-port
form is the arrival condition of the vessel in the first port, the loadlist of cargo to
load for each port call, and the vessel and terminal data. The result of the CSPP is a
stowage plan for the first or all port calls.

The primary objective of the CSPP is to load all booked cargo by maximizing the
available capacity of the vessel. The secondary objective is to minimize terminal fees
and the operational costs of the vessel. Finally, since cargo bookings are uncertain,
stowage plans must be robust and allow many different cargo compositions in future
ports.

The complexity of stowage planning is due to the large size of container vessels that
today can be more than 24,000 twenty-foot equivalent units (TEU) and a myriad of
interacting seaworthiness requirements. To understand the essence of these combi-
natorial aspects, we need some physical insight into the problem.

44 Chapter 4. Literature Review

Figure 4.1 and 4.2 show a typical cellular design of a container vessel. The storage
area consists of bays with stacks or rows of cells that normally can either hold one 40’
container or two 20’ containers. The securing system below deck consists of cell guides
that hold the stacks in place. Each hold is sealed with hatch covers. The stacks on deck
rest on the hatch covers or the deck of the ship. The stacks are kept in place by twist
locks that bind containers together and lashing rods that tie container corners to the
deck or lashing bridges that are raised to increase stability. All stacks have weight
limits. Below deck and fore on deck also have height limits. Both are essential to
the model to get the volume and weight capacity of the vessel right. Some cells
have power plugs for refrigerated containers (reefers). They are indicated with stars
in Figure 4.2. The bottom of Figure 4.1 shows the stress forces acting on the vessel.
These are described further below.

WB

WBWB

WB

WB WB

FT

Water Ballast and Fuel Tanks

Water line

Cell SlotBay

Shear force
Shear force limit
Bending moment
Bending moment limit

Lashing bridge
Resulting force
on bay section

FIGURE 4.1: Vessel side view and stress force graph

31 29

* * * * * * * * *
* * * * * * * * *

WB WB

26

W
B

W
B

Lashing
bridge

Reefer
slot

Hatch
cover

FIGURE 4.2: Vessel bay front view

Most containers are 20’, 40’ and 45’ long, 8’ wide, and 8’6" high. Some of these
(mostly 40’ and 45’) are 9’6" high and are called highcubes. The weight ranges from
about four tons for empty containers to about 30 tons for heavy containers. The port
where a container is loaded is referred to as the port of load (POL), while the port
where it is unloaded is called the port of discharge (POD). Specials include reefers,

4.2. Container Stowage Planning Problem 45

IMDG, and OOG containers. IMDGs carry dangerous cargo and may be required to
be segregated. OOGs (Out-of-Gauges) are over-dimensioned, and reefers are refrig-
erated containers and require electric power.

An important combinatorial aspect of stowage planning is restow minimization. A
restow happens when a container is unloaded and loaded again before its POD.
Restows can be voluntary or mandatory. Mandatory restows are well-studied and
are caused by overstowage. Stack overstowage happens when a container in a stack is
stowed on top of a container at an earlier port. The top container must be restowed
in order for the crane to reach the container below it. Restow fees are high relative to
the profit margin of each container. For that reason, the number of restows must be
minimized. Unfortunately, the minimization of mandatory restows has been shown
to be an NP-hard problem [17]. Even when overstowage is simplified to hatch over-
stowage, which is overstowage between containers stowed above and below a hatch
cover [211]. Voluntary restows are also subject to restow fees, but these are made on
purpose to increase the capacity of the vessel. For instance, a non-reefer container
in a reefer slot can be restowed to fit an extra reefer. Since restow minimization is
NP-hard and plays a central role in stowage planning, a proper optimization model
should include the POL and POD of containers and represent voluntary and manda-
tory restows.

Another combinatorial element is stowage rules. 20’ containers can not be stowed
on top of 40’ containers, and IMDG containers must be segregated depending on
their content. Since reefer containers are spark generators, they must be placed away
from most IMDGs. Moreover, since reefer plugs typically are at the bottom of stacks,
a 40’ reefer kills 20’ capacity. With regards to length, the interactions above can be
modeled by just 20’ and 40’ containers. 45’ containers must be placed above lashing
bridges or in 45’ bays, but this could be a minor combinatorial issue.

It is an open question whether IMDG segregation is NP-hard. In practice, it is chal-
lenging to deal with and should for that reason be modeled on IMDG heavy ser-
vices. 1 Reefer containers should always be modeled as they have limited positions
available and affect other containers. Highcubes are frequent and often take up more
than half of the volume. Due to height limitations below deck and in fore bays on
deck, it is important to mix highcubes and normal containers right to utilize all the
stack volume. It is unclear to us, though, how critical this combinatorial aspect is.

Container weights have a high impact on stowage conditions. They can vary con-
siderably and affect many seaworthiness requirements that are associated with the
weight distribution of the vessel. The transversal stability of a vessel is caused by
the center of buoyancy (B) moving faster to the side of inclination than the vertical
center of gravity (G) as shown in Figure 4.3. For small inclinations, the buoyancy
force vector intersects the center line at a fixed point called the metacenter M. The
distance between G and M is called the metacentric height (GM) and must be positive
to avoid the vessel capsizes. A high GM, on the other hand, makes the vessel stiff
and may cause the lashing forces in lashing rods to be exceeded, particularly if heavy
containers are stowed high in stacks on deck. The longitudinal center of gravity
(LCG) determines the difference between the fore and aft draft of the vessel called
the trim. A vessel has a maximum allowed draft (maximum loadline), which may be

1Carriers also can have their own rules, so-called handling instructions. They are easier to deal with
than IMDGs and can be ignored.

46 Chapter 4. Literature Review

G

B

M

GM

FIGURE 4.3: Metacentric height (GM).

further reduced due to port draft restrictions. The trim affects the line of sight (LOS)
from the bridge, which must be sufficient. The trim also affects the energy efficiency
of the engine. The longitudinal weight distribution further causes stress forces on
the vessel that all must be within limits.

The question is to what level of granularity we need to model these weight-related
constraints of stowage planning. With respect to container weight, homogeneous
weight is out of the question as it is unrealistic and compromises a reasonable repre-
sentation of most constraints above. However, even just three or four weight classes
enable us to model the combinatorial interactions of these constraints. With respect
to the weight-related constraints, it is key to model GM as it both affects transversal
stability and lashing forces. Lashing forces are computed using complex mechani-
cal simulation that makes them hard to embed in optimization models. Neverthe-
less, they should not be ignored as they easily make one or more top tiers on deck
impossible to use (i.e., more than 5% of the total volume capacity). Trim and list re-
quirements can be translated into total weight and box constraints on LCG and TCG.
Stress forces also impact capacity. Differences in the gravity and buoyancy forces of
each bay section cause resulting forces acting on the vessel, as shown in Figure 4.1.
Consider the forces acting on the cross-section between the two first bays in front
of the accommodation indicated by a diamond in the figure. The shear force (SF) of
this longitudinal position is the sum of resulting forces acting fore of the point. The
bending moment (BM) of the position is the sum of resulting forces fore of this point
times the distance to the force. 2. The bottom graph of Figure 4.1 shows typical levels
and limits of SF and BM. In particular, BM can reduce the weight capacity in the fore
and aft of the vessel and, for that reason, should not be ignored. SF can be high if
mixing full and empty bays, but BM normally has more impact on capacity and, for
that reason, is the most important to model. With respect to the vessel structure, the
hull can be represented by a sequence of box-shaped sections such that hydrostatic
equilibrium can be linearly defined. This representation is fairly accurate for draft,
trim, and stress forces down to just six sections [104]. Ballast water is also impor-
tant to model as it provides a flexible weight buffer that can be used to ease most
weight-related constraints.

Another combinatorial aspect of stowage planning is terminal constraints and ob-
jectives. Among the constraints, we have draft restrictions and crane work height.
Normally, the impact of these restrictions is limited. The hard combinatorial aspects
have to do with minimizing the port stay. This is important since a short port stay
may allow the vessel to catch up on the schedule or save fuel by reducing the speed

2Notice that since the vessel is in hydrostatic equilibrium, we might as well have summed the forces
and moments acting aft of the point as they would be equal but with opposite direction.

4.3. Classification Scheme 47

between ports. There mainly are two ways to minimize the port stay: 1) minimize
the total number of quay crane moves, and 2) minimize the makespan of the cranes.
With respect to 1), we need to minimize the number of restows, which we already
saw is NP-hard. With respect to 2), it is important to understand the relationship be-
tween the terminal and the shipping line. Typically, the terminal guarantees a certain
number of moves within a time window without specifying the number of cranes
working on the vessel during this period. The shipping line can observe the aver-
age number of assigned cranes and distribute the moves along the vessel such that
these cranes can work in parallel. A complicating matter is that two quay cranes,
due to their width, are unable to work simultaneously on two adjacent bays. The
total work time is therefore given by the long crane, which is the largest number of
moves m of any pair of adjacent bays. Let M denote the total number of moves of the
vessel. The crane intensity (CI) is then defined as M/m. It is an upper bound on the
number of cranes that can work in parallel on the vessel without any of them being
idle. The stowage plan should have a CI that is larger than the average number of
cranes assigned to the vessel by the terminal.

Finally, we turn to a rather hidden combinatorial aspect of stowage planning that
has to do with the robustness of plans. To achieve high flexibility for the kind of
containers that can be loaded in future ports, stowage planners use certain stowage
patterns. To define these patterns, let a block denote a storage space either above or
below a hatch cover. Hence, if a bay has three hatch covers, it has six blocks in total:
one center and two wing blocks on and below deck. A basic stowage pattern is to
avoid mixing PODs in a block. This ensures by design that the block has no stack
restows and empties the whole block in the port of discharge such that the POD
choice of the containers to load back into the block is as free as possible. To avoid
hatch restows by design as well, we need to require that the two blocks above and
below a hatch cover hold the same POD. We call this pattern block stowage. To avoid
only changing weight on one side of the vessel and risk excessive torsion moments,
the block stowage pattern is often extended to paired block stowage, where blocks in
the wing hold the same POD, while the center may hold another POD.

Despite the fact that stowage patterns reduce the space of possible plans, they seem
to increase the problem complexity substantially [50]. Due to this impact and the
fact that the patterns are industry standard, they should be included to some degree
in a representative model of the problem.

4.3 Classification Scheme

Before diving into the survey and the proposed classification scheme, let us clarify
the search strategy used to collect and select the relevant literature. The articles
were found by using Google Scholar using Stowage Planning as the keyword. The
title of the resulting articles has then been evaluated, and publications that were
clearly not relevant have been removed. The remaining publications were further
filtered by reading the abstracts. It is here that publications focusing on, e.g., the
packing of cargo into a single container were removed. All the references of the
remaining publications have been analyzed and missing contributions have been
added to the list. A number of publications presenting minor incremental work
have been removed from the analysis. It is a key finding that few if any studies
fulfill even the minimal representation requirements discussed in Section 4.2. Hence,

48 Chapter 4. Literature Review

TABLE 4.1: Classification scheme

Label Value Description
Cargo Cargo characteristics

Uni Uniform weight containers
Class Container grouped by weight classes
Mix Mixed weight containers

Hydro Hydrostatics
Rich Stability and stress force constraints
Stab Stability constraints only
Equi Longitudinal, vertical and/or transversal equilibriums
None No hydrostatics constraints

CSPP aspects CSPP aspects present in the problem formulations
MinRe Involuntary container restows are allowed as well as minimized
VolRe Voluntary and involuntary container restows are allowed

and minimized
NARe Container restows are not allowed
HR Hatch restows created by hatch cover lifts
RF Refrigerated containers
DG Dangerous cargo
BW Ballast water
La Lashing forces
CO Crane operations
BS Block stowage

Obj Elements of the objective function
PS Minimize port stay by minimizing overstowage

and optimizing cranes work
VU Maximize vessel utilization, consolidation
H Minimize fuel consulption, improve hydrostatics

HD Hierarchical decomposition
Sc Size of computational study

S Small. Vessels with a capacity below 2,500 TEU,
for slot planner blocks below 75 TEU

M Medium. Vessels with a capacity between 2,500 and 15,000 TEU,
for slot planner blocks between 75 and 150 TEU

L Large. Vessels with a capacity above 15,000 TEU,
for slot planner blocks above 150 TEU

Solution methods Applied optimization techniques
Greedy Greedy approach
Exact Exact algorithms
Method 1/Method 2 Hybrid of two methods, e.g. exact and heuristic
MatHeu Matheuristic
TreeB Tree-based approach
NeighMeta Neighborhood metaheuristic
PopulMeta Population metaheuristic
ML Machine Learning

the 54 publications selected for this survey either treat most of them or present an
original solution approach.

Articles that do not focus directly on solving the CSPP (or one of its sub-problems)
were also not considered in the survey, e.g., various descriptions of visualization
tools [21, 200], loading computers [155, 230], container data sharing systems [52],
crane scheduling tools [89] or loading sequence planners [191]. Survey papers [235],
decision support tools [145, 185] and instance generators [53] are not discussed in
this classification either. We also consider the papers on inland shipping out-of-
scope, as a dedicated literature for this research area already exists [70].

To have an overview of the classified publications and to be able to easily compare
the problem formulations presented in them, we developed the classification scheme
that is shown in Table 4.1. The Cargo attribute determines what types of containers
the problem formulation includes. They are divided into three categories: there
can be models where all containers have the same weight (Uni) or varying weights
(Mix). Weight classes (Class) can also be used, where each weight class corresponds

4.4. Literature Review 49

to a weight range.

The attribute Hydro specifies the level of hydrostatics constraints included in the
problem formulation. The Rich level indicates that both stability and stress force
constraints are part of the formulation, whereas, Stab means that only stability con-
straints like GM, trim and/or list are included. Equi is related to longitudinal, ver-
tical and/or transversal equilibrium. There is also a possibility that the problem
formulation doesn’t contain any hydrostatic considerations (None).

We note that basic capacity limitations of a container vessel, e.g., constrained height
and weight of stacks, are part of every problem formulation included in our classifi-
cation.

The group called CSPP aspects specifies which elements of the problem are included
in the problem formulation. The first group is restow handling, which can also vary
in the problem formulations. A common approach is to minimize the number of
restows in the stowage plan (MinRe), whereas, in some cases, they are completely
forbidden (NARe). In some models, an attempt to create voluntary restows to be
able to stow more containers is made while minimizing the number of involun-
tary restows (VolRe). A few formulations include hatch restows (HR) caused by
hatch overstowage. Crane operations (CO) indicate that crane work optimization
(for more than one crane) is incorporated in the problem formulation. It can be
considered either in the objective function or as a constraint. The inclusion of (BS)
indicates whether block stowage best practices are modeled. BW indicates that it is
allowed to use ballast water to fix hydrostatics, and La means that lashing forces are
part of the problem formulation. Special containers might be included in the load
list. It is indicated by RF (refrigerated containers) and DG (dangerous cargo).

The objective function (Obj) might include different aspects of the CSPP. The focus
might be on the port stay (PS), vessel volume utilization (VU), and hydrostatics (H)
to for example minimize fuel consumption or a combination of these.

The problem might be divided into two or more sub-problems and solved using
hierarchical decomposition (HD). The attribute, SC, indicates the scale of the com-
putational study in terms of problem size and is grouped into three categories: small
(S), medium (M) and large (L).

Notice that elements of the table might be written in parentheses. This indicates that
this aspect is only partially incorporated into the problem formulation.

4.4 Literature Review

The first works on the CSPP were based on industrial collaborations and featured
rich vessel details and problem constraints (e.g, [35, 195]). It was, however, evident
that the problem was too complex and that more in-depth studies were needed.
Looking at the history of publications, it can be seen that the container stowage
planning community has been split between those focusing on the combinatorial
elements of the problem (e.g., [18]) and those aiming for industrial strength applica-
tion (e.g., [226, 109]).

At the core of the first group of research studies, we find the k-shift problem, a sim-
plification of the CSPP where vessel stability and container types are disregarded to

50 Chapter 4. Literature Review

accommodate a more in-depth study of the combinatorial complexity of the manda-
tory and voluntary container re-stows through a sailing route.

The second group aimed to include all the industrial details of the problem by im-
posing more pragmatic solution approaches. The seminal work of [226] introduced
a hierarchical decomposition to obtain a sequence of tractable interdependent sub-
problems. It quickly became popular and widely used in several studies (e.g., [107,
160]). For that reason, the authors propose a division of the problem into two sub-
problems, as shown in Figure 4.4. The first sub-problem is named the Master Plan-
ning Problem (MPP), and its solution (a master plan) is the assignment of groups
of containers to storage areas of the vessel (blocks). The idea is to address high-
level constraints and objectives, such as overall weight distribution, crane utiliza-
tion, hatch cover moves, and cargo consolidation. Containers in the MPP are often
grouped by their weights and types, and a master plan is created for all the ports in
the voyage. The second sub-problem is called the Slot Planning Problem (SPP), which
uses the MPP as input. Given the assignment of groups of containers to each block,
the SPP assigns individual containers to slots in the block for every port separately.
The assignment fulfills only low-level constraints, such as stacking rules, capacity
constraints, and overstowage constraints. This results in a complete (multi-port)
stowage plan.

FIGURE 4.4: Hierarchical decomposition of stowage planning into
master and slot planning from [160]

We have structured our analysis following the major trends described above to ease
the literature review process. Starting from the k-shift and related problems, we
move on to multi-port stowage planning problems. Here, we will explore more in-
depth the state-of-the-art on the specific master and slot planning problems. Finally,
we will explore the results of the single-port stowage planning problem (a special
case of the multi-port version). For each of those categories, we provide a qualita-
tive (and, when possible, quantitative) comparison of the main and most influential
contributions. The last two subsections discuss studies of computational complexity
and other relevant contributions.

4.4.1 k-Shift and Related Problems

The k-shift problem aims at assigning homogenous cargo to a box-shaped vessel
over a number of ports. A stack number s and tier number t indicate each pos-
sible cargo position. An optimal k-shift plan minimizes the number of container
moves, and those include mandatory shifts (due to overstowing cargo) and volun-
tary shifts. The state-of-the-art model uses a pattern-based formulation with an ex-
ponential number of variables. The model is solved with a decomposition method
that uses column generation. The model is based on two exponential sets of vari-
ables: xs ∈ Z+ indicates the number of stack-plans s ∈ S that is part of the solution,
and yil ∈ {0, 1} indicates if at port i ∈ P the solution uses port-layout l ∈ Li. A
stack-plan indicates the position of j-containers (those being discharged at port j) in
the stack for all ports, and it is represented by the constant es

ijr, which is equal to 1

4.4. Literature Review 51

if stack-plan s includes r j-containers when leaving port i, and 0 otherwise. A port-
layout is represented by the constant ail

rs, which is equal to the number of stacks in
port-layout l for port i, that include r j-containers. The model is as follows:

min ∑
s∈S

csxs (4.1)

s.t ∑
l∈Li

yil ≥ 1 ∀i ∈ P (4.2)

∑
s∈S

es
ijrxs ≥ ∑

l∈Li

ail
jryil ∀(i, j) ∈ T , r ∈ R (4.3)

xs ∈ Z+ ∀s ∈ S (4.4)
yil ∀i ∈ P, l ∈ Li (4.5)

Each stack plan has an associated number of container moves cs, which are mini-
mized in objective (4.1). At each port of departure, constraint (4.2) ensures that at
least one port layout must be selected. The port-layout and the stack-plans variables
are linked together with constraint (4.3). Here, it is ensured that the model selects the
necessary stack plans to fulfill the port layout (where R is the set of possible quanti-
ties of stack plans). At last, we have the domain constraints (4.4)-(4.5). Recently, this
problem has been extended to multiple cargo weights and lengths for medium-sized
vessels [167, 169].

Regarding solution methods, construction heuristics are used to find upper bounds
in [18, 58]. Moreover, [177] suggests a branch-and-price framework to solve the
problem for medium-sized vessels, while [168] formulates a 0-1 IP with valid in-
equalities to improve the linear relaxation. A compact formulation of this 0-1 IP is
suggested in [167, 169]. Despite these efforts, exact methods struggle with solving
instances of large vessels. This motivates the use of heuristics, for which promising
results are found by GRASP and matheuristics [168, 167, 169]. Other heuristics, such
as genetic algorithms, beam search, and simulated annealing, can solve small vessel
instances [63, 22, 23].

The first benchmarks are proposed by [18], i.e. Mixed, Long, and Short instances that
refer to the expected time cargo is on-board. The Authentic instances by [58] have
ensured fully loaded vessels at each port, while the Required instances by [177] have
ensured the presence of shifts in optimal solutions.

Table 4.2 summarizes the computational results of the exact methods for the k-shift
problem, which contains formulations of [18], [177], [168]and [169]. The number
of optimal solutions and upper bounds (feasible solutions) are presented for each
method/formulation and instance group. All formulations, except PAP, can find
a feasible upper bound for almost every instance. Moreover, the contributions of
PCAR and RP find optimal solutions to almost each Long, Mixed, Short and Au-
thentic instance, while APSW and PAP achieve optimal solutions in most of those
instances. Nevertheless, only RP can find optimal solutions in 61 of the Required
instances.

4.4.2 Multi-Port Container Stowage Planning

In a realistic setting, stowage planners need to consider vessel conditions and cargo
forecasts at future ports in multi-port planning [56]. The goal is to find robust plans

52 Chapter 4. Literature Review

TABLE 4.2: Results summary of exact methods for the k-shift prob-
lem. Column Inst. group indicates the instance group, while column
shows the number of instances in each group. Two columns are
presented for each method: Opt. indicating the number of optimal
solutions found and UB indicating feasible solutions. The four meth-

ods are [18] (APSW), [168] (PAP), [169] (PCAR), and [177] (RP).

APSW PAP PCAR RP
Inst. Group # Opt. UB Opt. UB Opt. UB Opt. UB
Short 81 78 81 79 79 81 81 81 81
Mixed 81 78 81 77 77 81 81 81 81
Authentic 81 77 81 72 81 79 81 81 81
Long 81 76 81 76 81 81 81 81 81
Required 81 1 81 13 60 14 81 61 79

that maximize vessel utilization and minimize operational costs during the voyage
while satisfying constraints that ensure, for example, seaworthiness and safety.

Table 4.3 shows the classification of multi-port work (including the k-shift prob-
lem), from which it can be derived that little consensus exists on the modeling of
cargo weights and stability. Most contributions combine stability with varying cargo
types, e.g., varying cargo weights [137, 90, 169], or special cargo as reefers and dan-
gerous goods [82, 137, 42]. Vessel stability constraints are also extended with hydro-
static calculations such as shear forces [195, 160] and bending moments [35]. The
contributions by [107, 22, 23, 135] approximate stability as [12] by balancing cargo
weight with respect to the vertical, longitudinal and transversal dimensions. There
is, however, also work that disregards hydrostatics in order to focus on other com-
binatorial aspects (e.g., [18, 226, 159]).

Most studies in Table 4.3 aim to minimize load and discharge moves or mandatory
restows. There are, however, two exceptions, namely, voluntary restows (e.g., [18,
58, 177]) and not allowing restows [135, 177, 159]. Furthermore, earlier work consid-
ers hatch restows (e.g., [195, 109, 160]), while stowage plans with crane operations
are more frequently recurring (e.g., [82, 23, 42]). In less frequent cases, block stowage
strategies are proposed by [226, 137, 159], and ballast water is modeled in [195, 35].
Lashing forces are only considered in [195].

At the core of multi-port stowage is the planning of loading and discharging contain-
ers (i.e., shifts), voluntary restows, and efficient port operations. The minimization
of restows (whether voluntary or not) can be traced back to [35], which modeled two
decision variables to load or remove container c into/from a slot with bay b, row r,
and tier t at any port p between loading port l and discharge port d. However, this
formulation was not broadly adopted by the community as it was too complex when
vessel stability was to be considered. The previously discussed k-shift problem can
be seen as the continuation of the work of [35], where vessel stability is disregarded.
The work by [109] assigns cargo to blocks and subsequently creates stacks ordered
by destination and weight, thereby reducing mandatory restows. This assignment
formulation often scales to medium-sized vessels (e.g., [107, 82, 160]). It is extended
to a stochastic program with uncertain container weights [135] and a block stowage
problem with crane intensity [159]. This assignment problem coincides with the
combination of the master and slot planning problems in Subsections 4.4.2 and 4.4.2;
we refer to those models for an example of the formulation.

4.4. Literature Review 53

TABLE 4.3: Classification of multi-port container stowage planning
problems

Paper Cargo Hydro CSPP aspects Obj Sc HD Solution methods
[195] Class Rich MinRe, HR, BW, La, RF PS, VU, H M Greedy
[35] Mix Rich VolRe, HR, BW PS S ✓ Exact/TreeB
[19] Uni None VolRe PS S Greedy
[18] Uni None VolRe PS S Greedy
[226] Class None MinRe, HR, CO, BS, DG, RF PS, VU S ✓ Exact/NeighMeta
[63] Uni Stab VolRe PS S PopulMeta
[109] Class Stab MinRe, HR PS M ✓ Greedy/TreeB
[107] Class Equi MinRe, DG, RF PS M ✓ Exact/NeighMeta
[82] Mix Stab MinRe, CO, DG, RF PS M PopulMeta
[137] Class Stab MinRe, HR, CO, BS, DG, RF PS, VU, H M Greedy/NeighMeta
[160] Mix Rich MinRe, HR, CO, RF PS M ✓ Exact/NeighMeta
[22] Uni Equi VolRe PS, H S NeighMeta, TreeB, PopulMeta
[58] Uni None VolRe PS M Greedy
[90] Mix Stab MinRe PS, H S PopulMeta
[23] Uni Equi VolRe, CO PS S PopulMeta
[135] Class Equi NARe VU S NeighMeta, Exact
[159] Class None NARe, CO, BS PS L NeighMeta
[177] Uni None VolRe, NARe VU M Exact
[168] Uni None VolRe PS L Exact, NeighMeta
[167] Class Stab VolRe PS L Exact, MatHeu, NeighMeta
[169] Class Stab VolRe PS M Exact, MatHeu
[42] Mix Stab MinRe, CO, (DG), RF PS S PopulMeta

An optimal solution to a representative multi-port problem is yet to be found. Due
to the complexity of the multi-port CSPP, many attempted to address it by dividing it
into separate master and slot planning subproblems using decomposition methods
[35, 226, 109, 107, 160]. Several different combinations of solution methods were pre-
sented. The early work of [35] suggests a hierarchical decomposition that combines a
0-1 IP with an enumeration tree. Consequently, hybrids of exact and neighborhood-
based methods [226, 107, 160] or greedy and tree-search heuristics [109] are proposed
to solve master and slot planning sequentially.

Early computational experiments have been published by [109], who iteratively solves
the problem at each port and adds constraints to the MPP to minimize restows. In
[160], we instead see a focus on larger problem instances and an increased complex-
ity of SPP constraints. The decomposition is similar to the one proposed in [109] but
without iterative interaction between MPP and SPP. Though the experiments are
based on very different hardware, it is still possible to analyze the impact of vessel
size and the number of planned ports on the computation time. Figure 4.5 shows a
plot of the reported execution time from the two papers. An analysis of the results
shows a weak negative correlation between the vessel size and the execution time (-
0.29). In contrast, a stronger correlation appears between the execution time and the
number of ports (0.67). The red line in the figure shows the increasing linear trend
of the results3. The collected data is shown in Table A.1 of Appendix A.1. As many
publications only include computational studies over single instances, we could not
include more experiments in this comparison.

Recent contributions have proposed heuristic frameworks to deal with multi-port
problems, such as genetic algorithms [82, 90, 42], (large) neighborhood search [159,
135], or a framework of greedy and tabu-search heuristics [137]. Despite their algo-
rithmic efficiency, more computational studies on a general problem definition with
benchmark instances are needed to verify the findings.

3The analysis was done discarding results where the algorithm timed out. Also, 2 results with
extremely long runtimes were considered outliers.

54 Chapter 4. Literature Review

4 5 6 7 8 9 10
0

200

400

Num. ports

So
lu

ti
on

ti
m

e
(s

.)

FIGURE 4.5: Execution time over the number of ports in the tested
instance [160, 109]. In red is the linear trend line.

TABLE 4.4: Classification of master planning problems

Paper Cargo Hydro CSPP aspects Obj Sc Solution methods
[161] Class Rich BW, RF H L Exact
[158] Class Rich (MinRe), HR, CO, RF PS M NeighMeta
[8] Class Equi HR, CO, RF PS L MatHeu
[9] Class Equi HR, CO, RF PS L Exact
[10] Class Equi HR, CO PS, VU M Exact, MatHeu
[11] Class Rich HR, CO, RF PS L Exact, MatHeu
[111] Class Rich HR, CO, DG, RF PS, VU L Exact
[31] Class Rich MinRe, HR, BW PS, H L Exact/NeighMeta
[43] Class None HR PS, VU M Exact

Despite the many implementations in Table 4.3, it is challenging to compare their
performance adequately. On the one hand, little consensus exists on a general prob-
lem definition or benchmark instances. Hence, the problem is attempted to be solved
from different angles.

In the following subsections, publications concerning solely MPP and SPP are pre-
sented and compared, supplemented by relevant mathematical models. Notice that
the two models can trivially be combined into a single multi-port container stowage
planning model (though very likely not an efficient model).

Master Planning

Though it is an important part of the hierarchical decomposition that many researchers
use, the SPP (when solved heuristically) has a minor impact on the runtime of the
solution approach and its general objectives. For that reason, a number of schol-
ars find it legitimate to focus their studies on solving the Master Planning Problem
(MPP).

The MPP aims to allocate cargo to subsections of bays. Those are often called lo-
cations [160] or blocks [48]. A block can either be a logical grouping of containers
or be defined by the position of the hatch covers. The assignment of containers to
blocks must ensure that the vessel is seaworthy while minimizing the handling time
of the vessel. The state-of-the-art model for this problem is based on the formulation
of [160], and is as follows. The notation for the sets and parameters of the model is
presented in Tables 4.5 and 4.6.

The formulation is based on a main set of decision variables indicating the number
of containers of a specific type to be stowed on a block during a transport leg. Other

4.4. Literature Review 55

TABLE 4.5: Common sets for the MPP

Sets
B The set of bays
BL The set of blocks
BLb The set of blocks in bay b ∈ B
BLO The set of blocks over deck
BLU

l The set of blocks below deck under block l ∈ LO

Bin The set of adjacent bays (b1, b2) ∈ B× B
T The set of container types
T{20,40,R} The set of 20-, 40-foot and Reefer container types
P The set of ports
TR The set of transports (port pairs (o, d) ∈ P× P, o < p)
TRON

p The set of transports (o, d) ∈ TR where o < p and d > p
TRA

p The set of active transports at port p ∈ P where (o, d) ∈ TR where
o = p or d = p

TROV
p The set of overstowing transports at port p ∈ P where (o, d) ∈ TR

where o < p and d > p

TABLE 4.6: Common parameters of the MPP

Parameters
K{20,40,R}

l The 20-,40-foot, and Reefer capacity of block l ∈ L
TEUτ The Twenty-Foot Equivalent units of container type τ ∈ T
Wτ The weight of container type τ ∈ T
Lτ The length of container type τ ∈ T
LDτ

t The number of container of type τ ∈ T to be loaded for
transport t ∈ TR

Rτ
p,l The number of containers of type τ ∈ T, already on board

the vessel with destination p ∈ P.
WK

b The lightship weight at bay b ∈ B
Wmax

l The maximum weight limit of block l ∈ L
Dp The total displacement of the vessel leaving port p ∈ P
CGα

l The center of gravity components α ∈
L = LCG, V = VCG, T = TCG of block l ∈ BL

CGα
b The center of gravity components α ∈

L = LCG, V = VCG, T = TCG of bay b ∈ B
LCG{Min,Max} The limits for the vessel’s longitudinal center of gravity
VCG{ax} The maximum vertical center of gravity of the the vessel
TCG{Min,Max} The limits for the vessel’s transversal center of gravity
Shear{Min,Max}

b The shear limits at bay b ∈ B

indicator variables are used for the calculation of the objective value. A description
of the variables follows.

56 Chapter 4. Literature Review

xτ
tl ∈ Z+ The number of containers of type τ ∈ T stowed in block l ∈ L

during transport t ∈ TR.
δpl ∈ B Stowage indicator equal to 1 if any load or discharge containers

are present in block l ∈ L at port p ∈ P.
yO

pl ∈ R+ The number of hatch-overstow containers in block l ∈ L at port
p ∈ P

yT
p ∈ R+ The long-crane (or makespan lower bound) at port p ∈ P.

Following is the mathematical formulation and its description.

min ∑
p∈P

(
CTyT

p + ∑
l∈L
COyO

p l

)
(4.6)

s.t.

∑
l∈L

xτ
tl = LDτ

t ∀τ ∈ T, t ∈ TR (4.7)

xτ
(1,p)l = Rτ

p ∀τ ∈ T, p ∈ P (4.8)

∑
t∈TRON

p

∑
τ∈T

TEUτxτ
tl ≤ K20

l ∀p ∈ P, l ∈ L (4.9)

∑
t∈TRON

p

∑
τ∈Tα

xτ
tl ≤ Kα

l ∀p ∈ P, l ∈ L, α ∈ {20, 40, R} (4.10)

∑
t∈TRON

p

Wτxτ
tl ≤Wmax

l ∀p ∈ P, l ∈ L (4.11)

∑
b∈B

WK
b CGL

b + ∑
t∈TRON

p

∑
l∈L

CGL
l Wτxτ

tl ≥ LCGMinDp ∀p ∈ P (4.12)

∑
b∈B

WK
b CGL

b + ∑
t∈TRON

p

∑
l∈L

CGL
l Wτxτ

tl ≤ LCGMaxDp ∀p ∈ P (4.13)

∑
b∈B

WK
b CGT

b + ∑
t∈TRON

p

∑
l∈L

CGT
l Wτxτ

tl ≥ TCGMinDp ∀p ∈ P (4.14)

∑
b∈B

WK
b CGT

b + ∑
t∈TRON

p

∑
l∈L

CGT
l Wτxτ

tl ≤ TCGMaxDp ∀p ∈ P (4.15)

∑
b∈B

WK
b CGV

b + ∑
t∈TRON

p

∑
l∈L

CGV
l Wτxτ

tl ≤ VCGMaxDp ∀p ∈ P (4.16)

b

∑
b′=1

WK
b′ + ∑

l∈BLb′
∑
τ∈T

∑
t∈TRON

p

Wτxτ
tl

 ≥ ShearMin
b ∀p ∈ P, b ∈ B (4.17)

b

∑
b′=1

WK
b′ + ∑

l∈BLb′
∑
τ∈T

∑
t∈TRON

p

Wτxτ
tl

 ≤ ShearMax
b ∀p ∈ P, b ∈ B (4.18)

∑
τ∈T

∑
t∈TRA

p

∑
l′∈BLU

l

xτ
tl′ ≤ Mδpl ∀p ∈ P, l ∈ BLO (4.19)

∑
τ∈T

∑
t∈TROV

p

xτ
tl −M(1− δpl) ≤ yO

p ∀p ∈ P, l ∈ BLO (4.20)

∑
b∈N

∑
τ∈T

∑
t∈TRON

p

∑
l∈B

xτ
tl ≤ yT

p ∀p ∈ P, N ∈ Bin (4.21)

4.4. Literature Review 57

The formulation minimizes the makespan and the hatch overstowage at each port (4.6).
Constraint (4.7) ensures that all cargo must be stowed on the vessel, while con-
straint (4.8) enforces that cargo already on board does not change position. The total
block capacity, the type-specific block capacity, and the block weight capacity are
constrained by (4.9), (4.10), (4.11), respectively. To ensure vessel stability, the longi-
tudinal, transversal, and vertical centers of gravity are constrained within the given
limits by constraints (4.12) - (4.16).Constraints (4.17) and (4.18) impose minimum
and maximum levels for the shear forces that act on the vessel.

Using an indicator variable, constraint (4.19) identifies, for each port, blocks below
deck that require container moves. Should those container moves be blocked by
containers on-deck, they will be captured in constraint (4.20) as overstowing. Finally,
the bay pair with the maximum number of movements at each port is identified with
constraint (4.21), representing the makespan.

Table 4.4 compares publications and shows trends in master planning research. In
the MPP, cargo is grouped by weight and sorted into corresponding weight classes
(the knowledge of the true container weights is less important when building a mas-
ter plan). While reefer containers are included in most test instances, only one study
handles dangerous cargo [111].

The problem formulations tend to include hydrostatic calculations of varying de-
grees, often more than trim and GM estimations. [10, 8, 9] based hydrostatics calcu-
lations on a bit older and less accurate model including equilibrium consideration
that entails balancing weights on the vessel [12]. [11] uses a richer stability model
that includes trim, GM, and shear forces. [43] did not consider stability constraints
in their problem definition at all but focused instead on a new IP formulation based
on a minimum-cost flow problem with a multi-commodity network structure. The
objective function contains the cost of the assignment of a container and the cost of
using extra bays.

There are only a few studies that allow using ballast water to fix possible instabilities
[161, 31]. [161] proposed an IP with an approximation of the displacement and a
linearization of the center of gravity calculations to include the effect of the ballast
water on the hydrostatic values.

The objective function mostly included balancing crane work and minimizing hatch
restows, but some of the formulations also focused on maximizing vessel utilization
in addition to port stay optimization [10, 111, 43]. While accounting for unnecessary
hatch cover moves is considered in the MPP publications, there is rarely a focus on
minimizing restows within blocks. Only [31, 158] presented related constraints.

From a mathematical modeling point of view, most models ([158, 11, 111, 31]) are
inspired by or extensions of the formulation proposed by [12] and [160]. The only
scientific work that has proposed a different formulation is that of [43], where the
problem is modeled using a network-flow representation.

A summary of the solution methods is shown in Table 4.4. [8, 11] introduced the
use of matheuristics that decompose the MIP. Firstly, an assignment of container
destinations to blocks was found by solving the relaxed MIP with linearly relaxed
variables indicating the assignment of containers to blocks. Secondly, a heuristic

58 Chapter 4. Literature Review

called the progressive random fixing procedure was used to obtain the feasible so-
lution, where the assignment of container destinations to blocks is given from the
previous phase, and there is no relaxation of the MIP. [9, 10] introduced two MIP
formulations: the first one was a binary representation of the problem, and the sec-
ond one expressed the number of containers in TEU and resulted in a more compact
formulation. For the solution approach, the authors proposed to primarily solve a
relaxation of the second model and then use its solution as input for solving the first
model. [158] explored the use of large neighborhood search with the results from a
relaxed IP as a warm start. [31] proposed a heuristic, where, firstly, a problem was
solved with relaxed trim constraints, and, secondly, a local search was performed to
fix eventual instabilities.

By looking at Table 4.4, we can observe that most of the proposed approaches were
tested against large instances (above 15,000 containers).

Though the problems and the formulations are very similar, the lack of a common
benchmark has made it impossible to compare results. To remedy this situation, we
propose a new set of publicly available benchmark instances based on the vessel
data from [130]. For each of the 3 available vessels, 2 random instances are gener-
ated for each combination of ports {5, 7, 10} percentage of cargo already on board
{0%, 15%, 30%} and vessel utilization {60%, 70%, 80%}. The cargo list simulates an
ocean-going service where the long-haul leg (sailing from one region to another)
guarantees the provided vessel utilization. The benchmark has a total of 162 in-
stances, all of which are available at https://doi.org/10.11583/DTU.22293412.

Given this new set of benchmark instances, comparing the efficiency of the assignment-
based [160] and the network-flow formulation [43] is now possible. As mentioned
before, the network-flow formulation does not include any stability constraints and
enforces zero hatch overstowage. The assignment-based formulation has thus been
adjusted to follow this problem definition. [43] proposes an objective function that
diverges from the makespan minimization from the literature. Unfortunately, its
description is not accurate enough to be reproduced, hence, we modified the for-
mulation to minimize the makespan as described in [160]. We have also corrected
the capacity constraints since, in the original work, they were posted per container
type and not for the block as a whole (the modified [43] formulation is presented in
Appendix A.2).

TABLE 4.7: Runtime comparison of relaxation of the network-flow
and the assignment-based formulation for the MPP without stability

constraints

[43] [160]
Vessel Ports Objective Time Objective Time

Small
5 1544.33 5.41 1544.33 2.48
7 1922.61 21.15 1922.61 9.77

10 2326.74 588.16 2326.74 47.04

Medium
5 1936.94 6.16 1936.94 3.25
7 2425.49 27.86 2425.49 12.78

10 2326.74 588.16 2326.74 47.04

Large
5 2713.70 53.16 2713.68 16.62
7 3376.71 1406.08 3376.60 450.90

10 - - 3821.90 756.61

Table 4.7 shows the solution time comparison between the two formulations. The

https://doi.org/10.11583/DTU.22293412

4.4. Literature Review 59

TABLE 4.8: Runtime comparison of the network-flow and the
assignment-based formulation for the MPP without stability con-

straints

[43] [160]
Vessel Ports Objective MIP Gap Time Objective MIP Gap Time

Small
5 1546.17 0% 22.51 1546.17 0% 22.81
7 1925.83 0% 344.28 1925.83 0% 77.97
10 2328.83 0% 2295.48 2329.00 0% 1254.14

Medium
5 1939.33 0% 65.80 1939.33 0% 13.54
7 2428.50 0% 117.70 2428.50 0% 70.60
10 2328.83 0% 2295.48 2329.00 0% 1254.14

Large
5 3063.00 9% 3202.49 2726.00 0% 3023.26
7 4750.00 21% 3604.85 3445.17 2% 3600.04
10 6422.00 38% 3600.14 4210.00 5% 3600.09

first three columns indicate the vessel’s size, the number of ports, and the number
of instances solved. Six instances are solved for each of these combinations, which
represent all the instances in the benchmark for which the ROB condition is empty
(needed due to the hatch overstow constraint). The next two columns are the op-
timal solution and the time needed to find it. Notice that the problem is solved in
the relaxed version, with continuous decision variables. As can be seen, both for-
mulations can find optimal solutions to this relaxed problem within a reasonable
time for small and medium-sized vessels. The network-flow formulation, however,
is clearly underperforming, possibly due to the increasing number of arcs needed as
the number of ports increases. The network-flow formulation was not able to find
feasible solutions to any of the largest instances (large vessel and 10 ports), while the
assignment-based formulation timed out (3600 sec.) only for two of those instances.

Table 4.8 presents the results of the two formulations without the relaxation of the
decision variables. The table includes an extra column representing the gap between
the returned solution and the lower bound (MIP Gap). The results resemble those of
Table 4.7, where the formulations struggle as the instances increase in size.

Despite the fact that the network-flow formulation performs worse than the assignment-
based formulation, further studying its application can be interesting as such formu-
lations are well-studied for decomposition methods.

TABLE 4.9: Aggregated results of the assignment-based formulation
to the complete problem with relaxed decision variables

Vessel Ports N. Inst. Sol/Opt MIP Gap Obj. HO MK Time

Small
5 18 18(18) 0% 3497.69 4.00 1575.56 12.04
7 18 18(18) 0% 4752.69 7.61 1936.18 42.82
10 18 18(18) 0% 4751.59 5.87 2340.71 192.68

Medium
5 18 18(18) 0% 4820.40 6.06 1964.94 17.15
7 18 18(18) 0% 6260.96 8.61 2433.34 70.09
10 18 18(18) 0% 5843.55 8.16 2943.79 312.38

Large
5 18 18(18) 0% 6598.71 7.39 2782.16 28.93
7 18 18(18) 0% 8440.38 7.44 3434.99 163.23
10 18 18(18) 0% 6862.35 6.33 4151.48 1301.05

Tables 4.9 and 4.10 report the results of the assignment-based formulation on a rich
version of the CSPP, where stability and shear-force constraints are included. The

60 Chapter 4. Literature Review

TABLE 4.10: Aggregated results of the assignment-based formulation
to the complete problem

Vessel Ports N. Inst. Sol/Opt MIP Gap Obj. HO MK Time

Small
5 18 18(14) 0% 3501.44 6.39 1579.22 1228.37
7 18 17(8) 1% 4532.12 8.18 1943.88 2923.58
10 18 0(0) - - - - -

Medium
5 18 15(14) 0% 4691.73 5.80 1905.07 1243.34
7 18 10(4) 25% 17796.50 37.60 2626.50 3076.16
10 18 2(0) 19% 6936.50 10.00 2736.50 3600.16

Large
5 18 9(0) 1% 6550.44 8.44 2583.78 3600.14
7 18 0(0) - - - - -
10 18 7(0) 82% 108633.00 262.71 5290.14 3600.27

TABLE 4.11: Classification of slot planning problems

Paper Cargo Hydro CSPP aspects Obj Sc Solution methods
[162] Mix None MinRe, RF PS, VU L NeighMeta
[56] Mix None MinRe, RF PS, VU L Exact
[166] Mix None MinRe, DG, RF PS, VU M NeighMeta
[232] Mix None MinRe PS S Greedy/PopulMeta
[105] Mix None MinRe PS S Exact
[112] Mix None MinRe, DG, RF PS, VU M Exact
[124] Mix None MinRe, RF PS, VU L MatHeu
[176] Mix None MinRe, RF PS, VU L NeighMeta

formulation minimizes hatch overstowage and crane makespan. Both tables report
aggregated results grouped by vessel size and the number of planned ports (columns
1 and 2). The tables also report the number of instances in each group (N. Inst.),
the number of instances solved and which of those are optimal (Sol/Opt), mean
values of the optimality gap reported by the solver (MIP Gap), the mean of the ob-
jective function (Obj.), the mean number of hatch overstows (HO), the mean of the
makespan (MK), and the average runtime (Time).

It can be easily seen from the tables that as the vessel size and the number of ports
increase, so does the time required by the solver to find solutions. For the version of
the problem where the assignment variables are relaxed, it is possible to find optimal
solutions for all the instances within the 3600 sec. time limit used in the experiments.
Without the variable relaxation (Table 4.10), it is hard to find feasible solutions even
for instances with a small vessel. The full set of results can be found in Appendix A.1.

Slot Planning

The goal of the SPP is to create a complete stowage plan, where containers are as-
signed to slots based on the outcome of the MPP. The mathematical model proposed
by [166] is an enriched version of the model by [57]. It is based on the binary deci-
sion variable cijk, which indicates if a container i ∈ I is stowed in cell k ∈ Kj of stack
j ∈ J. Set I is divided into two sets of 20’ T and 40’ containers F. The model is as
follows:

SPP model

min α1(|I| −∑
i∈I

∑
j∈J

∑
k∈Kj

cjki) + α2 ∑
j∈J

∑
k∈Kj

ojk + α3 ∑
j∈J

∑
d∈D

pjd + α4 ∑
j∈J

ej

4.4. Literature Review 61

+ α5 ∑
j∈J

∑
k∈Kj

(Rjk ∑
i∈F

cjki(1− Rc
i) + ∑

i∈T
(

1
2

Rjk − Rc
i)) (4.22)

1
2 ∑

i∈T
cj(k−1)i + ∑

i∈F
cj(k−1)i −∑

i∈F
cjki ≥ 0 ∀j ∈ J, k ∈ Kj − {1} (4.23)

∑
i∈T

cjki + ∑
i∈T

cj(k−1)i ≤ 0 ∀j ∈ J, k ∈ Kj − {1} (4.24)

1
2 ∑

i∈T
cjki + ∑

i∈F
cjki ≤ 1 ∀j ∈ J, k ∈ Kj (4.25)

1
2 ∑

j∈J
∑

k∈Kj

cjki ≤ 1 ∀i ∈ I (4.26)

∑
i′∈T

cjki′ − 2cjki ≥ 0 ∀j ∈ J, k ∈ Kj, i ∈ T (4.27)

∑
i∈I

Rc
i cjki − Rjk ≤ 0 ∀j ∈ J, k ∈ Kj (4.28)

∑
k∈Kj

∑
i∈I

Wc
i cjki ≤Ws

j ∀j ∈ J (4.29)

∑
k∈Kj

(
1
2 ∑

i∈T
Hc

i cjki + ∑
i∈F

Hc
i cjki) ≤ Hs

j ∀j ∈ J (4.30)

d−1

∑
d′=1

(∑
i∈F

Aid′cjk′i +
1
2 ∑

i∈T
Aid′cjk′i) ≤ ujkd ∀j ∈ J, k ∈ Kj, k > 1,

k′ ∈ K, k′ < k, d ∈ D, d > 1,
d′ ∈ D, d′ < d (4.31)

∑
i∈F

Aidcjki + ujkd ≤ 1 + ojk ∀j ∈ J, k ∈ Kj, d ∈ D (4.32)

1
2 ∑

i∈T
Aidcjki + ujkd ≤ 1 +

1
2

ojk ∀j ∈ J, k ∈ Kj, d ∈ D (4.33)

|Kj|ej − (∑
i∈F

cj1i +
1
2 ∑

i∈T
cj1i) ≥ 0 ∀j ∈ J (4.34)

|Kj|pjd − ∑
k∈Kj

(∑
i∈F

Aidcjki +
1
2 ∑

i∈T
Aidcjki) ≥ 0 ∀j ∈ J, d ∈ D (4.35)

cjki = 1 ∀(j, k, i) ∈ L (4.36)

|Kj|vjm

− ∑
k∈Kj

(∑
i∈F,Mi=m

cjki +
1
2 ∑

i∈T,Mi=m
cjki) ≥ 0 ∀m ∈ M, j ∈ J (4.37)

vjm1 + v(j+1)m2
≤ 1 ∀j ≤ |J| − 1, (m1, m2) ∈ IMO (4.38)

vjm1 + vjm2 ≤ 1 ∀j ≤ J, (m1, m2) ∈ IMO (4.39)

Constraints (4.23) and (4.24) guarantee that stacking rules are applied, and con-
straints (4.25) and (4.26) ensure compliance with cell capacities. Constraint (4.27)
ensures that there are no unpaired 20’ containers in cells, and constraint (4.28) en-
forces that reefer containers are stowed in reefer slots. Constant Rjk expresses the
number of reefer plugs in cell k, and Rc

i indicates if container i is a reefer. Stack

62 Chapter 4. Literature Review

height (Hs
j) and weight (Ws

j) limits are respected in constraints (4.29) and (4.30). Con-
straints (4.31 - 4.33) guarantee accurate tracking of restow containers ojk, for both 20’
and 40’ containers separately. Set D denotes different PODs. The auxiliary variable
ujkd identifies if a container below cell k of stack j has to be unloaded before port
d. To accurately reflect stacks containing stowed containers, an auxiliary variable ej
is incorporated into constraint (4.34). Constraint (4.35) establishes variable pjd that
indicates whether at least one container in stack j must be unloaded at port d. Con-
straint (4.36) ensures that already loaded containers in previous ports will stay on
board. Constraints (4.37 - 4.39) enforce the IMDG segregations rules, where M is the
index set of IMDG categories, IMO is a set of category pairs that require segrega-
tion and auxiliary variable vjm says if at least one IMDG container of category m is
stowed in stack j. The objective function (4.22) has five elements, where the goal is
to minimize the number of left-out containers, the number of restow containers (ojk),
mixing containers with different PODs (pjd), number of stacks with containers (ej),
number of non-reefer containers in reefer slots.

Table 4.11 provides a summary of the literature concerning exclusively the SPP.
As the table shows, some of the important constraints, e.g., hydrostatics or hatch
restows, are not present in the problem formulations. Since the output of the MPP is
the input for the SPP, and these constraints are already fulfilled in the MPP part of
the problem, they can be ignored in this phase.

There is more consensus reached on the SPP than on the MPP. A plausible reason is
that a common definition of the problem and a set of benchmark instances have been
available since the publication of [57]. The proposed formulation was an inspiration
to several researchers in this area. This is seen in Table 4.11, where the definitions
of the problem are quite uniform. [57] considered a wide spectrum of container
types, including reefers and highcubes, and important low-level constraints, includ-
ing stacking rules and capacity constraints. The objective function contained several
aspects of the CSPP: minimizing port stay by avoiding unnecessary crane moves,
consolidation by minimizing the number of used stacks, and preserving reefer slots
for reefer containers. The assumption is that all the containers from the load list can
be stowed in the block. [166] modified the objective function based on the fact that
not all containers can be stowed in their proposed formulation, so the aim is to load
most of them. Since we need to solve the SPP for every block on the vessel sepa-
rately, the computation time of the proposed approach has to be low, such that the
whole process of creating a slot plan is finished in a reasonable time. A slot plan for
one block should be created ideally in less than one second [56].

What is important to underline is that the model proposed by [57] considered only
creating stowage plans for below-deck stacks. This made it possible to ignore con-
straints related to lashing, line of sight, and 45’ containers. The study of [112, 105]
took the on-deck section of the vessel into account by using arbitrary height or
weight limits to mimic, in a simple way, lashing constraints.

[166, 112] introduced the handling of hazardous cargo and segregation rules in the
SPP. [105, 232] included port operations objectives by minimizing restow containers
on the yard and crane moves while loading and discharging the vessel.

4.4. Literature Review 63

Table 4.11 shows the solution methods suggested for the SPP. [57, 56] proposed con-
straint programming (CP) with the usage of, among others, symmetry-breaking con-
straints and branching strategies to achieve better computation time. Constraint-
based local search (CBLS) explored by [162] and [166] proposed a Greedy Random-
ized Adaptive Search Procedure (GRASP). A hybrid method involving A* and a Ge-
netic Algorithm (GA) was developed by [232]. A* was used to find a feasible load-
ing sequence, and GA was used to find a feasible allocation of containers to slots. A
fuzzy logic algorithm with a rule-based search was presented in [176]. Additionally,
a matheuristic was developed by [124]. It combined a large neighborhood search
with a mathematical solver to iteratively destroy and rebuild parts of the solution.

Table 4.12 shows a comparison between all the slot planning approaches that have
adopted the benchmark taken from the work of [57]. The first column indicates the
instance group (we refer the reader to [56] for a detailed description), and the second
the number of instances in that group. Next, the table is divided into 6 sections each
representing the results of a publication: CBLS is the constraint-based local search
of [163], IP is the integer programming formulation of [56] (with 10 seconds time
limit), CP is the constraint programming model of [57] (with 10 seconds time limit),
Fuzzy is the fuzzy logic approach of [176], Matheuristic is the matheuristic approach
of [124], and GRASP is the GRASP approach of [166] (run for 1 second). For each
of the publications, the table reports the percentage of feasible solutions (Sol) and
optimal solutions (Opt) found, plus the time used to compute all the instances in the
group. The best results are highlighted in bold.

TABLE 4.12: Slot planning methods summary

CBLS IP (10s) CP(10s)
Group Inst Sol Opt Time Sol Opt Time Sol Opt Time

1 13 100 59 0.10 100 100 1.80 100 100 0.10
2 22 100 77 3.60 95 91 50.40 31 91 21.60
3 13 100 92 0.50 92 85 35.30 100 100 0.50
4 78 100 92 6.00 96 94 87.00 99 99 19.70
5 36 97 58 7.10 72 56 192.00 92 92 39.00
6 15 93 80 1.20 100 93 13.00 100 100 5.40
7 14 93 79 2.30 64 29 102.80 64 64 53.50
8 14 93 43 1.50 79 64 74.10 93 93 10.50
9 17 94 47 5.20 53 41 112.30 88 88 36.50

10 8 100 88 0.70 88 62 31.50 100 100 0.70
11 6 50 17 1.30 67 50 30.50 83 83 10.30

Fuzzy Matheuristic GRASP (1s)
Group Inst Sol Opt Time Sol Opt Time Sol Opt Time

1 13 100 100 4.52 100 100 1.30 100 100 6.30
2 22 100 95 8.12 95 86 12.10 100 100 15.40
3 13 100 100 5.10 92 92 8.00 100 100 7.80
4 78 100 100 28.32 100 100 17.70 100 99 37.30
5 36 100 94 16.41 89 83 29.40 100 94 22.30
6 15 100 93 4.68 100 100 2.50 100 100 6.00
7 14 100 71 6.66 86 71 11.00 100 93 9.00
8 14 100 100 6.40 100 79 5.40 100 100 6.10
9 17 100 82 8.69 94 76 13.00 94 82 12.30

10 8 94 88 3.33 100 88 2.50 100 100 4.80
11 6 100 67 2.56 83 83 3.30 100 83 3.20

The results in Table 4.12 cannot be fully compared as experiments have been run

64 Chapter 4. Literature Review

on different hardware. That said, the CPUs used in [124] and [176] are compara-
ble, and even though the hardware used in [166] is older, it can be assumed that
some improvement can be expected if run on modern machines. With this in mind,
the table shows a clear improvement from the original work of [57, 163]. Feasi-
ble solutions have been found for all instances, and only for a few instances, op-
timal solutions do not exist. Given these results, this set of benchmarks seems to
have achieved its purpose. In [166], it was pointed out that the benchmark contains
a very limited set of discharge ports, which reduces drastically the complexity of
restows, and hence propose a more challenging set of instances and a revised ver-
sion of the problem, including a load maximization objective and the handling of
dangerous goods. On the one hand, this new set of benchmark instances brings new
challenges to the problem. On the other hand, it is less representative of the kind
of instances that a slot planning problem will face when being part of a decompo-
sition algorithm. In the latter case, it is to be expected that the master plan will
ensure to have as many containers as possible with the same discharge port. The
new benchmark from [166] (including the set of instances from [57]) can be found at
https://doi.org/10.11583/DTU.22284475.

A different direction is taken by [112], where the focus is on the modeling of a large
set (compared to that of [166]) of rules for dangerous goods. Unfortunately, the pub-
lication did not present the mathematical formulation and did not present results
on the original benchmark. The new instances generated in [112] can, however, be
found at https://doi.org/10.11583/DTU.22293991 and be used for future compari-
son.

4.4.3 Single-Port Container Stowage Planning

The high impact that a stowage plan of an earlier port can have on later ports is what
dictates the inclusion of cargo forecasts and, as a consequence, the solution of multi-
port versions of the problem. Single-port versions of the problem are, however,
still interesting as they can be seen as more lightweight operational plans or as sub-
problems [56].

Table 4.13 shows the classification of the single-port studies in this review. From
the table, it is easy to see a general consensus that contributions must include the
modeling of several container types and some aspects of vessel stability. A notice-
able exception is the work of [56, 194], where a weight distribution of the cargo is
assumed to be an input to the algorithms, and the work of [236], where no explana-
tion is given for this omission. In the studies of [189, 12, 13, 190, 7, 54, 134], vessel
stability is only considered as balanced weights on the four sections of the vessel
(bow, stern, port, and starboard). Works including more accurate measures are more
recent [47, 91, 237, 130, 65].

The vast majority of the literature focuses on the minimization of time at port, ei-
ther in the form of the time spent moving containers or in the minimization of the
number of restows. Only a subset of the studies, though, includes the modeling of
restows due to hatch covers [47, 56, 237, 130], only [130] and [190] includes work-
load distribution of the quay cranes, and a block stowage strategy is proposed in
[130]. As single-port models are a simplification of multi-port models, we refrain
from presenting a mathematical formulation, as it can be trivially derived by includ-
ing the stability constraints from the master planning model to the slot planning
formulation previously described.

https://doi.org/10.11583/DTU.22284475
https://doi.org/10.11583/DTU.22293991

4.4. Literature Review 65

All the mathematical models proposed for the single-port stowage planning prob-
lem use or adapt the formulation introduced by [12]. It is a four-index formulation
indicating whether a container c is assigned to a slot in bay b, row/stack r and tier
t. Exceptions are the work of [130], where symmetries in the container index are
broken by the modeling of container classes, and [237], where the decision variable
is split in two. The first variable assigns containers to blocks, and the second vari-
able assigns containers to tiers within blocks, thereby effectively abstracting away
the stack/row position. This formulation was able to solve problems up to 1000
TEUs, compared to the 198 TEUs of the original formulation [12]. The model by
[130] is deemed intractable even for medium-sized vessels (7300 TEUs; no data is
available for smaller vessels). The formulation has also been extended to integrate
other problems: the blocks relocation problem [134], and barge assignment [65].

No efficient mathematical formulation or exact method has yet been found that can
solve the single-port container stowage problem for real-size vessels, which explains
the focus of the literature on heuristic approaches. Most solution methods rely on
metaheuristics. Local search procedures that exchange containers with the aim of
solving vessel stability are used by [47, 13, 134]. Ant colony optimization is pro-
posed by [7], two genetic algorithms are introduced in [91, 65], and an adaptive
large neighborhood search is presented in [130].

Construction heuristics are proposed by [189] and [56], where the latter is based on
a cargo distribution obtained with a linear program. Other approaches include a
heuristics branching procedure [190], a tree-search-based heuristics [236], and ma-
chine learning [194].

Though several approaches have been proposed, the lack of a common benchmark
and problem definition makes it hard to compare their performance. [130] has re-
cently published a benchmark (available at https://doi.org/10.11583/DTU.9916760)
in order to address this issue. Given that most approaches have been tested on rather
small instances, further research on their performance on larger instances is valu-
able.

TABLE 4.13: Classification of single-port container stowage planning

Paper Cargo Hydro CSPP aspects Obj Sc HD Solution methods
[47] Mix Stab NARe, RF PS, VU S Exact/NeighMeta
[189] Class Equi NARe, RF PS S Exact/Greedy
[12] Class Equi NARe PS S Exact
[13] Class Equi NARe PS S Exact/NeighMeta
[190] Class Equi NARe, CO PS S Exact/NeighMeta
[7] Class Equi NARe PS S NeighMeta
[56] Mix None NARe, RF VU L ✓ Exact/Greedy
[91] Class Stab MinRe PS, H S PopulMeta
[54] Class Equi NARe PS S Exact/Greedy
[194] Mix None MinRe PS S ML
[236] Mix None MinRe PS S TreeB
[134] Mix Equi MinRe, NARe PS S NeighMeta, Exact
[237] Mix Rich MinRe, HR, RF PS S Exact
[130] Class Rich MinRe, HR, CO, BS, RF PS, VU, H L NeighMeta
[65] Mix Stab MinRe, La PS, H S PopulMeta, Exact

4.4.4 Computational Complexity

Relatively little work has focused on the study of the computational complexity of
the CSPP. The first study focused on the complexity that stability constraints such
as metacentric limits had on single-stack (GM-OSOP) and multi-stack overstowage

https://doi.org/10.11583/DTU.9916760

66 Chapter 4. Literature Review

problems (GM-MSOP) with uniform cargo [15]. A polynomial time algorithm is
proved to exist for the GM-OSOP (with a time complexity ofO(m2n3), where m and
n refer to ports and containers respectively), while the computational complexity
of the GM-MSOP is conjectured to be NP-Complete. An extension of this work is
provided by [17], which presented an NP-Completeness proof based on a reduction
from the C-coloring problem of circle graphs, where C represents the number of
uncapacitated stacks (or the colors of the graph). The authors also proved that a
polynomial time algorithm exists for C < 4 and provided an algorithm to calculate
upper and lower bounds on the number of stacks needed to find a solution with
zero shifts. Further research [211] showed that the capacitated version of the k-shift
problem described in [17] can be solved in polynomial time for a fixed-sized vessel.
The exponent in the polynomial is too large for any practical use, but the proof can
be used to demonstrate that conclusions over experimental results conducted on a
single vessel are not representative of the problem’s complexity. Furthermore, [211]
studied the computational complexity of the Hatch Overstow Problem (HOP) and
showed that the assignment of containers over and below and hatch cover with at
most k hatch overstows is NP-complete by reduction from the set covering problem.

4.4.5 Other Relevant Publications

Some studies have focused on other aspects of stowage optimization than solving
the CSPP. They are presented in the following subsection.

An extension of the MPP to a selection problem was introduced by [50, 49, 113].
They considered a revenue management problem called cargo mix, where the goal
was to select which bookings to accept in each port of call to maximize profit. A
matheuristic was proposed in [50] composed of 3 stages: generating schedules of
discharge ports by solving the longest path problem in an acyclic-directed graph,
solving relaxed MIP where stability constraints are dropped and the final stage was
fixing hydrostatics by possibly removing cargo. Stochastic programming was pro-
posed by [49] by considering uncertain demand per port; a rolling horizon heuristic
was introduced that decomposed the problem into sub-problems with shorter plan-
ning horizons.

The work of [101, 4, 102] introduced the Standard Capacity Model (SCM). It is a
polyhedron model derived from MPP models and contributes the first linear ap-
proximations of hydrostatic equilibriums and restows. The purpose of the SCM is to
increase the accuracy of cargo network-flow models such as [238] while maintaining
their scalability. [102] applied the SCM to a yield optimization problem over 90 days
in 2018 of Maersk’s Asia - Europe service network with over 250 port calls. Opti-
mal results could be computed in less than 30 minutes and showed that simple fixed
capacity models used by carriers today can overestimate revenue by more than 20%.

The study presented in [132] proposed a multimodal deep learning model to pre-
dict the expected lashing forces for container stowage plans. Calculations for lash-
ing forces are tedious and, for this reason, are hard to incorporate into models of
the CSPP. With the use of machine learning, this process could be faster, and the
presented results were promising, i.e., the average gap between predicted and true
values was 0.66%.

Two interactive decision support tools were presented with the usage of Binary De-
cision Diagrams (BDDs) [103] and boolean satisfiability (SAT) [125]. The comparison

4.5. Research Agenda 67

of both methods was presented in [126]. The software allowed for marking infeasible
areas in a bay, but also suggestions of slots in which containers could be placed, and
vice versa for containers and potential slots. The BDDs performed well in real-life
instances.

4.5 Research Agenda

In light of this review, we present our conclusions on the state-of-the-art and propose
possible areas of future research. We will do so by starting to describe the challenges
with respect to problem representation, then moving on to solution methods, and
finally discussing future work.

4.5.1 Representation Challenge

As mentioned in Section 4.2, the included combinatorial aspects should be represen-
tative of the real-world problem. From Section 4.4, it can be derived that a subset of
these aspects has not been studied sufficiently. For instance, we believe that lashing
is only modeled by dynamic stack capacity in [65], while [195] only commented on
their approach. In practice, the proper use of lashing rods can significantly increase
on-deck capacity, while the effects of different lashing models are yet to be inves-
tigated. In addition, a substantial body of work implements voluntary restows to
reduce restows at future ports (e.g., [35, 18, 177]). Nevertheless, it remains unclear to
what extent these impact port stay and vessel utilization. Similarly, block stowage
patterns are limited to block purity in [226, 137, 159, 130], even though more so-
phisticated patterns (e.g., paired block stowage) have been adopted by the industry.
Thus, future work should also investigate these best practices.

Despite the individual cases, we assess that the interaction between key combinato-
rial aspects is studied insufficiently. Overall, each additional constraint reduces the
capacity at ports or vessels, but how these interact and jointly impact the objectives
should be investigated further. To do so, a fully representative model is necessary,
which is yet to be modeled for the CSPP and MPP. With respect to the SPP, most
combinatorial aspects, except lashing, have been modeled adequately.

We suggest the following minimum requirements for a representative problem. The
cargo model should consider 20/40 ft. lengths, standard and highcube heights,
and also special cargo such as reefers and IMDG. In addition, voluntary and hatch
restows represent reality well, whereas a combination of GM, trim, list and stress
forces must model vessel stability. Any future work worth publishing should be
aware of the issue raised from modeling stability constraints as a simple balancing
of weight (e.g., [12]). Figure 4.6 shows a simple example of how such simplifications
are too far from reality and cannot be used. The figure shows two equal weights,
one with transversal position -1 and the other in position 2. Though the two weights
are in perfect balance according to the formulation of [12], they result in an imbal-
ance TCG due to their position within the vessel. Since then, many scientific studies
reverted to the use of a center of gravity calculation (i.e. [8, 160, 50, 237]), while
unfortunately, some remain oblivious to this mistake (e.g., disregarding container
weights [22, 23], or disregarding the position of the weights [135, 134, 54, 112]). Fur-
thermore, lashing forces should be included as they impact on-deck stack capacity,
while incorporating crane operations and block stowage enables to evaluate and

68 Chapter 4. Literature Review

w1 = 30t
w2 = 30t

−3 −2 −1 0 1 2 3

tcg = −1·w1+2·w2
w1+w2

= −30+60
90 = 0.33

FIGURE 4.6: Example calculation of the transversal center of gravity.
According to the balance constraints from [12] (where the total weight
at each side of the center should be equal), the presented example is

assumed to balance (tcg = 0), while it clearly is not the case.

enhance (un)loading efficiency. The main objectives are to minimize port stay and
maximize utilization on at least 15,000 TEU vessels.

4.5.2 Solution Methods

As representative problems are scarce, the underlying problem can vary greatly.
Hence, we should tread carefully before drawing any conclusions from this com-
parison. Even though plenty of solution methods are proposed in Figure 4.7, their
experiments are often limited. In order to verify their generalizability, implementa-
tions should strive for computational studies with multiple realistic instances (e.g.,
[109, 160, 168]). The use or extension of benchmark instances enables such compar-
ative studies (e.g., [18, 58, 130]). Consequently, these studies will help us to find
adequate solution methods.

As in many operations research studies, articles focus on providing new mathemat-
ical formulations to a problem (e.g., [35, 12, 56]) or using those formulations to eval-
uate the efficiency of heuristic solution methods (e.g., [7, 158, 124]). Unfortunately,
we have seen articles on the container stowage planning problem that either do not
properly cite the origin of a mathematical formulation, or even present it as their
own with only minor changes (if any). We encourage future authors and reviewers
to be more critical, so that the literature is not overwhelmed with minor contribu-
tions that do now enhance the state-of-the-art.

4.5.3 Future Work

In contrast to the work on the k-shift problem, very little consensus can be found
on a common definition of the CSPP, a set of benchmark instances or the existence
of a research road map. Most of the issues related to this lack of coordination can
be attributed to the lack of publicly available data and the high knowledge entry
level required to truly understand the calculations behind the vessel stability con-
straints. It is only recently that a textbook detailing the CSPP has been published
[104]. Researchers that were lucky enough to collaborate with the industry were

4.5. Research Agenda 69

S M L
0

5

10

15

SP-CSPP

N
o.

im
pl

em
en

ta
ti

on
s

S M L
0

5

10

15

MP-CSPP

N
o.

im
pl

em
en

ta
ti

on
s

S M L
0

5

10

15

MPP

N
o.

im
pl

em
en

ta
ti

on
s

S M L
0

5

10

15

SPP

N
o.

im
pl

em
en

ta
ti

on
s

Exact methods Greedy heuristics Hybrid methods
Machine learning Matheuristic Neighborhood metaheur.
Population metaheur. Tree-based heur.

FIGURE 4.7: Number of implemented solution methods for single-
port (SP-CSPP), multi-port (MP-CSPP), master bay planning (MPP)
and slot planning problems (SPP) with varying vessel sizes as defined

in Table 4.1 (S=Small size, M=Medium size, L=Large size).

70 Chapter 4. Literature Review

constrained by non-confidentiality agreements from publishing details of their re-
sults (e.g., [227]) or from making available the benchmark data (e.g., [160]).

In this subsection, we suggest future work for each of the areas of research.

k-Shift and Related Problems

With respect to the benchmarks for multi-port container stowage planning, given
that the solution approach of [177] provides optimal solutions within a minute, it
can be concluded that the Long, Mixed, Short and Authentic instances of Table 4.2
are now closed. As the formulation of [169] is able to find feasible solutions to all
instances, further research on heuristics for the k-shift problem does not seem to be
a valuable future direction any longer.

[169] arrive at the same conclusion and hence propose to extend the k-shift prob-
lem with variable cargo sizes and simple stability constraints. It is shown that the
additional complexity has a negative impact on the IP formulation, and hence a
matheuristic approach is proposed. It is likely that similar results could be obtained
by extending the work of [177] as the stability constraints would increase the num-
ber of constraints posted across the generated columns in the formulation, and hence
are likely to worsen the quality of the lower-bound found by the column generation
within the approach.

As future research directions, we propose the study of exact and heuristic methods
for the k-shift CSPP with simple stability constraints. This problem corresponds to
the definition provided by [169], where container types, weights and simple stability
constraints are added to the original k-shift problem. It is unclear from the results
presented in [169] whether instances based on the Short, Mixed and Long transport
matrices will result in any mandatory shifts; hence merit can be given also to future
research that studies or leverages the special case of the zero-shift problem.

It is the authors’ opinion that future studies on exact methods are better suited as
extensions of the k-shift problem (see [169]).

Multi-Port Container Stowage Planning

To the best of the authors’ knowledge, limited progress has been made on the iden-
tification of single-phase heuristic procedures, or exact approaches, for the multi-
port container stowage planning problem. In terms of exact approaches, a natu-
ral research direction is to follow the proposed agenda for the k-shift problem (see
Section 4.5.3). As for heuristic approaches, methods that challenge the classical hi-
erarchical decomposition or incorporate iterative elements are interesting research
directions. The vessel data provided by [130], in combination with the cargo lists,
which we will describe in the next section, could be used as a common benchmark
for future research.

Master Planning Research on master planning is far from concluded. As a part
of a hierarchical decomposition, master planning is most often solved using a relax-
ation of a mixed integer programming formulation (e.g., [160, 48]). Though this has
positive outcomes, the method is far from infallible, and its performance is heavily
dependent on the features of the specific instance and on the combinatorial aspects
included in the problem.

4.5. Research Agenda 71

From a problem representation point of view, combinatorial aspects such as block
stowage and paired block stowage should be studied further. Only a few works
have studied the impact of such stowage patterns on the achieved solutions and
the performance of the solution methods (e.g., [226, 137, 159, 130]). Though the use
of mathematical modeling has the flexibility of easily allowing additional side con-
straints to the problem, research on heuristic methods with more stable performance
should also be carried out.

It is our hope that the new set of benchmark instances provided in this article (see
Section 4.4.2) will increase the quality and quantity of research on this problem.

Slot Planning Thanks to the publicly available benchmarks, slot planning reached
a high level of quality, and the problem, as currently defined, is (at least from an in-
dustrial point of view) solved. The benchmark, however, focuses on the SPP specific
to below-deck blocks. Aspects such as lashing forces have not been explored yet.

Lashing forces are particularly interesting as little knowledge is currently available.
The position of the container on deck not only depends on its weight and the general
load condition but also on the type of lashing equipment available on the vessel. To
which degree the mechanical calculation of the lashing forces can be simplified, and
which assumption can be made to better implement solution algorithms is a field
yet unexplored. The inclusion of lashing constraints is an important part of stowage
planning, as a miscalculation might disallow an entire tier of a container from being
loaded.

Being part of a hierarchical decomposition, slot planning has dependencies on the
solution of the master planning problem. As of now, it is assumed that a master
planning solution always generates feasible slot planning problems. In reality, this
is not true (as shown by [160]). Hence, slot planning could be extended to include the
entire vessel, thereby allowing for the flexible assignment of containers to exchange
between blocks and thus improving the solution quality.

Another interesting extension of the slot planning problem is the integration with
terminal operations. Some researchers have already realized this potential [152, 98],
where the individual assignment of containers to container types is optimized with
respect to the position of the cargo in the terminal. Other possible integrations in-
clude quay crane assignment and scheduling and container sequencing.

Single-Port Container Stowage Planning

The computational results of the single-port stowage planning (e.g., [47, 7]) are pos-
itive in terms of solution quality and computational efficiency. The impact the pro-
cedure has on today’s large vessels, however, needs to be better evaluated. Most
approaches are tested on small vessels for which the repositioning of a single con-
tainer can have a significant effect on stability, which is no longer the case for the
large vessels the industry now uses.

The KPIs mentioned by [130] are interesting when compared to some of the model
enhancements presented in [237], where it was argued that containers should be
stowed tier-wise rather than having tall stacks. In contrast, [162, 55, 130] argued that
leaving free stacks provides a flexible stowage plan for future ports. As proposed

72 Chapter 4. Literature Review

by [130], validation of such KPIs using simulation approaches is necessary. The ves-
sel data mentioned in Section 4.4.3, though simplified by the authors, still presents
itself with a high learning curve. Thus, it is advisable that papers studying a spe-
cific version of the CSPP derive simplified data instances. An example can be seen
in Section 4.4.2, where a benchmark for the multi-port master planning problem is
provided.

Research on the single-port container stowage planning problem is far from finished,
and we see the following as important future research directions: the design of ex-
act methods for the identification of optimal solutions, the evaluation of the validity
and usefulness of the proposed KPIs, and the evaluation of the use of other heuristic
methods, e.g., based on container exchanges as proposed in [47, 13]. Given the cur-
rently available data and experimental results, new research that does not include a
full set of stability constraints is no longer of scientific interest.

4.6 Conclusion

This paper provides a review of the literature that studies the Container Stowage
Planning Problem. The studies are summarized according to a classification scheme
that outlines the fundamental characteristics of the problem and the applied solution
approaches. As there is a lack of a common understanding of the problem character-
istics, this paper provided a description of a representative problem definition based
on several years of academic and industrial collaborations. In light of this definition,
a research agenda is proposed for each of the major branches of research in the Con-
tainer Stowage Planning Problem (single-port planning, multi-port planning, master
planning, and slot planning). Moreover, this paper identifies and, in one case, pro-
vides publicly available benchmark sets in the hope that future research will make
use of them as a reference point and a way to compare results. Where possible, these
benchmarks have been used to compare recent research results, and provide some
computational comparison. It is our hope that this survey will help improve the
field and act as inspiration for future developments.

4.6. Conclusion 73

74

Chapter 5

Integer Programming Model

This chapter will discuss the article: "An Efficient Integer Programming Model for Solv-
ing the Master Planning Problem of Container Vessel Stowage" published in the proceed-
ings of the International Conference on Computational Logistics in 2024 [220]. This
study addresses sub-objectives 2, 3 and 4 of the thesis.

In Chapter 4, the need for efficient mathematical models that accurately incorporate
industrial constraints is highlighted. In response, this chapter introduces a novel
IP model, referred to as template planning, which integrates valid block stowage
patterns, a crucial industrial constraint that has been largely overlooked in research
[221]. The computational complexity of the problem is theoretically analyzed, and
extensive experiments are conducted to compare the performance of template plan-
ning against a traditional allocation-based MIP model of master planning.

This chapter uses the same content as the article [220], with each section correspond-
ing directly to a section in the original work, except for the omission of a redundant
domain section. This chapter is organized as follows: Section 5.1 introduces the arti-
cle, and Section 5.2 describes the related work on master planning optimization. In
Section Section 5.3, the allocation and template planning models are defined, while
Section 5.4 discusses the computational results of solving both models on benchmark
data. Finally, Section 5.5 concludes the main findings of this study.

5.1 Introduction

Containerized shipping is the backbone of world trade. From 1980 to 2023, the vol-
ume of international seaborne trade carried by container vessels grew more than
20-fold from 100 million to 2,200 million tons [202]. It is an environmentally friendly
mode of transportation that is politically prioritized [51]. From an operational point
of view, however, maximizing the volume of cargo transported by a container vessel
is challenging. There are several reasons for this. First, in contrast to a land de-
pot, a container vessel is floating on water and must fulfil complex seaworthiness
requirements, including draft, stability, stress forces, and lashing force limits. Sec-
ond, container vessels sail on closed services between ports and are never empty.
Crane moves must be distributed along the vessel such that many cranes can work
in parallel to minimize the port stay [104]. Moreover, cranes can only reach contain-
ers from the top of stacks, and minimizing the number of containers that must be
restowed to reach containers below them is NP-hard [17, 211]. This latter challenge

5.2. Related Work 75

is a focal point of research in the area (e.g., [160, 237]). In practice, however, the prob-
lem is mostly avoided by stowing containers with the same port of discharge (POD)
on and below deck [104]. These so-called paired block stowage patterns also ensure
robustness to uncertain cargo in future ports by clearing as much bottom space as
possible. For that reason, the patterns are an operational requirement in practice.1

Despite its significance, there is little previous work on paired block stowage [221].

Due to the dependencies between containers loaded in each service port, maximiz-
ing the volume of transported cargo entails solving a multi-port stowage planning
optimization problem. A scalable approach is to decompose the problem into a
master planning and slot planning problem [221]. The master planning problem as-
signs containers to load over a sequence of port calls to bay sections of the vessel.
Its main constraints are seaworthiness requirements and sufficient crane utilization.
The slot planning problem assigns individual containers to slots in each bay section.
Its main constraints are stacking and lashing rules. Experimentally, the master plan-
ning problem is the hardest to solve and the most important indicator of loadable
volume.

In this paper, we focus on the master planning problem. It has been solved effi-
ciently using MIP models with various sets of constraints [160, 9, 111] but without
using paired block stowage patterns. The limited previous work that uses paired
block stowage patterns (e.g., [137, 159, 130]) indicates that they are combinatorially
hard. To this end, we contribute a new 0-1 IP formulation of the master planning
problem that focuses on paired block stowage named template planning. In contrast
to previous models that allocate cargo to bay sections, we only use decision variables
to indicate the port of discharge of each pattern and then require sufficient capacity
to load all containers.

Our experimental evaluation uses data from the representative container vessel stowage
planning problem suite, i.e., the largest set of benchmark data publically available
to date for representative stowage planning problems [198]. Our results show that
the new formulation outperforms traditional formulations concerning the optimal-
ity gap and efficiency while preserving a sufficiently accurate representation of mas-
ter planning constraints and objectives. We also contribute the first complexity result
on paired block stowage. As mentioned above, previous work indicates that paired
block stowage is combinatorially hard. We reduce the set partitioning problem to
the template model, thus showing that searching in paired block stowage patterns
is NP-hard.

5.2 Related Work

The container vessel stowage planning problem has progressively gained academic
attention, emphasizing its significance in the industry [221]. Existing publications
can be categorized into two main types. The first type includes theoretical works
that address notable combinatorial problems [17, 211, 177, 58]. The second type
consists of practical studies that focus on heuristic methods. These methods can
handle the complex representations of container vessel stowage planning and could
be implemented in the industry [160, 82, 137].

1An exception to this is small feeder vessels that are mostly stowed using the same POD in each
stack rather than block patterns.

76 Chapter 5. Integer Programming Model

One notable approach to the container vessel stowage planning problem is the hier-
archical decomposition method [227]. This method breaks down the problem into
two subproblems: the multi-port master planning problem (MPP) and the slot plan-
ning problem (SPP). The former involves assigning groups of containers into blocks
on the vessel, while the latter focuses on arranging containers in their slots. The
practicality of this approach is evident, as slot planning can be efficiently managed
using heuristics, with its impact on runtime being significantly less than that of the
master planning problem.

In the following section, we will focus on the characteristics of the MPP problem and
the solution methods employed to address it. The most well-known model in the lit-
erature is from Pacino et al. [160], which draws inspiration from Ambrosino et al.
[12]. This model considers the vessel’s seaworthiness while aiming to optimize crane
work. The decision variables represent the number of containers from a particular
group with identical ports of load and discharge to be stowed in a block. Because
containers are classified based on their weight, the weight distribution on the vessel
can be calculated with a high level of accuracy. Most models found in the litera-
ture are inspired by this mathematical formulation [11, 111, 31]. The only alternative
method of formulating the master planning problem was suggested by Chao et al.
[43], where a network-flow representation is used to model the problem. However,
it does not consider aspects of seaworthiness. The master planning problem has pri-
marily been tackled using mathematical solvers [160, 161, 43], matheuristics [8, 11],
reinforcement learning [219], or a mixed approach of exact methods and heuristics
[163, 31].

Existing problem formulations focus mostly on minimizing hatch overstowage (e.g.,
[137, 160, 31]) instead of enforcing paired block stowage constraints. The strategy
is to cluster containers heading for the same POD into a single block to avoid un-
necessary crane work and create a consolidated free space when the containers are
discharged. In the work by Wilson and Roach [226], the objective function con-
siders the paired block stowage aspect, aiming to minimize the number of hatches
occupied by containers with different ports of discharge (PODs). Liu et al. [137] im-
pose a block stowage restriction, allowing only containers with the same POD to be
placed in a block. However, these block sizes are smaller than those in conventional
block stowage constraints and vary for spaces above and below the hatch cover. In
a more theoretical study, Pacino [159] demonstrates that including block stowage
and crane intensity in container vessel stowage optimization is complex. The pro-
vided mathematical formulation could not be solved within a one-hour limit, hence
an LNS-based metaheuristic is introduced to find viable solutions.

Relative to the existing body of research, we propose a new 0-1 integer program-
ming formulation for the MPP. This formulation is unique in that it searches within
the space of valid paired block stowage patterns, as opposed to the traditional ap-
proach of allocating containers to available space. Furthermore, our formulation in-
corporates a comprehensive set of representative problem features, including vessel
capacity for various container types, crane makespan, trim, and bending moment.

5.3 Mathematical Programming Models of the MPP

In previous mathematical models for the MPP, decision variables allocate containers
of different types to partitions of bays. Recall that a bay with three hatch covers has

5.3. Mathematical Programming Models of the MPP 77

six partitions, one over and under each hatch cover. This approach does not scale
well when we require paired block stowage patterns. Our new approach is to search
in the space of valid paired block stowage patterns. If the vessel has three hatch
covers, we obtain two storage areas blocks per bay: the center and the wing pair. In
the case of four hatch covers, we obtain three blocks: two centers and a wing pair.
We refer to this model as template planning.

Recently, there have been several efforts to leverage machine learning in combinato-
rial optimization [27], especially reinforcement learning seems able to efficiently con-
struct solutions to hard problems (e.g., [86, 219, 148]). While reinforcement learning
has potential, its current limitations in guaranteeing optimality and feasibility for
large-scale problems are challenging, as shown in [219]. Additionally, due to the
relative immaturity of stowage planning, we ought to search for novel problem for-
mulations that outperform traditional formulations [221]. Given the aforementioned
considerations, we believe that utilizing mathematical programming in conjunction
with well-established solvers is a worthwhile endeavour in this context.

Section 5.3.1 describes sets, parameters, and assumptions to support the mathemat-
ical models. Subsequently, we define the MIP model for allocation planning in Sec-
tion 5.3.2, while the 0-1 IP model for template planning is defined in Section 5.3.3.
To show the computational complexity of template planning, we reduce the set par-
titioning problem to template planning in Section 5.3.4.

5.3.1 Definitions and Assumptions

We introduce relevant sets and problem parameters for the MPP in Tables 5.1 and 5.2,
respectively. Most definitions speak for themselves, except for the sets and param-
eters explained in the following subsections. These parameters are extracted from
benchmark data, which will be described in Section 5.4. Additionally, the following
assumptions are made to obtain a simplified version of reality:

• Cargo only includes 20 ft. and 40 ft. containers, as well as regular and reefer
containers.

• Each vessel has an arrival condition, represented in the voyage as port 0. Any
demand in subsequent ports must be loaded onto the vessel.

• Loading and discharge times are equal for all ports and types of cargo.

• During any voyage, ballast water tanks are constantly half full.

5.3.2 Allocation Planning Model

Here, we define a typical MIP formulation that allocates cargo to blocks with capac-
ity, crane makespan, hydrostatics, and block stowage constraints inspired by [159].
At the core of the allocation model is the minimization of hatch overstowage, which
is an NP-hard task [211]. Let xk

i,j ∈ {0, 1} indicate whether block k contains cargo of

transport (i, j). Let yk,l
i,j ∈ N0 be stowed non-reefer containers and zk,l

i,j ∈ N0 repre-
sent stowed reefer containers for transport (i, j), cargo length l and block k.

78 Chapter 5. Integer Programming Model

TABLE 5.1: Sets of the MPP

Ports p ∈ P = {0, 1, 2, . . .}
Ports between i and j p ∈ Pj

i = {p ∈ P | i ≤ p ≤ j}
Transport pairs (i, j) ∈ TR = {(i, j) ∈ P2 | i < j}
Onboard transports (i, j) ∈ TROB

p = {(i, j) ∈ P2 | i ≤ p, j > p}
Discharge transports (i, j) ∈ TRD

p = {(i, p) ∈ P2 | i < p}
Load transports (i, j) ∈ TRL

p = {(p, j) ∈ P2 | j > p}
Load or discharge transports (i, j) ∈ TRM

p = TRL
p ∪ TRD

p
Vessel bays b ∈ B = {1, 2, . . .}
Blocks in bay b k ∈ BLb = {1, 2, . . . , HCb−1}
Adjacent bays b′ ∈ B′ = {(1, 2), (2, 3), . . . , (|B|−1, |B|)}
Bays on fore side of bay b b′ ∈ Bfore

b = {1, 2, . . . , b}
Cargo length l ∈ CL = {20′, 40′}

TABLE 5.2: Parameters of the MPP

Hatch covers per bay (#) HCb ∀b ∈ B
Regular cargo demand (#) Dl

i,j ∀(i, j) ∈ TR, l ∈ CL
Reefer demand (#) Rl

i,j ∀(i, j) ∈ TR, l ∈ CL
Volume per container (TEU) Vl ∀l ∈ CL
Average container weight for transport (i, j) (tonnes) W̄i,j ∀(i, j) ∈ TR
Estimated crane operations (#) Ôk ∀k ∈ BLb, b ∈ B

Average longitudinal position of bays (meters) Lb ∀b ∈ BL
Fore longitudinal position of bays (meters) Fb ∀b ∈ BL
Longitudinal distance between Lb and Fb′ (meters) LDb′

b ∀b ∈ B, b′ ∈ B
center of buoyancy (meters) Zp,b ∀p ∈ P, b ∈ B

Slot capacity (TEU) Ck
V ∀k ∈ BLb, b ∈ B

Reefer capacity (#) Ck
R ∀k ∈ BLb, b ∈ B

Weight capacity (tonnes) Ck
W ∀k ∈ BLb, b ∈ B

Maximum crane makespan (#) Yp ∀p ∈ P
LCG bounds (meters) LCGp, LCGp ∀p ∈ P
Bending moment bounds (Newton meters) BMp, BMp ∀p ∈ P

5.3. Mathematical Programming Models of the MPP 79

min ∑
p∈P

∑
(i,j)∈TROB

p

∑
b∈B

∑
k∈BLb

xk
i,j (5.1)

s.t. ∑
j∈Pn

p+1

xk
p,j ≤ 1

∀p ∈ Pn−1
0 , k ∈ BLb, b ∈ B (5.2)

∑
l∈CL

yk,l
i,j + zk,l

i,j ≤ Mxk
i,j

∀(i, j) ∈ TR, k ∈ BLb, b ∈ B (5.3)

∑
b∈B

∑
k∈BLb

yk,l
i,j + zk,l

i,j = Dl
i,j

∀(i, j) ∈ TR, l ∈ CL (5.4)

∑
b∈B

∑
k∈BLb

zk,l
i,j = Rl

i,j

∀(i, j) ∈ TR, l ∈ CL (5.5)

∑
(i,j)∈TROB

p

∑
l∈CL

Vl(y
k,l
i,j + zk,l

i,j) ≤ Ck
V ∑

(i,j)∈TROB
p

xk
i,j

∀p ∈ P, k ∈ BLb, b ∈ B (5.6)

∑
(i,j)∈TROB

p

∑
l∈CL

zk,l
i,j ≤ Ck

R ∑
(i,j)∈TROB

p

xk
i,j

∀p ∈ P, k ∈ BLb, b ∈ B (5.7)

∑
(i,j)∈TROB

p

∑
l∈CL

W̄i,j(y
k,l
i,j + zk,l

i,j) ≤ Ck
W ∑

(i,j)∈TROB
p

xk
i,j

∀p ∈ P, k ∈ BLb, b ∈ B (5.8)

∑
b∈b′

∑
k∈BLb

∑
(i,j)∈TRM

p

∑
l∈CL

yk,l
i,j + zk,l

i,j ≤ Yp

∀p ∈ Pn−1
1 , b′ ∈ B′ (5.9)

LCGp ≤ ∑
b∈B

Lb ∑
k∈BLb

∑
l∈CL

∑
(i,j)∈TROB

p

W̄i,j(y
k,l
i,j + zk,l

i,j) ≤ LCGp

∀p ∈ LPn−1
1 (5.10)

BMb ≤ ∑
b′∈Bfore

b

LDb′
b ∑

k∈BLb′
∑

l∈CL
∑

(i,j)∈TROB
p

(W̄i,j(y
k,l
i,j + zk,l

i,j)− Zp,b′) ≤ BMb

∀b ∈ B, p ∈ LPn−1
1 (5.11)

The objective (5.1) expresses the desire to minimize the use of blocks. Constraint (5.2)
ensures that blocks have at most one POD during the legs of the voyage. Note that
a voyage with n ports has n − 1 legs. Constraint (5.3) links the decision variables,
where x-variables will equal 1 if the sum of y, z-variables are positive. Constraint
(5.4) enforces that all cargo in Dl

i,j must be loaded by y, z, whereas Constraint (5.5)
enforces that all reefers in Rl

i,j must be loaded by z.

In Constraints (5.6)-(5.8), we define block capacity constraints that act as on-off con-
straints based on onboard x-variables. Constraint (5.6) limits the total TEU per block

80 Chapter 5. Integer Programming Model

by the capacity parameter CV
k and parameter Vl represents the TEU volume of one

container with length l. Constraint (5.7) limits reefer utilization by reefer capacity
CR

k per block k. In this model, a single reefer plug is used for both 20’ and 40’ reefers
because individual cells are not a concern. Constraint (5.8) limits the total weight of
block k by maximum weight CW

k and computes the expected weight of regular and
reefers cargo by W̄i,j as the average weight per TEU during transport (i, j). It is worth
noting that the on-off capacities are not strictly necessary, as, e.g., Ck

V ∑(i,j)∈TROB
p

xk
i,j

can be replaced by Ck
V . Nonetheless, some initial experimenting showed that the

on-off capacities shorten the runtime of the allocation model.

Constraint (5.9) limits the total moves per port with upper bound Yp. Let us define
the maximum crane makespan as Yp = max(Yp, Ŷp), where Yp refers to the maxi-
mum long crane provided by data and Ŷp = maxk(Ck

V/1.5) is the expected number
of container moves of the largest block assuming an equal mix of 20-40 containers.
Due to the estimation of crane operations Ôk in template planning, this formulation
is required to ensure feasibility. Details are provided in the next subsection.

In the hydrostatic Constraints (5.10) and (5.11), we quantify over load ports between
port i and j, which is defined by set p ∈ LPj

i = {p ∈ P | ∑(i,j)∈TRL
p

∑l∈CL(Dl
i,j + Rl

i,j) >

0}. Constraint (5.10) sets the upper and lower limit on the longitudinal center of
gravity (LCG) to conform with limits posed on the vessel’s trim. These limits, as
defined in Equations (5.12) and (5.13), depend on the displacement dp (the weight of
the containers, tanks Wtw, and lightship Wlsw at departure from port p), which could
be computed for each instance since it is given that all containers from the load list
have to be loaded. Subsequently, the longitudinal center of buoyancy lcb(dp) and
the trim factor trf (dp) are interpolated from the hydrostatics table. Additionally, t
and t are the lower and upper bounds of trim, where small instances use −2.5, 2.5
meters, and the rest use −2, 2 meters, respectively. Lb is the longitudinal position of
bay b’s midpoint in meters.

LCGp = dp(lcb(dp)−
t

trf (dp)
)− ∑

b∈B
Lb(Wtw

b + Wlsw
b) (5.12)

LCGp = dp(lcb(dp)−
t

trf (dp)
)− ∑

b∈B
Lb(Wtw

b + Wlsw
b) (5.13)

Constraint (5.11) sets the upper and lower limits on the bending moment. The
bounds are defined by Equations (5.14) and (5.15), where bmb, bmb are bounds pro-
vided by data, and Wtw, Wlsw, are the tank and lightship weight. Additionally, LDb′

b
is a longitudinal distance between the fore endpoint of bay b and the midpoint of
bay b′, Zp,b is buoyancy force at departure from port p in bay b interpolated from

Bonjean data using displacement dp, and Bfore
b is a set of bays positioned on the fore

side of bay b. The bending moment for bay b is calculated by summing the prod-
uct of the resulting forces per bay situated on the fore side of b and their respective
distances to the fore side point of bay b.

BMb = bmb − ∑
b′∈Bfore

b

LDb′
b (W

tw
b + Wlsw

b) (5.14)

5.3. Mathematical Programming Models of the MPP 81

BMb = bmb − ∑
b′∈Bfore

b

LDb′
b (W

tw
b + Wlsw

b) (5.15)

5.3.3 Template Planning Model

The primary contribution of this paper is the template planning model, which, to
our knowledge, has not been previously considered. The main idea is to eliminate
all decision variables except the block indicators xk

i,j and ensure that the blocks des-
ignated for storing containers provide sufficient capacity. This approach potentially
enhances scalability. However, it is also less expressive because it does not specify
exactly which and how many containers should be stowed in each block. Despite
this limitation, reasonable assumptions can be made to address the issue. First, since
the objective is to minimize the number of used blocks, we can assume that these
blocks are fully utilized when in use. Second, although we cannot model the weight
of individual containers, it is realistic to assume that each transport is characterized
by a specific weight profile. These assumptions are applied to both the allocation and
template planning models to enable direct comparison. With these assumptions, we
can sufficiently approximate hydrostatics and crane moves for master planning. To
maintain brevity, the definitions provided in Subsection 5.3.2 are also applicable in
this subsection.

min ∑
p∈P

∑
(i,j)∈TROB

p

∑
b∈B

∑
k∈BLb

xk
i,j (5.16)

s.t. ∑
j∈Pn

p+1

xk
p,j ≤ 1

∀p ∈ Pn−1
0 , k ∈ BLb, b ∈ B (5.17)

∑
l∈CL

Vl(Dl
i,j + Rl

i,j) ≤ M ∑
b∈B

∑
k∈BLb

xk
i,j

∀(i, j) ∈ TR (5.18)

∑
(i,j)∈TROB

p

∑
l∈CL

Vl(Dl
i,j + Rl

i,j) ≤ ∑
b∈B

∑
k∈BLb

Ck
V ∑

(i,j)∈TROB
p

xk
i,j

∀p ∈ P (5.19)

∑
(i,j)∈TROB

p

∑
l∈C

Rl
i,j ≤ ∑

b∈B
∑

k∈BLb

Ck
R ∑
(i,j)∈TROB

p

xk
i,j

∀p ∈ P (5.20)

∑
(i,j)∈TROB

p

W̄i,j(∑
l∈CL

Dl
i,j + Rl

i,j) ≤ ∑
b∈B

∑
k∈BLb

Ck
W ∑

(i,j)∈TROB
p

xk
i,j

∀p ∈ P (5.21)

∑
b∈b′

∑
k∈BLb

∑
(i,j)∈TRM

p

Ôkxk
i,j ≤ Yp

∀p ∈ Pn−1
1 , b′ ∈ B′ (5.22)

LCGp ≤ ∑
b∈B

Lb ∑
k∈BLb

∑
(i,j)∈TROB

p

W̄i,jCV
k xk

i,j ≤ LCGp

∀p ∈ LPn−1
1 (5.23)

82 Chapter 5. Integer Programming Model

BMb ≤ ∑
b′∈Bfore

b

LDb′
b (∑

k∈BLb′
∑

(i,j)∈TROB
p

W̄i,jCV
k xk

i,j − Zp,b′) ≤ BMb

∀p ∈ LPn−1
1 , b ∈ B (5.24)

The Objective (5.16) expresses that we want to use as few blocks as possible. Con-
straint (5.17) expresses that a block at most can be assigned to one POD at a time.
Constraint (5.18) links the x-variables to the cargo demand, where at least one x-
variables among the blocks must be equal to 1 if ∑l∈CL Vl(Dl

i,j + Rl
i,j) is positive for

some transport (i, j). Constraint (5.19) enforces that there must be enough TEU ca-
pacity to fit all onboard demand, Constraint (5.20) enforces this for onboard reefers,
and Constraint (5.21) ensures this for onboard weight.

In Constraint (5.22), we must assume the number of crane moves required by some
block to approximate crane makespan. We could define an expected containers per
transport parameter Ôi,j = ∑l∈CL(Dl

i,j + Rl
i,j)/ ∑b∈B ∑k∈BLb

xk
i,j ∀(i, j) ∈ TRM

p . How-
ever, this causes quadratic terms in Equation (5.22). Instead, we can estimate both
parameters by assuming blocks are fully loaded. The minimization of block usage
causes highly utilized blocks, which causes most blocks to be loaded fully. Hence,
the crane workload is approximated by Ôk = Ck

V/1.5, which obtains the expected
number of containers per block k by assuming an equal mix of 20 and 40 ft. cargo.
This approximation overestimates the moves in blocks as multiple load moves can
be associated with a block. Nonetheless, it provides an estimate of how many crane
moves are needed in adjacent bays.

Constraints (5.23) and (5.24) have matching interpretations as Constraints (5.10) and
(5.11) in the allocation model. Nonetheless, similar to the crane makespan, we must
approximate the weight in a certain block to compute hydrostatics. Since the total
weight and block usage are known, one way could be to find the average weight per
block by W̄i,j(∑l∈CL Dl

i,j + Rl
i,j)/ ∑b∈B ∑k∈BLb

xk
i,j ∀(i, j) ∈ TROB

p . As this also leads to
a quadratic term, we again assume that blocks are fully loaded, and therefore block
weights are approximated by W̄i,jCV

k . Yet again, this overestimates the weight in
blocks but also provides an approximation of the vessel’s hydrostatics.

5.3.4 Template Planning is NP-hard

Even though paired block stowage ensures a plan without restows, it is still an NP-
hard problem. We prove that the template planning problem is NP-hard by reducing
the set partitioning problem to a decision version of it. Recall that the set partitioning
problem is the task of deciding whether a given multiset S of positive integers can be
partitioned into two subsets S1 and S2 such that the sum of the numbers in S1 equals
the sum of the numbers in S2. We translate a set partitioning problem to a template
planning problem as follows. Let the vessel consist of |S| blocks. For each element
s ∈ S, there is exactly one block k with a volume capacity Ck

V equal to s. There are
three ports P = {1, 2, 3}. In the first port, there are ∑s∈S s containers to load, each
with a volume of one TEU. Half of the containers have POD 2, and the other half
have POD 3. There are no containers to load in ports 2 and 3. The containers are
assumed to have zero weight, and none are reefers. All lower bounds (LCGp,BMb)
are assumed to be minus infinite. In contrast, all upper bounds (LCGp, BMb,Yp) are
assumed to be plus infinite. Hence, Constraints (5.20)-(5.24) have no effect. Since
a block in port 1 can only be assigned to one POD that either is 2 or 3, a feasible

5.4. Results 83

solution to this template planning problem divides the blocks into two subsets with
equal total capacity. Hence, if the template planning problem has a solution, so does
the corresponding set partitioning problem and vice versa. Since the reduction can
be done in polynomial time, we have shown that the template planning problem is
NP-hard.

5.4 Results

In this section, we will provide a computational comparison between the allocation
and template models. We use the representative container vessel stowage planning
problem suite, the largest set of benchmark data available for representative stowage
planning problems, including vessels and problem instances [198]. A vessel sum-
mary is provided in Table 5.3, whereas the test instances are summarized in Table 5.4.
Additionally, the vessel data contains the hydrostatics table, from which the longitu-
dinal center of buoyancy lcb(dp) and trim factor trf (dp) can be interpolated based on
displacement dp. The vessel data also contains the bonjean data used to interpolate
the center of buoyancy Zp,b′ based on displacement dp, as well as the vessel weight
parameters, vessel distances, maximum capacities, and hydrostatic limits. The in-
stance data provides cargo and reefer demand, average container weight and crane
makespan limits. We refer to the benchmark suite [198] for a detailed explanation.
Furthermore, stowage planners need to respond to changed circumstances quickly,
therefore an algorithmic runtime of longer than an hour is hard to use in practice
[104].

The experiments are run on a Linux machine with AMD EPYC 7742 64-Core Proces-
sor and 256 GB memory, running on 2.25GHz/3.4 GHz. The mathematical model is
implemented in Python 3.9 and solved with CPLEX 22.1.

TABLE 5.3: Vessel metrics with TEU referring to the total capacity in
TEU, Reefers refers to the total reefer capacity in plugs, weight is the
total weight capacity in tonnes, bays are the number of bays able to

hold cargo and Hatch refers to the maximum number of hatches.

Vessel Size TEU Reefers Weight Bays Hatch

Small 1,040 251 22,005 8 1
Medium 6,532 1,160 162,834 18 3
Large 13,482 940 274,298 22 4
Extra Large 18,854 956 342,760 24 4

TABLE 5.4: Instance metrics with # being the number of instances,
ports being the average loading ports per voyage, cargo being the
sum cargo demand in TEU on average, reefers being the sum of reefer
demand in TEU on average, and AC being the arrival condition as the
sum of onboard cargo in TEU on average. The averages are found by

computing the arithmetic mean over instances.

Vessel Size # Ports Cargo Reefers AC

Small 19 8.16 1,716 59 654
Medium 21 5.57 5,768 155 4,890
Large 16 3.06 7,153 211 6,785
Extra Large 13 5.31 17,461 248 11,222

84 Chapter 5. Integer Programming Model

Table 5.5 provides a computational comparison between the allocation and template
model applied to the instances mentioned above. It should be mentioned that the
solver times out at 3,600 seconds and then returns the objective, gap and runtime of
the solution with the best optimality gap found. The optimality gap of the allocation
model is consistently larger than that of the template model across all instance sets,
highlighting the difficulty the allocation model faces under these specific constraints.
Especially in the larger instances, the template model can find near-optimal solutions
while the allocation struggles to find solutions with an optimality gap close to the
0% optimum. Moreover, the template model is significantly faster than the alloca-
tion model regarding runtime, with an average speed-up for an instance set ranging
from 2 to 4.5 times. Furthermore, a steep increase in computational time is observed
from small to medium, large, or extra-large instances, showcasing the complexity of
solving real-life instances. Consequently, we argue that the template model scales
well to industrial-sized instances, which is not the case for the allocation model.

TABLE 5.5: Comparison of allocation and template models on several
sets of instances grouped by vessel size with # number of instances.
Obj. represents the objective value, the duality gap is denoted by Gap
(%), and Time (s) represents the runtime in seconds. The solver either
accepts solutions with a duality gap of 1% or returns the best solution
after a runtime limit of 3,600 seconds. All metrics are averaged across

instances with the arithmetic mean.

Allocation Template
Vessel Size # Obj. Gap (%) Time (s) Obj. Gap (%) Time (s)

Small 19 88.68 0.21 5.88 80.80 0.05 1.82
Medium 21 176.90 8.49 3,371.93 149.05 0.91 1,387.92
Large 16 169.50 9.91 3,620.65 163.00 0.99 802.58
Extra Large 13 288.54 12.71 3,614.61 248.69 0.97 1,654.78

From Table 5.5, one may observe that the objective values between the allocation and
template models are different. We can assume a linear relationship between the ob-
jective and optimality gap to compute the expected optimal objective E[Obj∗] = (1−
Gap)Obj. Table 5.6 shows the difference between the E[Obj∗] of both models across
each set of instances, which shows a mean absolute error µAE of at most 10% relative
to either E[Obj∗]. Additionally, the standard deviation σAE indicates a reasonable
variation in the absolute error, as the coefficient of variation CVAE = σAE/µAE re-
mains below 1. Hence, this suggests different but similar expected optimal objective
values across instances. The difference, however, is mainly due to the allocation
model having more freedom to assign cargo to various blocks and the approxima-
tions for the long crane and hydrostatics in template planning, imposing slightly
different constraints on the optimization problem. Nonetheless, both models ad-
here to paired block stowage patterns and aim to minimize block use. Hence, the
objective values are within close range.

In conclusion, the template model outperforms the allocation model with respect to
optimality and runtime at the cost of approximating the long crane and hydrostatics.
This trade-off allows us to solve the IP model with paired block stowage patterns,
capacity constraints, maximum crane makespan, trim, and bending moment.

5.5. Conclusion 85

TABLE 5.6: Comparing the expected optimal objective of allocation
and template models on several sets of instances grouped by vessel
size with # number of instances. The expected optimal objective is
represented by E[Obj∗] = (1−Gap)Obj, absolute error (AE) refers to
absolute difference between E[Obj∗] of both models with arithmetic
mean µAE, standard deviation σAE and coefficient of variation CVAE

over instances.

Allocation Template Absolute error
Vessel Size # E[Obj∗] E[Obj∗] µAE σAE CVAE

Small 19 88.45 80.75 7.30 5.38 0.738
Medium 21 160.92 147.63 13.29 6.31 0.475
Large 16 153.41 161.31 9.89 8.05 0.814
Extra Large 13 249.47 246.26 3.82 3.19 0.834

5.5 Conclusion

This paper introduces a new 0-1 IP model called template planning to solve the mas-
ter planning problem with paired block stowage patterns and constraints to limit
capacity, crane makespan, trim, and bending moment. In previous work, MIP mod-
els allocate containers of different types to blocks on the vessel, which does not scale
well if block stowage patterns are included. Instead, our so-called template planning
model searches in the space of valid paired block stowage patterns.

The experiments utilize the latest and largest benchmark suite for representative
stowage planning problems. Our findings indicate that the template formulation
outperforms the allocation model regarding the optimality gap and runtime while
preserving an adequate representation of master planning constraints and objec-
tives. Particularly in the larger instance sets, the allocation model struggles to find
near-optimal solutions within an hour of runtime, whereas the template model demon-
strates scalability by finding near-optimal solutions with an average speed-up be-
tween 2 and 4.5 times per set of instances. Additionally, we reduce the set parti-
tioning problem to the template planning model, showing that the computational
complexity of searching in valid paired block stowage patterns is NP-hard.

In future work, we aim to improve the computational efficiency of both models
by improving the mathematical formulation and leveraging the cutting-planes ap-
proach. Moreover, we will enhance the approximations of crane makespan and hy-
drostatics in the template model, thus minimizing differences between allocation
and template planning.

86 Chapter 5. Integer Programming Model

5.5. Conclusion 87

88

Chapter 6

Exploring Deep Reinforcement
Learning

This chapter will discuss the article: "Towards a deep reinforcement learning model
of master bay stowage planning" published in the proceedings of the International
Conference on Computational Logistics in 2023 [219]. This study addresses sub-
objectives 2 and 3 of the thesis.

In Chapter 4, the need for scalable heuristic frameworks is highlighted. As an initial
response, this chapter introduces an MDP formulation of master planning, where
reward-scaling is used to represent both objectives and constraints. A DRL model
is trained by interacting with this MDP and is subsequently compared against a
traditional allocation-based MIP model for master planning.

This chapter mirrors the content of the article [219], with each section corresponding
directly to its counterpart in the original work, aside from the omission of two re-
dundant sections on the problem domain and preliminaries. The remainder of this
chapter is structured as follows: Section 6.1 introduces the article, Section 6.2 out-
lines related work, and Section 6.3 defines the MBPP with a MIP formulation. Our
MDP and PPO architecture are described in Section 6.4, while Section 6.5 compares
the results of our PPO architecture with an MIP solver, and Section 6.6 concludes the
main findings of this study.

6.1 Introduction

In the past century, maritime transport has become the backbone of global trade and
modern consumerism. Many transported goods are shipped by container vessels
of liner shipping companies. To ensure timely arrivals and resource-efficient oper-
ations, these liner companies use stowage planning to allocate containers to vessel
slots at each port of the voyage. The goal is to maximize vessel utilization and min-
imize operational costs by creating robust stowage plans. This is an NP-hard task
due to (hatch-)overstowage [211, 104], which is further complicated by the problem
size (20,000 Twenty Foot Equivalent Unit (TEU) vessels visiting at least 10 ports) and
combinatorial aspects as container dimensions, seaworthiness and stowage regula-
tions, demand uncertainty and planning best practices.

Several contributions have been unable to directly solve their problem formula-
tion (e.g., [35, 130]). Consequently, it is suggested to hierarchically decompose the

6.2. Related Work 89

stowage problem into master bay and slot planning (e.g., [226, 160]), which is fur-
ther explained in Section 6.2. Even though plenty of contributions tried, a scalable
algorithm for a representative decomposed problem is yet to be found.

This paper will provide a proof of concept for a novel application of deep reinforce-
ment learning (DRL) to solve the master bay planning problem (MBPP) as a Markov
decision process (MDP). To the best of our knowledge, the only stowage contribu-
tions involving reinforcement learning (RL) relax many of the complex combinato-
rial aspects [194, 236]. Furthermore, DRL is used to solve optimization problems
similar to MBPP [127, 86, 148, 69]. Hence, we believe that DRL implementations can
contribute to solving the stowage planning problem.

In our work, we model an episodic MDP that maximizes vessel utilization and min-
imizes hatch-overstowage for equal-sized cargo with two weight classes while sat-
isfying demand and location capacity, as well as ensuring longitudinal and vertical
stability. We refer to Section 6.3 for details on the problem. This is not a full-featured
MBPP, but rather a non-trivial problem to provide us with a proof of concept. Each
episode generates a Gaussian equivalent to the Mixed instances by [18]. We have
implemented a proximal policy optimization (PPO) architecture that learns an actor
and critic network to find a policy that can efficiently solve the MDP. This archi-
tecture is compared against an equivalent mixed integer program (MIP) to evaluate
performance.

Our experiments show that PPO can learn a policy that optimizes the objective func-
tion on a limited training budget. Subsequently, the policy can be generalized to
efficiently find reasonable solutions for a non-trivial MBPP in a fraction of the MIP
runtime on limited hardware. Thus, we have provided preliminary evidence for the
potential of DRL in stowage planning.

6.2 Related Work

In essence, container vessel stowage planning is a multi-port problem, which aims to
balance a myriad of combinatorial aspects [104]. The field can roughly be subdivided
into single-port work to create light-weight operational stowage plans (e.g., [12, 7,
55, 130]), and multi-port work to generate realistic stowage plans (e.g., [35, 18, 226,
160, 177, 169]). As demonstrated by [35, 130], an exact and optimal solution to the
multi-port problem is yet to be found. Consequently, [226] suggested a hierarchical
decomposition into master bay planning to allocate groups of containers to general
locations on the vessel (e.g., [158, 31, 43]), and slot planning to subsequently allocate
containers to slots in locations (e.g., [162, 112, 124]). For a comprehensive description
of hierarchical decomposition, we refer to [104]. Recently, heuristic frameworks have
also gained traction as an alternative to hierarchical decomposition (e.g., [159, 130]).

Regardless, several solution methods have been proposed to solve different stowage
planning problems, for instance, exact methods (e.g., [177, 237]), greedy heuristics
(e.g., [18, 58]), population-based (e.g., [63, 82]) or neighborhood-based metaheuris-
tics (e.g., [7, 159]), matheuristics (e.g., [124, 169]), tree-based methods (e.g., [22]), or
hybrid frameworks (e.g., [226, 31]). To the best of our knowledge, the number of con-
tributions related to RL in stowage planning is limited, which addressed single-port
problems without key combinatorial aspects by deep Q-learning [194] and Monte

90 Chapter 6. Exploring Deep Reinforcement Learning

Carlo tree search [236]. Despite this variety, we are yet to find scalable algorithms
that solve representative stowage planning problems.

DRL has been rather successful for various combinatorial optimization problems
(e.g., 0-1 knapsack [127], capacitated vehicle routing [127, 87, 69], and job shop
scheduling [86]). Similar to stowage planning with the master bay subproblem, chip
design is accelerated significantly by optimizing the chip floorplanning subproblem
with DRL [148]. Furthermore, actor-critic methods can mitigate known drawbacks
of learning from experience and policy gradients by combining both techniques
[205]. In general, actor-critic methods are relatively sample-efficient with reliable
performance, from which PPO performs best in several continuous control problems
[188]. Thus, we believe that PPO merits further investigation.

6.3 Problem Formulation of Master Bay Planning Problem

Given the previous sections, we can introduce the MBPP. During a voyage, the MBPP
assigns groups of containers on port loadlists to vessel locations. By doing so, we
effectively abstract away individual containers and slots.

The unidirectional voyage is represented by an ordered set P = {1, 2, ...} of port
calls, of which a set of all possible transport pairs T = {τ = (i, j) ∈ P2 | i < j} is
constructed to specify the POL and POD of cargo. At the departure from an arbitrary
port p, the onboard cargo can be characterized by the set TOB(p) = {(i, j) ∈ P2 | i ≤
p, j > p}. At the next port, this onboard cargo is either discharged or remains on
board (ROB) as defined by set TROB(p) = {(i, j) ∈ P2 | i < p, j > p}. Each group of
containers has the same POL and POD (i, j) ∈ T as well as class k ∈ K that defines
the dimensions, weight, and type of the containers in the group. Each vessel location
is defined by bay b ∈ B and deck d ∈ D = {DO, DH}, where DO represents on-deck
locations and DH represents below-deck locations in the hold.

The capacity expressed in TEU of a location in bay b ∈ B and deck d ∈ D is given
by cb,d. The weight in tons per container in a group with class k ∈ K is given by
wk. Notice that our cargo is equal-sized and specials are not taken into account.
The cargo demand in TEU from port i (POL) to port j (POD) of class k is given by
qτ,k, where τ = (i, j). Different instances are generated by sampling qτ,k from a
Gaussian distribution for each class k and transport τ as shown in Equation (6.1).
The expected value µ is a single random instance of the Mixed instances by [18],
and σ represents the standard deviation to introduce variability around µ. Hence,
Gaussian equivalents of Mixed instances are generated.

qτ,k ∼ Qτ,k = N (µ, σ) ∀τ ∈ T, k ∈ K (6.1)

The primary objective is to maximize vessel utilization by loading cargo that satis-
fies port demand, while the secondary goal is to minimize hatch overstowage and
arises from efficiency best practices. To prevent safety hazards (e.g., capsizing or
falling containers), vessels must have an even keel and sufficient transverse stability,
measured by trim and metacentric height (GM). Which in turn are determined by
the longitudinal (LCG) and vertical center of gravity (VCG) [104].

6.3. Problem Formulation of Master Bay Planning Problem 91

6.3.1 MIP Model of the MBPP

The following model of the MBPP is inspired by the MIP formulation of [160].

max ∑
p∈P

∑
b∈B

∑
d∈D

∑
k∈K

∑
τ∈TOB(p)

f1xb,d
τ,k − ∑

b∈B
f2yb,p

 (6.2)

s.t. ∑
b∈B

∑
d∈D

xb,d
τ,k ≤ qτ,k ∀p ∈ P, τ ∈ TOB(p), k ∈ K (6.3)

∑
k∈K

∑
τ∈TOB(p)

xb,d
τ,k ≤ cb,d ∀p ∈ P, b ∈ B, d ∈ D (6.4)

∑
k∈K

∑
j∈P:j>p

xb,d
(p,j),k ≤ Mzb,p ∀p ∈ P, b ∈ B, d ∈ DH (6.5)

∑
k∈K

∑
i∈P:i<p

xb,d
(i,p),k ≤ Mzb,p ∀p ∈ P, b ∈ B, d ∈ DH (6.6)

∑
k∈K

∑
τ∈TROB(p)

xb,d
τ,k −M(1− zb,p) ≤ yb,p ∀p ∈ P, b ∈ B, d ∈ DO (6.7)

LM(p)− TW(p)LCG∗ ≤ υ · TW(p) ∀p ∈ P (6.8)
LM(p)− TW(p)LCG∗ ≤ −υ · TW(p) ∀p ∈ P (6.9)
VM(p)− TW(p)VCG∗ ≤ υ · TW(p) ∀p ∈ P

(6.10)

VM(p)− TW(p)VCG∗ ≤ −υ · TW(p) ∀p ∈ P
(6.11)

TW(p) = ∑
k∈K

wk ∑
τ∈TOB(p)

∑
d∈D

∑
b∈B

xb,d
τ,k ∀p ∈ P (6.12)

LM(p) = ∑
b∈B

LPb ∑
k∈K

wk ∑
τ∈TOB(p)

∑
d∈D

xb,d
τ,k ∀p ∈ P (6.13)

VM(p) = ∑
d∈D

VPd ∑
k∈K

wk ∑
τ∈TOB(p)

∑
b∈B

xb,d
τ,k ∀p ∈ P (6.14)

The primary decision variable of our MIP model is xb,d
(i,j),k ∈ R≥0, which is the num-

ber of TEU from port i to j of class k planned to be stowed in bay b and deck d.
The secondary decision variable yb,p ∈ R≥0 is the number of TEU that causes hatch
overstowage in bay b at port p, while the last decision variable zb,p ∈ {0, 1} indicates
whether the hatch is opened in bay b at port p. Equation (6.2) shows that the MIP
aims to maximize vessel utilization and minimize hatch overstowage, where f1 is the
gain per loaded TEU and f2 is the cost per hatch overstow in TEU. Equation (6.3) lim-
its the total vessel utilization by demand qτ,k, while Equation (6.4) limits the onboard
cargo by the capacity volume cb,d. Equation (6.5) and (6.6) connects stowed con-
tainers xb,d

(i,j),k to hatch moves zb,p using the big M notation, whereas Equation (6.7)
computes hatch restows based on whether the cargo is placed on the to-be-opened
hatch. Let us define LCG(p) = LM(p)/TW(p) and VCG(p) = VM(p)/TW(p) at
port p, and their optimal equivalents LCG∗ = ∑b LPb/|B| and VCG∗ = ∑d VPd/|D|.
Equations (6.8) and (6.9) limit the difference between the actual and optimal LCG

92 Chapter 6. Exploring Deep Reinforcement Learning

with parameter υ. Similarly, Equations (6.10) and (6.11) limit the difference between
the actual and optimal VCG with parameter υ. Note that Equations (6.8)-(6.11) are
linear transformations of |LCG(p)− LCG∗| < υ and |VCG(p)− VCG∗| < υ. Equa-
tions (6.12) - (6.14) define the total weight TW(p), longitudinal moment LM(p), and
vertical moment VM(p). Notice that LPb and VPd refer to the longitudinal and ver-
tical position of locations, respectively.

6.4 Solving MBPP with Reinforcement Learning

The state st ∈ S at time step t is defined with pair st = (u(t), q) and is fully ob-
servable. It consists of the vessel utilization u(t) ∈ R|B|×|D|×|T|×|K| and a constant
voyage demand quantity q ∈ R|T|×|K|. As an example ub,d

(i,j),k(t) = 0.05 means that
5% of the vessel capacity is cargo stowed in bay b at deck d with POL i, POD j and
class k at step t. Similarly, q(i,j),k = 0.13 means that there is a cargo demand of 13%
of the vessel capacity with POL i, POD j and class k.

At port p, the agent takes an action at ∈ A for every (i, j) ∈ TOB(p) : i = p, j = j′.
Each action is a combination of port p and future port j′, as shown in Figure 6.1. The
action is defined by a pair at = (l(t), τt), where l(t) ∈ R|B|×|D|×|K| is the fraction
of vessel capacity to load in bay b at deck d of class k on transport τt = (p, j′). In
Equation (6.15), we define the transition function to step t + 1 with an input of τt. If
cargo remains on board, then ub,d

τ,k(t) is unchanged. If cargo should be loaded (i.e.,

τ = τt), then the utilization will become lb,d
k (t). Otherwise, cargo that should not be

on board will be set to zero.

ub,d
τ,k(t + 1) =

ub,d

τ,k(t) if τ ∈ TOB(p) \ {τt}
lb,d
k (t) if τ = τt

0 otherwise

∀b ∈ B, d ∈ D, τ ∈ T, k ∈ K (6.15)

Since agents struggle with sparsity [66], a constant reward signal is necessary for
each action. Equation (6.16) defines the reward of satisfying demand with reward
coefficient f1 and input τt = (p, j′) for current port p and future port j′. A penalty is
incurred with coefficient f3 if the agent ships more cargo than demanded. Note that
f3 > f1 holds to enforce feasibility.

rDS
τt

=

{
f1 ∑b,d,k ∑τ∈TOB(p) ub,d

τ,k, if ∑b,d ub,d
τt,k′
≤ qτt,k′

− f3 ∑b,d,k ∑τ∈TOB(p) ub,d
τ,k, otherwise

∀k′ ∈ K (6.16)

In addition, the following terms are evaluated at (p, j′) ∈ T : j′ = |P|. Equations
(6.17) and (6.18) enforce that the actual longitudinal or vertical center of gravity (i.e.,
LCGt or VCGt) can at most deviate υ from the optimal longitudinal or vertical center
of gravity (i.e., LCG∗ or VCG∗) with infeasibility penalty. Given the definitions of
Equations (6.12) until (6.14), let us substitute xb,d

τ,k by ub,d
τ,k and define LCGt = LM(p)

TW(p)

and VCGt =
VM(p)
TW(p) . Equation (6.19) incurs an infeasibility penalty for violating ca-

pacity. While hatch overstowage is evaluated in Equation (6.20), where we penalize

6.4. Solving MBPP with Reinforcement Learning 93

hatch restows with coefficient f2. The cost of restowing a container is lower than its
revenue, and thus f1 > f2 holds.

rLS
(p,j′) =

{
− f3|LCGt − LCG∗|, if j′ = |P| ∧ |LCGt − LCG∗| > υ

0, otherwise
(6.17)

rVS
(p,j′) =

{
− f3|VCGt −VCG∗|, if j′ = |P| ∧ |VCGt −VCG∗| > υ

0, otherwise
(6.18)

rCS
(p,j′) =

− f3 ∑

b,d,k
∑

τ∈TOB(p)

ub,d
τ,k, if j′ = |P| ∧ ∃b′ ∈ B, d′ ∈ D.

∑
k

∑
τ∈TOB(p)

ub′,d′
τ,k > cb′,d′

0, otherwise

(6.19)

rHO
(p,j′) =

− f2 ∑
b,k,d∈DO

∑
τ∈TROB(p)

ub,d
τ,k, if j′ = |P| ∧ ∃b′ ∈ B, d′ ∈ DH.

∑
k

∑
i∈P:i<p

ub′,d′
i,p,k > 0

− f2 ∑
b,k,d∈DO

∑
τ∈TROB(p)

ub,d
τ,k, if j′ = |P| ∧ ∃b′ ∈ B, d′ ∈ DH.

∑
k

∑
j∈P:j>p

ub′,d′
p,j,k > 0

0, otherwise

(6.20)

Equation (6.21) defines a reward function R(st, at) for each step t, where the above-
mentioned terms are summed. However, a final term penalizes unsatisfied demand
by including the upper bound of rDS

τt
with parameter f1. Hence, we maximize a

reward function with an upper bound of 0.

r(st, at) = rDS
τt

+ rLS
τt

+ rVS
τt

+ rCS
τt

+ rHO
τt
− ∑

k,τ∈TOB(p)

f1qτ,k (6.21)

Figure 6.1 illustrates an example with 4 ports of our episodic MDP. Each episode con-
sists of |T| = (|P|2 − |P|)/2 actions during a unidirectional voyage, corresponding
to the number of above-diagonal elements in a matrix P2. An episode is initialized
with an empty vessel in state s0 (i.e., u0 is set to 0), whereas a sample qτ,k is drawn
from the demand distribution Qτ,k. During the episode, the agent traverses all ports
p ∈ P and takes an action according to policy πθ(at|st) for each τt = (p, j′) with
j′ ∈ P : j′ > p. Figure 6.1 differentiates between rewards for each transport pair
rτt and the last action of each port r(p,|P|). An episode is terminated at arbitrary step
t that satisfies mod t/|T| = 0 as all actions are performed. Finally, the episodic
reward is provided as output.

6.4.1 Proximal Policy Optimization Architecture

This on-policy architecture consists of an actor neural network with weights θ to
create policy πθ(at|st) and a critic neural network with weights ω to evaluate the
performance of the policy by approximating the value function Vω(st). The value
function estimation Vω(st) is used to express the relative advantage of taking an
action. Equation (6.22) defines the general advantage estimate Ât of (st, at)-pair at
step t, where λ is the exponential decay rate and δt is the temporal difference residual

94 Chapter 6. Exploring Deep Reinforcement Learning

FIGURE 6.1: Overview of master bay planning MDP with colours cor-
responding to PODs

found by stepwise bootstrapping in Equation (6.23). Both πθ(at|st) and Vω(st) are
multilayer perceptrons that approximate non-linear functions by learning the mean
and standard deviation of continuous Gaussian distributions.

Ât =
H−(t+1)

∑
l=0

(γλ)lδt+l (6.22) δt = r(st, at) + γVω(st+1)−Vω(st) (6.23)

Let us define the loss function with respect to ω as the mean squared error between
the estimated value function and the sum of discounted rewards in Equation (6.24).
Given the estimated advantage Ât, Equation (6.25) defines a clipped loss function
with respect to θ, where pt(θ) =

πθ(at|st)
πθold

(at|st)
is the importance sampling ratio between

the current and previous policy distribution. The clipping limit ϵ prevents disrup-
tive changes to θ. In Equation (6.26), both functions are combined with entropy
regularization, where cf 1 and cf 2 are coefficients and S[πθ](st) is the entropy term
that promotes exploration based on πθ and st. Hence, Equation (6.26) is maximized
to update θ and thereby policy πθ .

LVF(ω) = Êt

[
(Vω(st)−

t

∑
i=0

γtr(st, at))
2

]
(6.24)

LCLIP(θ) = Êt
[
min(pt(θ)Ât, clip(pt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(6.25)

LCLIP+VF(θ) = Êt

[
LCLIP(θ)− cf 1LVF(ω) + cf 2S[πθ](st)

]
(6.26)

A description of PPO is shown in Algorithm 3. For each step t, let N parallel actors
run policy πθold based on parameter θold for a time horizon of H timesteps. The esti-
mated advantage Ât is computed for every step t ∈ {1, ..., H}. Using a minibatch of

6.4. Solving MBPP with Reinforcement Learning 95

M steps, we optimize the actor and critic loss w.r.t. θ and ω using the Adam solver
[118] for E epochs. If θ and ω are trained for a sufficient number of steps, then we
can obtain an actor with πθ ≈ π∗ and a critic with Vω ≈ V∗.

Algorithm 3 Proximal Policy Optimization

1: Initialize: ω = ω0, θ = θ0
2: for t = 1, 2, . . . , Ts do
3: for actor = 1, 2, . . . , N do
4: Run policy πθold in environment for H timesteps
5: Compute advantage estimates Â1, . . . , ÂH
6: end for
7: Optimize LVF(ω) w.r.t. ω with E epochs and minibatch M ≤ NH
8: Optimize LCLIP+VF(θ) w.r.t. θ with E epochs and minibatch M ≤ NH
9: ωold ← ω; θold ← θ

10: end for
11: return πθ

6.4.2 Hyperparameter Tuning

There are many hyperparameters to be determined that impact the performance of
PPO. We will, however, limit ourselves to the most impactful ones mentioned be-
low. The time horizon with H steps is defined as the number of samples propagated
through the network for each actor, while the number of epochs E is the number
of passes through the experience buffer. The total buffer size amounts to NH and
the minibatch size equals the buffer M = NH. The learning rate α ∈ (0, 1] defines
the update size of network weights (i.e., θ, ω), which decreases over time to reduce
the impact of updates. The actor and critic networks have the same number of hid-
den layers (depth) and neurons in each hidden layer (width). The layer activation
function is ReLu to deal with vanishing gradients [76]. Both πθ(at|st) and Vω(st)
are learned by their mean and log standard deviation that are initialized at 0 and
init_log_std respectively.

We implement a tree-structured Parzen estimator using an optimization framework
[5], which is a Bayesian method that can efficiently sample hyperparameters for var-
ious optimization use cases [28]. The goal is to maximize the episodic return of trials
in 106 steps based on samples. To improve efficiency, a median pruner stops trials if
its best intermediate result is worse than the median of earlier trials at the same time
step [5]. In total, we run 100 trials with different hyperparameters, of which 95 trials
use the pruner.

The trials are run with the following MBPP parameters: ports |P| = 4, classes |K| =
2, bays |B| = 4, decks |D| = 2, location capacity in TEU cb,d = 50, weight class
wk = {1, 2}, absolute center of gravity tolerance υ = 0.05, longitudinal position of
bays LPb = {0.25, 0.75, 1.25, 1.75}, vertical position of decks VPd = {0.5, 1.5}, gain
per loaded TEU f1 = 1, cost per hatch overstowed TEU f2 = 1/3, and penalty to
violate constraints f3 = 3. Given N = 1, the highest episodic return is obtained with
H = 512, E = 10, α = 3e−4, 3 hidden layers, 1024 neurons, and init_log_std = 6.75.
Other hyperparameters are set as follows: Ts = 4 · 107, M = 512, γ = 0.99, λ = 0.95,
cf 1 = 0.5 and cf 2 = 1e−6.

96 Chapter 6. Exploring Deep Reinforcement Learning

6.5 Results

In Subsection 6.4.2, the respective environment and PPO (hyper)parameters are de-
fined. The usefulness of PPO is demonstrated by addressing a small-scale MBPP.
Even though the MBPP is not representative of real-life stowage plans, it does cap-
ture fundamental combinatorial aspects to form a non-trivial problem. The results
analyze whether the policy learns to optimize the objective, but also whether the pol-
icy generalizes to new test instances. To evaluate test performance, we compare the
objective value and runtime of PPO with a MIP solver on two sets of instances. The
first set of 100 instances Gaus-MBPP contains Gaussian equivalents to the Mixed
instances of [18]. The second set of 100 instances Unif-MBPP consists of uniform
versions of the Mixed instances. Due to reward shaping, the MIP objective and the
reward function are proportional but not equal, and therefore, we transform the ob-
jective before comparison.

The experiments are run on a Windows machine with an NVIDIA RTX A2000 Lap-
top GPU with 12.0 GB memory and an Intel Core i7-11800H processor with 8 cores
and 32.0 GB memory, running at 2.3/4.6 GHz. The work is implemented in Python
3.9 and supported by libraries such as Gym 0.21 to model the environment, PyTorch
1.11 and Stable Baselines 1.6.2 to implement PPO, Optuna 3.0.3 to tune hyperparam-
eters, and CPLEX 22.1 to solve the MIP model.

In Figure 6.2, several training metrics are included to analyze training. Figure 6.2a
plots the episodic return against episodes to evaluate the training performance of
PPO on Gaus-MBPP. In general, the training curve seems to converge towards an
increasingly stable return around 70,000 episodes. Due to the stochasticity of Gaus-
MBPP, performance will vary over time. In early training, PPO learns to avoid large
negative rewards associated with infeasible solutions, after which the episodic re-
turn follows an upward trend without converging definitely. In addition, Figure 6.2b
shows the loss function optimized by the actor, which has yet to converge but starts
to reduce in volatility. To evaluate the difference between distributions, one can use
the approximate KL divergence [66]. Figure 6.2c shows that the approximate KL
divergence between πθ(at|st) and πθold(at|st) is stabilizing. Similarly, Figure 6.2d
shows that the change to pt(θ) is lower than the clipping range ϵ, indicating small
actor changes. In Figure 6.2e, we observe that log_std starts to converge, meaning
that the variability of πθ(at|st) reduces. Thus, we have found an increasingly sta-
ble policy with one actor on a limited training budget, suggesting there is room for
improvement. Nonetheless, we have found a policy that optimizes the objective
function.

In Table 6.1, we evaluate the performance of PPO and MIP on Gaus-MBPP and Unif-
MBPP. Since the instance size is relatively small, the benchmark MIP will solve all
instances. In comparison, PPO finds 98 feasible solutions with an average gap of
12.5% on Gaus-MBPP with low levels of variability. Even though the results are
not near optimal, a larger training budget is likely to improve performance as our
policy approaches the global optimum [150, 148]. Moreover, if MIP solvers become
intractable for large-scale problems, the significantly shorter runtime of PPO will be
advantageous. Hence, we find that PPO generalizes its policy to the Gaus-MBPP
instances with reasonable performance.

Furthermore, the policy struggles to generalize to the Unif-MBPP instances, which
is not the case for the MIP. Even if feasible solutions are found, then the average

6.5. Results 97

(A) Training performance.

(B) Loss value LCLIP+VF(θ). (C) Approximate KL divergence.

(D) Clip fraction pt(θ). (E) Log standard deviation log πθ(at|st).

FIGURE 6.2: Training performance metrics on Gaus-MBPP instances

optimality gap is 81.3% with large variability in the objective value. Our function
approximator struggles to accurately predict uniform instances with a different ratio
than Gaus-MBPP. DRL methods generally learn to adapt to the underlying distribu-
tion, and thus it is likely that sampling outside of this distribution leads to perfor-
mance loss. Though this is a clear drawback of PPO, it is our understanding that

98 Chapter 6. Exploring Deep Reinforcement Learning

demand often follows predictable patterns. Therefore, it is important to accurately
model demand based on real data.

Although we have found encouraging results, we realize that DRL demands con-
siderably more computational power than provided by our machine appropriate for
MIP optimization. Usually, laptop GPUs have fewer cores, less VRAM, and slower
clock speeds than their desktop counterparts. This causes long training times, sub-
optimal convergence, and reduced test performance. To train a DRL model effi-
ciently, it is therefore recommended to use specialized hardware such as high-end
GPUs, TPUs, or cloud-based computing resources. Since this is not easily accessi-
ble, we will invest in comparable hardware to a workstation with 4x NVIDIA RTX
A6000 with 48 GB memory and a Threadripper Pro 3955 WX with 16 cores and 256
GB memory, running at 3.9/4.3 GHz.

TABLE 6.1: Evaluation of PPO and MIP on two sets of 100 test in-
stances generated from Gaus-MBPP and Unif-MBPP. Results are ex-
pressed in the mean average and standard deviation metrics for the
objective value (Obj.) and runtime in seconds (Time). The number
of feasible solutions (#) is given without std. This also holds for the
optimality gap (Gap) that is computed relative to the optimal MIP ob-

jective.

Gaus-MBPP Unif-MBPP
Methods Metric # Obj. Gap Time # Obj. Gap Time
PPO Mean 98 2.092 12.5% 0.013 13 0.444 81.3% 0.006
PPO Std 0.135 0.002 0.359 0.000
MIP Mean 100 2.366 0.0% 0.058 100 1.930 0.0% 0.035
MIP Std 0.261 0.022 0.387 0.016

In conclusion, PPO can learn a policy that optimizes the objective function during
training on Gaus-MBPP instances. Afterward, this policy can be generalized to effi-
ciently achieve reasonable performance on unseen Gaus-MBPP test instances. When
confronted with the Unif-MBPP instances, PPO mostly obtains infeasible or weak
solutions. Using this proof of concept, we argue in favor of using PPO to solve the
MBPP.

6.6 Conclusion

This paper presents a DRL approach towards solving the MBPP in container vessel
stowage planning. In particular, we introduce an MDP equivalent to a MIP model
with NP-hard combinatorial aspects, as well as suggest PPO to solve the MDP. These
preliminary experiments show that PPO learns to optimize the objective value dur-
ing training on limited hardware, after which its policy can be generalized to effi-
ciently find reasonable solutions for test instances. Hence, we have provided a proof
of concept for applying PPO to the MBPP.

In future work, we will extend the environment to become a full-featured MBPP
with a representative demand simulator. The algorithm will also be improved to
increase performance and deal with more complex problems. Since voyages are in-
herently sequential, we could implement temporal dynamic policies using recurrent
neural networks (e.g., long short-term memory networks). Considering the cellular
shape of container vessels, we might also leverage graph representation learning in
our architecture.

6.6. Conclusion 99

100

Chapter 7

Deep Reinforcement Learning
under Uncertainty

This chapter will discuss the article: "Navigating Demand Uncertainty in Container
Shipping: Deep Reinforcement Learning for Enabling Adaptive and Feasible Master Stowage
Planning" that is currently under review [217]. This study addresses sub-objectives
2, 3 and 4 of the thesis.

In Chapter 4, the need for scalable heuristic frameworks and the incorporation of in-
dustrial challenges is highlighted. In response, this chapter introduces an MDP for-
mulation for master planning under demand uncertainty, where the reward function
seeks to maximize expected profit under explicit convex feasibility constraints. The
policy employs differentiable projection layers to enforce these constraints, and we
theoretically analyze their ability to minimize constraint violations. Experimental
evaluations compare the proposed architecture with baseline methods from stochas-
tic optimization and deep reinforcement learning.

This chapter uses the same content as the article [217], with each section correspond-
ing directly to its counterpart in the original work, except for the replacement of a
domain section with the problem definition and notation section. The chapter opens
in Section 7.1 with an introduction to the article. Section 7.2 provides definitions
and relevant notation, followed by a review of related work in Section 7.3. Next,
Section 7.4 introduces both the formal and decomposed MDP formulations of the
MPP under demand uncertainty. The proposed DRL architecture is described in Sec-
tion 7.5, while Section 7.6 presents the results of the experimental evaluation. Finally,
Section 7.7 summarizes the key findings and outlines directions for future research,
whereas the appendices to support this chapter can be found in Appendix B.

7.1 Introduction

In recent years, machine learning (ML) for combinatorial optimization (CO) has
gained much traction [27]. Learning advanced planning policies yields promising
results in solving CO problems in transportation and logistics. Such approaches can
outperform existing solution methods in some well-known problems, such as ve-
hicle routing [123, 86] or job shop scheduling [127]. Even though it is important
to benchmark algorithms on traditional CO problems, a significant opportunity re-
mains to address lesser-known yet critical planning challenges in supply chains. By

7.1. Introduction 101

addressing these challenges, we bridge the gap between theory and practice, en-
hancing the reliability and efficiency of worldwide supply chain operations.

Container shipping is a key component of the global supply chain, responsible for
transporting 45% of annual goods valued at $8.1 trillion [215]. Due to its scale, it
is often regarded as the cornerstone of worldwide trade and modern consumerism.
However, this scale also has a significant environmental impact, with yearly CO2
emissions exceeding 200 million tonnes [138]. Despite this, container vessels are con-
sidered an environmentally friendly mode of transportation due to their relatively
low emissions per cargo ton-mile [104]. Consequently, container shipping is recog-
nized to play a crucial role in the global green transition [67]. Within container ship-
ping, there are several interdependent and complex planning tasks, such as berth
allocation [146], pre-marshalling [87], quay crane scheduling [83], and container ves-
sel stowage planning [221]. Due to decision-making under demand uncertainty and
various combinatorial aspects - such as capacity limits, seaworthiness requirements,
minimizing overstowage and maximizing revenue - stowage planning is particu-
larly challenging. To mitigate this challenge, stowage planning is often decomposed
into the master planning problem (MPP), which involves the assignment of cargo to
clusters of slots, and the slot planning problem (SPP), which allocates containers to
individual slots [160]. However, these subproblems in representative form, particu-
larly the MPP, remain non-trivial and difficult to solve, especially in the presence of
uncertainty [221].

In addition to its complexity, stowage planning faces public data scarcity and relies
heavily on human planners supported by limited decision support systems [104].
Planners should maximize capacity utilization while managing demand uncertainty
by accounting for multiple future scenarios. However, evaluating such scenarios is
computationally intractable, due to the problem’s complexity and dynamic nature.
These limitations highlight the need for efficient, adaptive, and feasible decision-
support systems, offering an opportunity for AI-driven solution methods to enhance
the resilience and sustainability of the global supply chain.

This paper presents a deep reinforcement learning (DRL) approach with feasibility
projection to construct adaptive and feasible solutions, providing a decision-support
policy for the MPP under demand uncertainty.

Our main contributions are as follows:

• Master Stowage Planning Environment: We develop a novel Markov deci-
sion process (MDP) for master stowage planning under demand uncertainty,
incorporating realistic problem-specific constraints. To address data scarcity,
we release the environment as an open-source implementation1.

• Feasibility Projection: We incorporate differentiable projection layers, includ-
ing weighted scaling, policy clipping, and violation projection, to enforce in-
equality constraint satisfaction in DRL frameworks.

• Efficient and Adaptive Solutions: Our experiments demonstrate that our pol-
icy efficiently generates adaptive and feasible solutions under demand un-
certainty, significantly outperforming well-known DRL methods and a multi-
stage stochastic MIP model.

1https://github.com/OptimalPursuit/navigating_uncertainty_in_mpp

https://github.com/OptimalPursuit/navigating_uncertainty_in_mpp

102 Chapter 7. Deep Reinforcement Learning under Uncertainty

• Decision Support for Stowage Planning: Our decision-support policy tran-
scends deterministic models, enabling dynamic and uncertainty-informed plan-
ning in a critical part of the global supply chain.

7.2 Definitions and Notation

First, we clarify that⊗ represents the outer product and⊙ denotes the element-wise
Hadamard product, with broadcasting applied when shapes are compatible.

Voyage. A voyage can be described as a directed path graph GP = (P, EP) with
nodes being P = {1, 2, . . . , NP}, and edges being legs between ports EP = {(p, p+
1) | p ∈ {1, 2, . . . , NP−1}} with NP being the last port. We also define sub-voyages
by set Pend

start = {p ∈ P |start ≤ p ≤ end}.

Cargo. Containers have a port of load (pol) and a port of discharge (pod), also named
transports or origin-destination pairs. Consider pol ∈ PNP−1

1 and pod ∈ PNP
2 with

P2 = P × P, which can be represented by transport tr = (pol, pod). We can define
a set of transports TR = {(i, j) ∈ P2 | i < j}. Containers are often grouped into
cargo classes by characteristics, such as K = {20ft, 40ft} × {Light, Medium, Heavy} ×
{Spot, Long}.

Vessel. Bays are defined by an ordered set B = {1, 2, . . . , NB}, ranging from fore to
aft with NB being the last bay. Bays are horizontally separated by hatch covers into
above and below deck sections, introducing the set of decks D = {dabove, dbelow}.

Utilization. Vessel utilization up ∈ Z|B|×|D|×|K|×|TR| represents the cargo place-
ment across bays B, decks D, cargo types K, and transports TR. Load operations
are defined by u+

p ∈ Z
|B|×|D|×|K|×|TR|
>0 , whereas discharging is denoted by u−p ∈

Z
|B|×|D|×|K|×|TR|
>0 . The utilization at port p is defined as up = up−1 + u+

p − u−p ∀p ∈ P,
where u0 is the vessel’s arrival condition at the first port. We also define the vessel’s
pre-loading utilization u′p = up−1 − u−p .

Stability. The longitudinal (lcg) and vertical centers of gravity (vcg), which are asso-
ciated with trim and metacentric height, of the load up prior to leaving port p must
remain within specified bounds (lcg, lcg ∈ R>0), as shown in Constraints (7.1) and
(7.2). To compute the stability, we define the longitudinal moment lm = ld⊗ w and
vertical moment vm = vd⊗ w, where w ∈ R

|K|×|TR|
>0 represents container weights,

and ld, vd ∈ R|B|×|D| denote the longitudinal and vertical distances of positions from
the vessel’s center of gravity.

lcg ≤
1⊤
(
lm⊙ up

)
1⊤
(
w⊙ up

) ≤ lcg, ∀p ∈ P (7.1)

vcg ≤
1⊤
(
vm⊙ up

)
1⊤
(
w⊙ up

) ≤ vcg, ∀p ∈ P (7.2)

7.3 Related Work

This section positions our work in the literature on stowage planning, stochastic
programming and ML in optimization.

7.4. Markov Decision Processes 103

Stowage Planning. To address the complexity of stowage planning, various solu-
tion approaches have been applied to different problem formulations, including ex-
act methods [177], linearly relaxed MIP [160], matheuristics [169], population-based
metaheuristics [42], neighbourhood-based metaheuristics [159], hybrid frameworks
[31]. Despite these techniques, a recent survey highlights that scalable solutions for
representative stowage and MPP problems remain unsolved [221]. Research has
largely focused on deterministic problems, overlooking real-world needs for profit
maximization in the face of demand uncertainty.

Stochastic Programming. Decision-making under uncertainty is traditionally ap-
proached through stochastic programming, where uncertainty is explicitly repre-
sented as a set of discrete scenarios evolving over multiple stages in time, approx-
imating the underlying probability distribution [32]. This process results in a sce-
nario tree, whose computational complexity grows exponentially as O(bT), where
b is the branching factor and T is the number of stages. Hence, multi-stage prob-
lems with T > 2 and a reasonably large b are often intractable. Common techniques
to overcome this complication are scenario reduction to reduce problem size [179],
decomposition techniques like Benders decomposition or Lagrangian relaxation to
divide the problem [175], progressive hedging to enforce non-anticipativity itera-
tively [34], or approximation methods, such as stochastic dual dynamic program-
ming [193] and sample average approximation [44], to enhance tractability while
preserving solution quality.

Learning with Hard Constraints. In learning solution heuristics, a challenge arises
to ensure feasibility in complex action spaces. This challenge is exacerbated when
dealing with the dependence on state variables to define the feasible region. Sev-
eral deep learning approaches have dealt with learning constraints by backpropa-
gation through (in)equality completion [60], or differentiable projection layers, such
as mapping interior points to boundaries [136], convex programming layers [1], or
problem-specific repair layers [46]. Moreover, safe reinforcement learning has dealt
with constraints by, e.g., constrained MDPs with a primal-dual approach [59], soft
barriers function [225], and safety shields [6].

7.4 Markov Decision Processes

We present a formal MDP and a decomposed MDP to solve using DRL approaches.
Technical details about both MDPs are provided in Appendix B.1.

7.4.1 Formal MDP

LetM = (S, X, T ,R, PNP−1
1 , γ) define an episodic discounted MDP representing the

MPP, where S is a set of states, X is a set of actions, T : S×X → ∆(S) is the transition
function, R : S× X× PNP−1

1 → R is the reward function, PNP−1
1 is the finite horizon

of load ports with NP − 1 being the last port, and γ ∈ (0, 1) is the discounting factor.

State. The state is given by sp ∈ S, defined as sp = (up, qp, ζ). This includes vessel
utilization up ∈ R

nu
≥0 and realized demand qp ∈ R

nq
≥0, where nu = |B| × |D| × |K| ×

|TR|, nc = |B| × |D| and nq = |K| × |TR| are the shapes of utilization, location and
demand, respectively.

104 Chapter 7. Deep Reinforcement Learning under Uncertainty

Additionally, environment parameters ζ contain the expected value µ ∈ R
nq
≥0 and

standard deviation σ ∈ R
nq
>0 of demand, load ports i, discharge ports j and cargo

types k as (i, j, k) ∈ TR× K, TEU per container teu ∈ {1, 2}nq , cargo weight w ∈ R
nq
>0,

cargo revenue rev ∈ R
nq
>0.

The initial state s0 = (u0, q0, ζ) consists of an empty vessel u0 = 0nu , realized demand
q0 at initial port, and ζ is initialized randomly for each episode.

Action. An action xp ∈ X assigns a real number of containers to utilization up,
where xp ∈ R

nu
>0 and thus similar to u+

p . Each action xp is subject to a feasible region,
defined by polyhedron PH(sp) = {xp ∈ R

nu
>0 : A(sp)xp ≤ b(sp)}. Here, A(sp) ∈

Rmu×nu is the constraint matrix, b(sp) ∈ Rmu is the bound vector, and mu is the
number of constraints.

Previous work demonstrated that linearly relaxed MPPs outperform exact MPPs,
as the subsequent SPP effectively discretizes the solution [160]. Accordingly, we
can adopt real-valued actions instead of integer-valued actions. Given a traditional
MPP formulation with utilization up [220], we define constraints of PH(sp) in terms
of actions xp and pre-loading utilization u′p.

x⊤p 1nc ≤ qp (7.3)

xpteu ≤ c− u′pteu (7.4)

-1⊤
(
(lm−lcgw)⊙xp

)
≤ -1⊤

(
(lcgw−lm)⊙u′p

)
(7.5)

1⊤
(
(lm−lcgw)⊙xp

)
≤ 1⊤

(
(lcgw−lm)⊙u′p

)
(7.6)

-1⊤
(
(vm−vcgw)⊙xp

)
≤ -1⊤

(
(vcgw−vm)⊙u′p

)
(7.7)

1⊤
(
(vm−vcgw)⊙xp

)
≤ 1⊤

(
(vcgw−vm)⊙u′p

)
(7.8)

Constraint (7.3) limits load xp to the available demand qp, while Constraint (7.4) en-
sures xp does not exceed the residual TEU capacity. Constraints (7.5)–(7.6) enforce
lcg limits, while Constraints(7.7)–(7.8) impose similar bounds on the vcg. These sta-
bility bounds are derived from Constraints (7.1) and (7.2).

Transition. We use a stochastic transition function T (sp+1|sp, xp) ∈ ∆(S). Within an
episode, the transition consists of multiple components:

• Upon port arrival, port demand qp is revealed.

• Subsequently, onboard cargo is discharged up+1 = up ⊙ (1− e−p), where e−p ∈
{0, 1}nq is a binary mask indicating the cargo type and transport to nullify in
up.

• Finally, cargo is loaded onboard up+1 = up + xp. Action xp is based on the
current utilization up and revealed demand qp of port p. Future port demand
stays unknown.

Reward. Equation (7.9) defines our deterministic reward function, computing profit
as the difference between revenue and costs. Revenue is computed as the sum of
xp corresponding to elements of qp. Since revenue cannot be obtained from contain-
ers exceeding demand, the summation of xp is restricted to the elements within qp.

7.5. Proposed Architecture 105

While costs are computed via the state-dependent auxiliary variables hatch over-
stows ho(sp, p) ∈ R

|B|
>0 and excess crane moves cm(sp, p) ∈ R

|B|−1
>0 . These costs are

weighted by ctho ∈ R>0 and ctcm ∈ R>0, respectively.

R(s, x, p) = rev min
(
x⊤1nc , q

)
− ctho1⊤ho(s, p) + ctcm1⊤cm(s, p) (7.9)

7.4.2 Decomposed MDP

The formal MDP defines an effective action space of size |X| ∝ |B| · |D| · |K| · |P|,
where each action xp determines how cargo types and transport options are placed
on the vessel per port. However, this action space is large, which can hinder learning
efficiency [108].

To address this, we decompose the formal MDP into granular, sequential steps based
on an index (i, j, k) ∀(i, j) ∈ TR, k ∈ K. Instead of placing all transport and cargo
types simultaneously, we take a decomposed action for all transports (p, j) and cargo
types k at port p, then departing to a new port. This reduces the action space to
|X| = |B| · |D|, while unfolding transports and cargo types over an extended time
horizon t ∈ H = {0, 1, . . . , Tseq} with Tseq = |K| · |TR|.

State. The state st = (ut, qt, ζ) depends on time step t, where ut ∈ R
nu
≥0 is vessel

utilization, and qt ∈ R
nq
≥0 is realized demand. The environment parameter ζ remains

unchanged. Given the time t, however, we can extract relevant parameters from ζ,
such as (polt, polt, kt), rev(polt,podt,kt).

Action. Action xt ∈ R
nc
≥0 assigns real number of containers to utilization ut for

step t. Each action is subject to PH(st) = {xt ∈ R
nc
>0 : A(st)xt ≤ b(st)}. Here,

A(st) ∈ Rmc×nc is the constraint matrix, b(st) ∈ Rmc is the bound vector, and mc
is the number of constraints. It is also worth noting that Constraints (7.3)-(7.8) are
reformulated to fit feasible region PH(st).

Transition. At each time step t, the transition includes loading, where xt is added
to ut. However, discharging and demand realization occur only when arriving at a
new port, indicated by t ∈ Tnew port.

Reward. The revenue at step t is computed as rev(polt, podt, kt)min(1⊤xt, q(polt,podt,kt)
t).

However, costs depend on knowing all loading operations at port p, which is aggre-
gated in utilization ut at the last step of the port t ∈ Tleave port. As a result, the cost
signal is sparse, being evaluated only once per port p rather than at each step.

7.5 Proposed Architecture

Our approach consists of several components: an encoder-decoder model param-
eterized by θ, an actor-critic DRL method, and a feasibility projection layer. The
encoder-decoder model shown in Figure 7.1 employs a look-ahead policy πθ(x|st)
conditioned on state st and parameterized by mean µθ(st) and standard deviation
σθ(st). By training in the decomposed MDP and optionally projecting the policy, we
iteratively generate actions xt to construct solutions.

106 Chapter 7. Deep Reinforcement Learning under Uncertainty

FIGURE 7.1: Deep reinforcement learning architecture with feasibility
projection for actor-critic methods

7.5.1 Encoder-Decoder Model

Figure 7.2 presents our encoder-decoder model, based on that of [123], with modifi-
cations highlighted below.

Cargo Embedding. The cargo embedding ecargo(ζ) parameterized by θcr maps cargo-
related episode information in ζ into a feature representation for the encoder. To en-
hance positional awareness, we subsequently apply sinusoidal positional encoding
[222].

Encoding Layers. An attention encoder f (ecargo(ζ)) parameterized by θenc maps em-
bedding ecargo(ζ) to latent variable z using multi-head attention (MHA) to identify
revalant features dynamically [222]. Then, we use a feed-forward network (FFN)
with ReLU activation, layer normalization, residual connections, and dropout.

Context Embedding. The context embedding econt(ut, z), parameterized by θco, fo-
cuses on time t, extracting time-specific features from the utilization ut and latent
variable z. These features provide the MHA query with a representation of the ves-
sel’s current condition, enabling the policy to make decisions based on the present
context.

Dynamic Embedding. The dynamic embedding edynam(qt, z), parameterized by θdn,
extracts features from demand qt in all steps of horizon H, capturing patterns across
the entire episode. It combines real demand and latent information to produce keys
and values for the MHA layer. As such, it accounts for global temporal trends, al-
lowing it to anticipate future conditions and make long-term decisions.

Actor Layers. As proposed in [123], our actor decoder g(econt(ut, z), edynam(qt, z))
is an attention model parameterized by θact. However, our actor takes input from
the context and dynamic embedding. An MHA layer with a forward-looking mask
bases decisions on steps t, t + 1, . . . , Tseq to anticipate future events. Subsequently, an
FFN extracts features, after which a pointer mechanism performs a soft selection of
relevant steps using key-value inputs [224]. A softplus activation outputs positive
logits (µθ(st), σθ(st)).

7.5. Proposed Architecture 107

Q Q

V

V V

+
Q

+

K
×

×

||

KK

+

+

FIGURE 7.2: Layers of the encoder and the actor-critic decoder

Critic Layers. Our critic model V(st, z), parameterized by θcri, estimates the value of
state st and latent variable z through an FFN outputting Vθcri(st, z) ∈ R.

Action Policy. The actor logits parameterize a stochastic policy πθ(x|st) = N ((µθ(st), σθ(st)),
which allows action sampling xt ∼ πθ(x|st) to construct solutions.

7.5.2 Feasibility Regularization in Actor-Critic Loss

Standard actor-critic methods can efficiently and stably learn policies that require
implicit feasibility in the action space [188, 78], while explicit constraints are often
integrated by feasibility regularization (FR) in the actor loss [59, 40]. Equation (7.11)
defines a composite loss that combines the actor loss Lactor(θ) with a soft regular-
ization term Lfeas(θ). FR is defined in Equation (7.11), where λ f controls the regu-
larization strength, and policy samples xθ(st) are assumed to allow gradient flow to
update parameters θ, as is the case in SAC [78]. For algorithms that do not include
actions in the computation graph, e.g., PPO [188], we substitute xθ(st) with µθ(st).

108 Chapter 7. Deep Reinforcement Learning under Uncertainty

Determining Lagrangian multipliers (λ f) for multiple constraints with varying scales
is already challenging for static feasible regions. It requires costly hyperparame-
ter tuning to balance a trade-off between objectives and feasibility effectively. As a
result, FR is a naive approach when applied to dynamic, state-dependent feasible
regions PH(st) [40, 60]. However, FR remains useful as a comparative baseline.

L(θ) =−Lactor(θ) + λ fLfeas(θ) (7.10)

Lfeas(θ) =Et
[
(A(st)xθ(st)− b(st))>0

]
(7.11)

7.5.3 Feasibility Layers

To extend beyond FR, we leverage differentiable projection layers for constraint min-
imization. We incorporate two constraint-specific and one general layer(s). Note that
a single action may be infeasible, while combining such actions can achieve feasibil-
ity. Therefore, we prioritize violation minimization over strict enforcement to allow
for flexibility.

Furthermore, non-linear transformations of continuous distribution samples change
their probability density. We account for this transformation using Jacobian adjust-
ments to the policy’s log probabilities [33].

Technical details on feasibility layers are provided in Appendix B.2 of supplemen-
tary material.

Weighted Scaling Projection. Function (7.12) defines the weighted scaling layer
(WS), which normalizes vector x if the sum of x exceeds scalar y. This preserves
relative proportions of elements in x while enforcing x to sum to scalar y.

W(x, y) =

{
y x

1⊤x if 1⊤x > y
x otherwise

(7.12)

Policy Clipping. We can apply function C(x, lbpc, ubpc) = max(min(x, ubpc), lbpc) to
enforce element-wise limits on vector x, thereby performing policy clipping (PC) on
actions. However, PC is only applicable to box constraints.

Violation Projection. In Algorithm 4, we define a violation projection (VP) layer
that reduces inequality constraint violations by shifting point x closer to the feasible
region of some convex polyhedron PH = {x ∈ Rn

>0 : Ax ≤ b}, where A ∈ Rm×n

and b ∈ Rm. The inequality Ax ≤ b ensures PH is convex, enabling gradient-based
reduction of violation V(x) [36]. To measure feasibility, we compute the element-
wise violation V(x) = (Ax − b)>0, where each V(x)mi > 0 indicates the violation
of constraint mi , and V(x)mi = 0 indicates satisfaction of that constraint. To mini-
mize violations, we iteratively update x by applying gradient descent to reduce the
violation term ∥V(x)∥2

2, representing the squared distance from x to PH. Equation
(7.13) updates x with a step size ηv, which is rewritten to the update function found
in Algorithm 4.

x′ = x− ηv∇x∥V(x)∥2
2 (7.13)

During training, the VP layer continues for a fixed number of epochs. However,

7.6. Experimental Results 109

Algorithm 4 Violation projection layer

1: Require: x ∈ Rn
>0; parameters (A, b, ηv, δv)

2: Initialize x′ ← x
3: Define V(x)← (Ax− b)>0
4: for i = 1 to epochs do
5: x ← x′

6: x′ ← x− ηv A⊤V(x)
7: if 1⊤V(x′)− 1⊤V(x) ≤ δv then
8: break
9: end if

10: end forreturn x′

we include a stopping criteria during inference, which continues until the change
in total violation 1⊤V(x′) − 1⊤V(x) is below a threshold δv. As a result, we x’s
distance to the feasible region and incorporate constraint awareness into initially
unconstrained policies.

7.6 Experimental Results

We compare our policies against baselines on in-distribution and out-of-distribution
instances, evaluating the objective value, computational cost and feasibility. Addi-
tionally, an ablation study analyzes the impact of feasibility mechanisms and gradi-
ent flow from actions, while managerial insights discuss the value of information,
computational cost, and adaptiveness to varying levels of uncertainty.

7.6.1 Experimental Setup

Instance Generation. Training instances are sampled from a Gaussian distribu-
tion N (µ(i,j,k), σ(i,j,k)) ∀(i, j) ∈ TR, k ∈ K, where µ(i,j,k) is randomly generated and
σ(i,j,k) = CVµ(i,j,k) controls spread via the coefficient of variation CV. A continuous
uniform distribution generates out-of-distribution instances U (lb(i,j,k), ub(i,j,k)) ∀(i, j) ∈
TR, k ∈ K to test generalization. Details are in Appendix B.3.

Feasibility Implementation. We evaluate feasibility by integrating multiple mech-
anisms to address all constraints in PH(st). Starting with a baseline using FR, we
introduce two alternatives: a constraint-specific (FR/WS/PC) and a general projec-
tion approach (FR/VP). We then remove FR from both to assess its impact. WS and
PC are not analyzed separately, as it leaves many constraints unaddressed.

SMIP Baseline. We compare our approach against two common techniques in
stochastic programming: stochastic MIP without anticipation (SMIP-NA) and stochas-
tic MIP with perfect foresight (SMIP-PI), serving as an upper bound. The scenario
trees and MIP models are shown in Appendix B.4.

Runs. Training occurs offline on simulated instances for a 1,000 TEU vessel over
a 4-port voyage. GPU-based experiments use an NVIDIA RTX A6000, and CPU-
based runs use an AMD EPYC 9454 48-core processor. Implementation details and
additional experiments are provided in Appendix B.5.

110 Chapter 7. Deep Reinforcement Learning under Uncertainty

7.6.2 Policy Performance

Table 7.1 compares the performance of different solution approaches. Our projected
attention models (AM-P) outperform SMIP-NA, achieving around 30-35% higher
objective values and 500× faster computations. The AM with FR misleadingly at-
tains higher profits than SMIP-NA due to infeasibility. If we recover feasibility, then
profits are significantly reduced to the level of SMIP-NA. In contrast, each AM-P
finds feasible solutions with a higher profit than AM with FR, highlighting FR’s lim-
itations. All AM-P policies generalize well, with SAC and PPO showing an average
profit reduction of 2% and 3% on unseen uniform instances, similar to SMIP-NA
and SMIP-PI. These results suggest that AM-P can leverage imperfect information
to anticipate future uncertainty and ensure feasibility by projection layers beyond
FR.

Ablation Study. Table 7.1 analyzes the impact of feasibility mechanisms. Remov-
ing FR from FR/VP increases profit for SAC and slightly decreases profit for PPO,
without diminishing feasibility. When FR is removed from FR/WS/PC, profit in-
creases, and both DRL approaches continue to maintain feasibility. This outcome is
surprising, given the absence of a direct mechanism to account for stability. How-
ever, from our domain understanding, we know container vessels generally become
more stable as utilization increases in all locations. Replacing SAC with PPO, which
eliminates action gradient flow, reduces feasibility in FR, though projection layers
mitigate this effect. These findings highlight the impact of feasibility mechanisms
on the objective value and feasibility.

7.6.
Experim

entalR
esults

111

TABLE 7.1: Experimental results comparing DRL methods (SAC/PPO) with a vanilla (AM) or projected attention model (AM-P) and
feasibility mechanisms (F.M.): feasibility regularization (FR), weighted scaling (WS), policy clipping (PC) and violation projection (VP).
We compare SMIP-NA (non-anticipation) as a baseline, and SMIP-PI (* assumes perfect information which is unrealistic) as an expected
upper bound, both solved with CPLEX (CPL). Average performance metrics on N instances include objective value in profit (Ob.),
inference time in seconds (Time), percentage of feasible instances (F.I.), and objective value with feasibility recovery (F.O.). Note that
† indicates infeasible objectives. Generalization performance is evaluated on unseen, out-of-distribution instances based on a uniform

distribution.

Methods Testing (N = 30) Generalization (N = 30)

Alg. Model F.M. Ob. ($) Time (s) F.I. (%) F.O. ($) Ob. ($) Time (s) F.I.(%) F.O. ($)

SAC AM FR 1113.03† 12.63 0.00 1065.80 1211.87† 15.35 0.00 1041.42
SAC AM-P FR/VP 1318.05 15.20 100.00 - 1288.68 14.18 100.00 -
SAC AM-P VP 1447.69 15.03 100.00 - 1411.34 13.33 100.00 -
SAC AM-P FR/WS/PC 1373.24 13.34 100.00 - 1340.12 14.42 100.00 -
SAC AM-P WS/PC 1494.22 13.12 100.00 - 1482.40 12.91 100.00 -

PPO AM FR 1842.46† 11.74 0.00 1063.24 1830.95† 12.60 0.00 1066.69
PPO AM-P FR/VP 1355.45 15.60 100.00 - 1321.90 14.91 100.00 -
PPO AM-P VP 1318.10 14.51 100.00 - 1282.10 14.64 100.00 -
PPO AM-P FR/WS/PC 1369.03 14.29 100.00 - 1330.10 14.17 100.00 -
PPO AM-P WS/PC 1471.40 13.75 100.00 - 1455.98 13.21 100.00 -

CPL SMIP-NA - 1053.02 8434.58 100.00 - 1023.04 8434.94 100.00 -
CPL SMIP-PI* - 1713.73 40.75 100.00 - 1680.51 38.93 100.00 -

112 Chapter 7. Deep Reinforcement Learning under Uncertainty

7.6.3 Managerial Insights

Figure 7.3 performs a sensitivity analysis to examine the effects of SMIP scenario size
and demand uncertainty, reporting with an average and 95% confidence interval
(CI).

Value of Information. Figure 7.3a compares performance under non-anticipation,
imperfect, and perfect information. The predictive accuracy of SMIP models im-
proves with the number of scenarios, as shown by the stabilizing yet decreasing
objective values. With 28 scenarios, perfect information enhances profit by 60-65%,
while imperfect information via DRL with VP achieves a 25-40% improvement, em-
phasizing the role of information availability for decision quality.

Computational Time. While inference time is critical, training time remains rel-
evant. Figure 7.3b illustrates the total computational time of 30 instances, with
training time included for DRL. Computational cost increases significantly with the
number of scenarios, with SMIP-NA exhibiting exponential growth and SMIP-PI
showing steady growth. Solving the most accurate SMIP-NA takes approximately 2
hours per instance, which is intractable for stowage planners. In contrast, the DRL
approach requires offline training of about 11 hours, after which solutions can be
constructed in seconds.

Adaptiveness. Figure 7.3c illustrates how policies adapt to variations in the spread
of the demand distribution of unseen instances. As variability and uncertainty in-
crease, both SAC and PPO policies achieve higher profits, demonstrating their ability
to leverage uncertainty. Despite fluctuations in variability, both policies consistently
generate feasible solutions.

Implications for Practical Deployment. Our findings are based on simulations, lim-
ited by the lack of real-world data. To ensure effective deployment, practitioners
should focus on collecting and generating representative cargo demand data.

7.7 Conclusion and Future Directions

This work introduces a novel MDP formulation for the MPP under demand uncer-
tainty, incorporating realistic inequality constraints. We train an AM policy using
actor-critic DRL methods with differentiable feasibility projections to construct MPP
solutions. Experimental results demonstrate that our policy efficiently generates
adaptive and feasible solutions, significantly outperforming baseline DRL methods
and the SMIP-NA. This approach establishes an AI-driven decision-support policy
for planning under uncertainty in a critical part of the global supply chain. Future
work will extend the MPP formulation and scale to larger vessels and longer voy-
ages, further enhancing the representativeness.

7.7. Conclusion and Future Directions 113

4 8 12 16 20 24 28

1,000

1,200

1,400

1,600

1,800

Number of Scenarios

Pr
ofi

t(
$)

SMIP-NA
SMIP-PI
PPO/VP
SAC/VP

(A) Profit with 95% CI across scenario sizes on 30 instances

4 8 12 16 20 24 28
100

101

102

103

104

105

106

Number of Scenarios

Ti
m

e
(l

og
sc

al
e,

s)

SMIP-NA
SMIP-PI
PPO/VP
SAC/VP

(B) Total computational time across scenario sizes of 30 instances

0.1 0.3 0.5 0.7 0.9

1,300

1,400

1,500

Coefficient of Variation (CV)

Pr
ofi

t(
$)

PPO/VP
SAC/VP

(C) Profit with 95% CI across CV levels on 30 unseen instances

FIGURE 7.3: Sensitivity analysis of scenario size and demand spread

114

Chapter 8

Deep Reinforcement Learning
under Uncertainty at Scale

This chapter will discuss the article: "AI2STOW: End-to-End Deep Reinforcement Learn-
ing to Construct Master Stowage Plans under Demand Uncertainty" that is currently un-
der review [218]. This study addresses sub-objectives 2 and 3 of the thesis.

In Chapter 4, the need for scalable heuristic frameworks and the incorporation of
industrial challenges is highlighted. This chapter builds on the MDP formulation
introduced in Chapter 7, extending it with the block dimension and paired block
stowage patterns (PBS). The policy incorporates action masking to enforce the non-
convex PBS constraint, followed by feasibility projection to satisfy the remaining
convex constraints. Experimental evaluations on industrial-scale instances bench-
mark the proposed architecture against baseline methods from DRL and stochastic
optimization, along with various configurations of projection layers.

This chapter mirrors the content of the article [218], with each section corresponding
directly to a section in the original work, except a redundant and omitted back-
ground section. The remainder of this chapter is structured as follows: Section 8.1
introduces the article, and Section 8.2 outlines related work in stowage planning,
stochastic programming and ML for optimization problems. In Section 8.3, the
MPP under demand uncertainty is defined as a MIP, while the DRL framework of
AI2STOW is defined in Section 8.4. Section 8.5 provides a computational evaluation
of AI2STOW with baseline methods, and Section 8.6 concludes the main findings of
this study. The supporting material of this chapter can be found in Appendix C.

8.1 Introduction

Product availability and efficient deliveries depend on the smooth operation of com-
plex supply chains to meet the demands of our dynamic and global societies. During
the last century, maritime transport has emerged as the cornerstone of global trade
and modern consumerism. About 45% of annual transported goods, valued at $8.1
trillion in global trade [215], are transported by container vessels. This substantial
economic impact is accompanied by a significant environmental consequence, con-
tributing to more than 400 million tonnes of CO2 emissions yearly [138]. To put this
in perspective, a typical passenger vehicle emits about 4.6 tonnes of CO2 per year.
However, it is worth noting that container vessels emit significantly less CO2 per
cargo tonne-kilometer than other modes of transportation [104].

8.1. Introduction 115

The maritime transportation business is highly competitive; therefore, liner ship-
ping companies offer global shipments at low prices. Consequently, profit margins
are often slim and improving operational efficiency is of paramount importance. As
a result, liner shipping companies create stowage plans to allocate containers to ves-
sel capacity [104]. Stowage planning is acknowledged as a complex combinatorial
optimization (CO) problem [35, 130, 211], characterized by numerous interdepen-
dent objectives and constraints, some of which are NP-hard. This includes, but is
not limited to, vessel capacity limitations, seaworthiness regulations, revenue maxi-
mization, and operational cost minimization, all of which must be addressed under
conditions of cargo demand uncertainty.

Despite its substantial economic and environmental significance, stowage planning
remains underexplored, particularly when compared to more established domains
such as vehicle routing [104, 221]. The scarcity of publications suggests a rela-
tively immature field, with opportunities for advancement in problem modeling,
standardized benchmark datasets, and algorithmic evaluation [221]. Furthermore,
many combinatorial aspects essential to solving representative real-world instances
are often overlooked in existing research. The same holds for the problem’s inherent
stochasticity, which remains insufficiently addressed in the current literature [221].

In light of these limitations, prior research has often relied on simplifications to make
the problem more tractable. Specifically, it can be observed that most contributions
are unable to solve representative versions of the full stowage problem (e.g., [35,
130]). A common strategy to address this complexity is hierarchical decomposition
into two sequential subproblems: the master planning problem (MPP) and the slot
planning problem (SPP) (e.g., [160, 226]). Despite various attempts, the search for
scalable algorithms capable of solving these decomposed yet representative prob-
lems remains an open challenge.

In recent years, machine learning (ML), and in particular deep reinforcement learn-
ing (DRL), has shown significant potential to complement or enhance traditional CO
techniques [27, 147]. A wide range of CO problems has been effectively addressed
using ML-based methods, which often excel in scalability, robustness to uncertainty,
and adaptability to dynamic conditions [123, 217, 184]. These ML4CO approaches
enable the derivation of flexible, data-driven heuristics that are often infeasible to
design manually. Nevertheless, the application of ML to stowage planning remains
relatively limited. Existing approaches frequently fall short in capturing the full
complexity of real-world stowage scenarios [221]. This highlights the importance of
a more in-depth investigation into ML-driven approaches specifically designed to
address the unique challenges of stowage planning.

This article builds upon our previous work [217], in which we proposed a DRL-
based framework for solving the MPP under demand uncertainty. The problem was
formulated as a Markov decision process (MDP) that captures key combinatorial
aspects, including demand uncertainty, vessel capacity, stability requirements, and
the optimization of cargo revenue, hatch overstowage, and excess quay crane moves.
To solve this formulation, we introduced an action policy with attention, also called
attention model (AM) [123, 222], with a feasibility projection layer, trained using
DRL methods to produce adaptive and feasible solutions.

Building on this foundation, we propose AI2STOW, an end-to-end DRL policy for
master stowage planning, which offers the following contributions:

116 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

• Extended MDP with Blocks: We extend the original MDP with blocks to in-
clude paired block stowage patterns: an industrially relevant planning strat-
egy often overlooked in existing stowage planning research [221]. The ex-
tended implementation is released in the open-source repository1.

• Action Mask to Enforce Paired Block Stowage: We integrate an action-masking
mechanism to enforce non-convex paired block stowage constraints in combi-
nation with projection layers to minimize convex feasibility violations in the
DRL framework.

• Efficient and Adaptive Solutions: Experiments show that AI2STOW learns
adaptive and feasible policies, outperforming baselines from stochastic pro-
gramming and DRL in both objective quality and computational efficiency.
The evaluation also includes a comparison of different projection layer con-
figurations.

• Decision Support for Realistic-Sized Instances: AI2STOW can generalize well
to larger problem instances, offering decision support for a realistic-sized ves-
sel and operational planning horizons. These findings underscore the poten-
tial of DRL-based approaches in developing scalable algorithms for stowage
planning.

8.2 Related Work

This section covers relevant contributions in container stowage optimization, as well
as the use of machine learning in the context of CO.

8.2.1 Container Stowage Planning

The complexity of container vessel stowage planning arises from its inherent multi-
port nature. Consequently, algorithms are required to balance a myriad of combi-
natorial aspects at each port. The field can be broadly categorized into single-port
work aimed at creating light-weight operational stowage plans (e.g., [12, 7, 55, 130]),
and multi-port initiatives dedicated to creating realistic stowage plans (e.g., [35, 18,
226, 160, 177, 169]). As analyzed in [221], a definitive and optimal solution to either
problem is yet to be found.

To address the inherent complexity of stowage planning, a recommended strategy
involves hierarchical decomposition, which systematically divides the problem into
sequential subproblems. One widely recognized version, shown in Figure 8.1, de-
composes the problem into the master planning problem (MPP) and the slot plan-
ning problem (SPP) (e.g., [226, 160]). During the MPP, groups of containers are al-
located to locations on the vessel while aiming to satisfy global objectives and con-
straints (e.g., [158, 31, 43]). Subsequently, the focus shifts to the SPP, where indi-
vidual containers are assigned to specific slots within the designated locations that
aim to satisfy local objectives and constraints (e.g., [162, 112, 124]). For a compre-
hensive understanding of hierarchical decomposition, readers are referred to [104].
Furthermore, most stowage planning research assumes deterministic cargo demand,
whereas the more realistic stochastic variant has received limited attention, with
only a single study addressing it [49]. Recently, heuristic frameworks have gained

1https://github.com/OptimalPursuit/navigating_uncertainty_in_mpp

https://github.com/OptimalPursuit/navigating_uncertainty_in_mpp

8.2. Related Work 117

traction as alternatives to hierarchical decomposition, offering more ways to handle
the complexity of stowage planning (e.g., [159, 130]).

FIGURE 8.1: Hierarchical decomposition of stowage planning [160]

Regardless, several solution methods have been proposed to solve different stowage
planning problems, for instance, exact methods (e.g., [177, 237]), greedy heuristics
(e.g., [18, 58]), population-based (e.g., [63, 42]) or neighborhood-based metaheuris-
tics (e.g., [7, 159]), matheuristics (e.g., [124, 169]), tree-based methods (e.g., [22]), or
hybrid frameworks (e.g., [226, 31]).

To the best of our knowledge, the number of contributions related to RL in stowage
planning is limited. Most contributions have focused on the placement of individual
containers in single-port problems that omit key combinatorial aspects by methods
such as deep Q-learning [194] and Monte Carlo tree search [236]. Given the scale
of modern vessels, applying RL at the container level would require placing up to
20,000 containers per voyage, obtaining very long episodes that complicate learning.
Therefore, focusing on the MPP, which abstracts the problem to a higher level, may
offer a more practical and scalable alternative. To date, the only research applying
RL to the MPP has been conducted by us [219, 217]. In these studies, we model the
MPP as an MDP and use a DRL approach to derive solutions. While promising,
this work requires further improvements in representativeness. To address this, we
aim to extend the MPP formulation by incorporating paired block stowage patterns
(PBS) and accounting for demand uncertainty while ensuring scalability to indus-
trial vessel sizes and realistic voyage lengths. Despite the growing algorithmic di-
versity, the search continues for scalable, generalizable methods capable of solving
representative stowage planning problems.

8.2.2 Stochastic Programming

A classical approach for optimization under uncertainty is stochastic programming,
where uncertainty is modeled explicitly through a discrete set of scenarios that evolve
over stages of time [32]. This results in a scenario tree representation, whose size
grows exponentially with the number of stages, O(bT), where b is the branching
factor and T is the number of stages. As a result, multi-stage formulations become
computationally challenging beyond a few stages.

Numerous techniques have been developed to address these challenges. Scenario
reduction methods [64, 179] aim to approximate the full scenario tree by select-
ing a representative subset of scenarios that preserves key probabilistic character-
istics. Decomposition techniques, including Benders decomposition and variants
[175] or Lagrangian relaxation [41], divide the original problem into smaller, more
manageable subproblems that are solved iteratively while coordinating shared con-
straints. The progressive hedging algorithm, introduced by [178] and extended in
later work [34], solves scenario subproblems independently while enforcing non-
anticipativity through augmented Lagrangian penalties. Stochastic dual dynamic
programming[170, 193] approximates value functions in multi-stage problems by it-
eratively generating Benders cuts through backward passes and simulating decision

118 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

paths in forward passes. The sample average approximation method [192, 44] re-
places expectations with sample averages over finite scenario sets, enabling tractable
optimization and offering convergence guarantees as the sample size increases.

Applications span domains such as supply chain optimization [2, 210], unit commit-
ment in power systems [165], and telecommunications network design [16]. Recent
trends include data-driven stochastic programming, which leverages historical data
or machine learning for scenario generation and decision policy learning [24, 29].
Another emerging direction is distributionally robust optimization, where solutions
are sought under worst-case distributions within an ambiguity set [151, 73].

Despite substantial progress, scaling stochastic programming to high-dimensional,
multi-stage, and real-time decision-making environments remains challenging, mo-
tivating further research into hybrid models, learning-based approximations, and
scalable decomposition frameworks.

8.2.3 Machine Learning for Optimization Problems

In recent years, ML has proven to be an effective tool for solving CO problems, at
times outperforming or enriching conventional solution methods [27]. Specifically,
DRL has emerged as a promising method to deal with challenging CO problems
[147]. The usage of ML can be classified into learning categories, each of which will
be discussed in the following paragraphs.

End-to-end learning leverages ML to directly output solutions for input problem
instances, thereby circumventing the need for handcrafted heuristics or manually
designed search procedures. One particular example can be found in the chip de-
sign process, which can also be decomposed hierarchically, with chip floor planning
being one sequential subproblem. In this context, a graph convolutional encoder
with actor-critic decoders generates an approximate chip floor plan that dictates
chip quality, leading to a significant acceleration of the overall process with chips
of equal or superior quality compared to human-made designs [148]. Additionally,
actor-critic methods have demonstrated excellent performance on various control
tasks [188, 148, 156]. Other approaches to solving well-known combinatorial op-
timization problems include pointer networks that integrate recurrent neural net-
works (RNNs) with attention mechanisms [224], a graph-based encoder combined
with an RNN decoder using multi-head attention and optimized via an actor-critic
REINFORCE algorithm [153], and graph attention models trained with REINFORCE
using a greedy rollout baseline [123] and multiple rollouts [127].

Within learning solution heuristics, a key challenge is ensuring feasibility in com-
plex and explicit action spaces, particularly when feasible regions are dynamic and
state-dependent. Various deep learning methods have addressed constraint learn-
ing through techniques such as backpropagation over (in)equality completions [60],
differentiable projection layers that map interior points to boundary regions [136],
convex programming layers [1], and problem-specific repair mechanisms [46]. In ad-
dition, safe reinforcement learning has approached feasibility through constrained
MDPs with primal-dual techniques [59], soft barrier functions [225], and safety shields
[6].

Even though end-to-end learning can be advantageous, learning to configure algo-
rithmic components can also be effective in guiding the search process. For example,

8.3. Problem Formulation 119

efficient active search updates the weights of solution-constructing models via DRL
for problems such as capacitated vehicle routing and job shop scheduling [86]. An-
other approach uses an attention model trained with REINFORCE to reconstruct
neighborhoods within a large neighborhood search (LNS) framework, outperform-
ing methods with handcrafted heuristics on capacitated and split delivery vehicle
routing problems [88].

Another way is to use ML and CO algorithms in parallel. A literature survey ex-
plores traditional and learning methods for variable and node selection in branch-
and-bound frameworks [139]. For example, deep learning can learn solution strate-
gies and lower bounds by analyzing existing (near-)optimal solutions to instances,
which are integrated into a tree search framework to assist branching and pruning
decisions [87].

8.3 Problem Formulation

Our problem formulation models the key combinatorial aspects of the MPP, aim-
ing to generate an approximate plan that meets global objectives and constraints
under demand uncertainty. These include maximizing cargo revenue, minimizing
hatch-overstowage and excess crane move costs, applying valid PBS patterns, and
ensuring acceptable values for long crane length, metacentric height, and trim. Like
the early stages of stowage planning, where primary objectives take precedence, this
problem focuses on global objectives and constraints during the voyage. It intention-
ally abstracts away individual containers and slots, allowing the interchangeable
placement of similar containers in various slots. The solution to the MPP guides
the subsequent container placement, considering specific local objectives and con-
straints in the SPP.

Table 8.1 defines the sets used in this MPP. Let us define a voyage denoted by the
ordered set of ports P with NP being the last port. Given two ports in P, we can
derive a subset of the voyage Pend

start. Let TR be the set of transport pairs of all possible
POLs and PODs. Given port p, various subsets of TR can be defined, namely, trans-
ports on board before continuing the voyage (TROB(p)), the transports remaining
on board (ROB) after discharging but before loading (TRROB(p)), and all transports
that are either loaded or discharged (TRM(p)). Furthermore, containers are classi-
fied into distinct cargo classes in the set K, which include container size (1 or 2 TEU),
weight classes (light, medium and heavy) and customer types (spot market or long-
term contracts). Consider that vessel locations are defined by bays, decks and paired
blocks. Let B be the ordered set of bays with NB being the number of bays, indicating
the longitudinal position extending from fore to aft. For any adjacent pair of bays,
we define the set of bay pairs B′. Let D represent the set of decks, differentiating
between on-deck do and in the hold dh, thereby determining the vertical positioning.
Let BL be the set of paired blocks with NBL being the number of paired blocks in a
bay. If NBL = 1, there is only a single block. For NBL > 1, the first paired blocks in
a bay correspond to the wing blocks, while the remaining blocks are center blocks.
Note that modern vessels have NBL ≤ 3.

Table 8.2 defines the MPP parameters. The transport matrix q represents realized de-
mand in containers, rev is the revenue per transport and container type, ctho refers to
the hatch overstowage cost parameter, and ctcm is the excess crane moves cost param-
eter. Additionally, c denotes vessel location capacity in TEU, while container sizes

120 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

TABLE 8.1: Sets of the MPP

Ports p ∈ P = {1, 2, . . . , NP}
Port range p ∈ Pend

start = {p ∈ P | start ≤ p ≤ end}
Transport pairs tr ∈ TR = {(i, j) ∈ P2 | i < j}
Onboard transp. tr ∈ TROB(p) = {(i, j) ∈ P2 | i ≤ p, j > p}
ROB transports tr ∈ TRROB(p) = {(i, j) ∈ P2 | i < p, j > p}
Discharge moves tr ∈ TR−(p) = {(i, p) ∈ P2 | i < p}
Load moves tr ∈ TR+(p) = {(p, j) ∈ P2 | j > p}
Port moves tr ∈ TRM(p) = TR+(p) ∪ TR−(p)
Cargo classes k ∈ K = {20ft, 40ft} × {Light, Medium, Heavy} × {Spot, Long}
Bays b ∈ B = {1, 2, . . . , NB}
Adjacent bays b′ ∈ B′ = {(1, 2), (2, 3), . . . , (NB − 1, NB)}
Decks d ∈ D = {do, dh}
Paired blocks bl ∈ BL = {1, 2, . . . , NBL}

and cargo weights are given by teu and w, respectively. The longitudinal distance
ld is measured from fore to aft, and the vertical distance vd is measured from keel
upwards, with the center normalized to 1. Stability constraints include the accept-
able bounds for the longitudinal and vertical center of gravity (lcg, lcg and vcg, vcg),
as well as the permissible error in excess crane moves (δcm). We also define big M as
a large constant to enforce logical conditions.

TABLE 8.2: Parameters of the MPP

Transport matrix of realized demand q ∈ Z
|TR|×|K|
≥0

Revenue per container rev ∈ R
|TR|×|K|
>0

Cost per overstowed container ctho ∈ R>0
Cost per excess crane move ctcm ∈ R>0

Location capacity in TEU c ∈ Z
|B|×|D|×|BL|
≥0

Container size in TEU teu ∈ Z
|K|
≥0

Cargo weight class in tonnes w ∈ R
|K|
≥0

Longitudinal distance of bays ldb = 2b−1
|B| ∀b ∈ B

Vertical distance of deck vdd = 2d−1
|D| ∀d ∈ D

Acceptable LCG bounds lcg, lcg ∈ R≥0
Acceptable VCG bounds vcg, vcg ∈ R≥0
Acceptable error excess crane moves δcm ∈ R≥0
Big M M

Let us specify some parameters based on the following definitions. The realized
demand values q(i,j),k are sampled from a generator G parameterized by ϑi,j,k:

q(i,j),k ∼ G(ϑi,j,k) ∀(i, j) ∈ TR, k ∈ K, (8.1)

The revenue of containers with type k on transport (i, j) is defined by the length of
the transport (j− i) plus some standard revenue SR. Note that long-term contracts
have their transport revenue (j− i) reduced by the parameter LR.

rev(i,j),k =

{
(j− i)(1− LR)+SR, if Long ∈ k
(j− i)+SR, if Spot ∈ k

∀(i, j) ∈ TR, k ∈ K. (8.2)

8.3. Problem Formulation 121

The TEU per container depends on type k as:

teuk =

{
1, if 20ft ∈ k
2, if 40ft ∈ k

∀k ∈ K. (8.3)

Similarly, container weight is determined by the weight class:

wk =

1, if Light ∈ k
2, if Medium ∈ k
3, if Heavy ∈ k

∀k ∈ K. (8.4)

To simplify the problem, we make the following assumptions:

• Each voyage starts with an empty vessel, which is box-shaped with equal ca-
pacity in each bay.

• The voyages include ports with balanced loading and discharging operations
rather than having ports that specialize in either operation.

• Demand at the current port is fully observable and deterministic, whereas de-
mand at subsequent ports is uncertain.

• The uncertainty is exogenous, arising from external factors beyond the sys-
tem’s control and independent of model decisions.

• Special container types (e.g., reefers and IMDG) are not considered. We assume
that each location has sufficient capacity for reefers, while other specials with
local constraints can be considered in an SPP phase.

• Loading and discharge times are equal for all ports and cargo classes.

• Revenue of cargo uptake revtr,k is larger than costs of overstowage ctho or excess
crane moves ctcm.

Stochastic programming approaches typically represent uncertainty through an ex-
plicit scenario tree. This is a directed tree TST = (VST, EST), where VST is the set of
nodes, each corresponding to a decision or uncertainty realization at a given stage.
EST ⊆ VST ×VST is the set of directed edges representing transitions between nodes
over time. The tree TST consists of:

1. A root node v1 ∈ VST, representing the initial state at the first port.

2. Stages p = 1, 2, . . . , NP − 1, where each node v belongs to a stage p(v). We
denote stages by p, as stages are equivalent to ports in a voyage.

3. Branching structure, where each node has SST child nodes representing possi-
ble future realizations.

4. A measure PST : VST → [0, 1] assigning probabilities to nodes, ensuring:

∑
v′∈child(v)

P(v′) = P(v), ∀v ∈ VST. (8.5)

122 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

5. Scenario paths ϕ ∈ Z , which are root-to-leaf paths representing possible real-
izations of uncertainty over time. The number of scenario paths grows expo-
nentially as |Z| = SNP−1

ST .

Based on the scenario tree, we define the MPP under demand uncertainty as a multi-
stage stochastic MIP. Table 8.3 defines all decision variables under scenario path ϕ ∈
Z provided by the scenario tree. Vessel utilization ũ assigns cargo of type k and
transport tr = (i, j), with POL i and POD j, to locations defined by bay b, deck d
and block bl. Hatch overstowage h̃o represents the amount of containers that need
to be restowed in bay b and block bl at port p, while excess crane moves ˜cm defines
the amount of additional crane moves outside moves allocated to the vessel by a
terminal at port p. Hatch movement ˜hm indicates the need to access below-deck
locations at bay b, block bl and port p, whereas the destination indicator d̃i signifies
that POD j is assigned to bay b and block bl at port p.

TABLE 8.3: Decision variables of the MPP

Vessel utilization ũb,d,bl,ϕ
tr,k ∈ Z≥0 ∀b ∈ B, d ∈ D, bl ∈ BL, tr ∈ TR, k ∈ K, ϕ ∈ Z

Hatch overstowage h̃ob,bl,ϕ
p ∈ Z≥0 ∀b ∈ B, bl ∈ BL, p ∈ P, ϕ ∈ Z

Excess crane moves ˜cmϕ
p ∈ Z≥0 ∀p ∈ P, ϕ ∈ Z

Hatch movement ˜hmb,bl,ϕ
p ∈ {0, 1} ∀b ∈ B, bl ∈ BL, p ∈ P, ϕ ∈ Z

Destination indicator d̃ib,bl,ϕ
p,j ∈ {0, 1} ∀b ∈ B, bl ∈ BL, p ∈ P, j ∈ PNP

p , ϕ ∈ Z

The objective function (8.6) maximizes the expected revenue with parameter revtr,k ∈
R>0 and minimizes the expected hatch-overstowage with parameter ctho ∈ R>0 and
the expected crane moves costs with parameter ctcm ∈ R>0 over scenario paths ϕ ∈
Z with probability Pϕ. We assume equal probability for each scenario path.

Constraint (8.7) limits onboard utilization to the cargo demand q, whereas Con-
straint (8.8) limits each vessel location to the TEU capacity c for each location. Con-
straint (8.9) links utilization to the destination indicator, while Constraint (8.10) only
allows a single POD for each bay and block, thereby enforcing PBS. In Constraint
(8.11), we indicate that hatches need to be opened if below deck cargo needs to
be loaded or discharged. Based on these movements, Constraint (8.12) models the
amount of hatch overstowage in containers. Subsequently, we compute the target
of crane moves z in Constraint (8.13), after which Constraint (8.14) computes the
excess number of crane moves ˜cm. Additionally, we model the longitudinal and ver-
tical stability in Constraints (8.16) until (8.19). First, we compute the longitudinal
moment, vertical moment and total weight in Constraints (8.16), (8.17) and (8.15),
respectively. Second, Constraint (8.18) bounds lcg between lcg and lcg. Third, Con-
straint (8.19) bounds vcg between vcg and vcg. Finally, we include non-anticipation
in Constraint (8.20) to prevent leveraging future demand realizations.

max ∑
ϕ∈Z

Pϕ ∑
p∈P

∑
b∈B

∑
d∈D

∑
bl∈BL

∑
k∈K

∑
tr∈TR+(p)

revtr,kũb,d,bl,ϕ
tr,k

− cthoh̃ob,bl,ϕ
p − ctcm ˜cmϕ

p (8.6)

s.t. ∑
b∈B

∑
d∈D

∑
bl∈BL

ũb,d,bl,ϕ
tr,k ≤ qϕ

tr,k

∀p ∈ P, tr ∈ TROB(p), k ∈ K, ϕ ∈ Z (8.7)

8.3. Problem Formulation 123

∑
k∈K

∑
tr∈TROB(p)

teukũb,d,bl,ϕ
tr,k ≤ cb,d,bl

∀p ∈ P, b ∈ B, d ∈ D, bl ∈ BL, ϕ ∈ Z (8.8)

∑
k∈K

ũb,d,bl,ϕ
(p,j),k ≤ Md̃ib,bl,ϕ

p,j

∀p ∈ P, j ∈ PNP
p , b ∈ B, d ∈ D, bl ∈ BL, ϕ ∈ Z (8.9)

∑
j∈PNP

p

d̃ib,bl,ϕ
p,j ≤ 1

∀p ∈ P, b ∈ B, bl ∈ BL, ϕ ∈ Z (8.10)

∑
k∈K

∑
tr∈TRM(p)

ũb,dh,bl,ϕ
tr,k ≤ M ˜hmb,bl,ϕ

p

∀p ∈ P, b ∈ B, bl ∈ BL, ϕ ∈ Z (8.11)

∑
k∈K

∑
tr∈TRROB(p)

ũb,do ,bl,ϕ
tr,k −M(1− ˜hmb,bl,ϕ

p) ≤ h̃ob,bl,ϕ
p

∀p ∈ P, b ∈ B, bl ∈ BL, ϕ ∈ Z (8.12)

zϕ
p = (1 + δcm)

2
|B| ∑

tr∈TRM(p)
∑
k∈K

qϕ
tr,k

∀p ∈ P, ϕ ∈ Z (8.13)

∑
b∈b′

∑
d∈D

∑
bl∈BL

∑
k∈K

∑
tr∈TRM(p)

ũb,d,bl,ϕ
tr,k − zϕ

p ≤ ˜cmϕ
p

∀p ∈ P, b′ ∈ B′, ϕ ∈ Z (8.14)

twϕ
p = ∑

k∈K
wk ∑

tr∈TROB(p)
∑

bl∈BL
∑

d∈D
∑
b∈B

ũb,d,bl,ϕ
tr,k

∀p ∈ P, ϕ ∈ Z (8.15)

lmϕ
p = ∑

b∈B
ldb ∑

k∈K
wk ∑

tr∈TROB(p)
∑

bl∈BL
∑

d∈D
ũb,d,bl,ϕ

tr,k

∀p ∈ P, ϕ ∈ Z (8.16)

vmϕ
p = ∑

d∈D
vdd ∑

k∈K
wk ∑

tr∈TROB(p)
∑

bl∈BL
∑
b∈B

ũb,d,bl,ϕ
tr,k

∀p ∈ P, ϕ ∈ Z (8.17)

lcg · twϕ
p ≤ lmϕ

p ≤ lcg · twϕ
p

∀p ∈ P, ϕ ∈ Z (8.18)

vcg · twϕ
p ≤ vmϕ

p ≤ vcg · twϕ
p

∀p ∈ P, ϕ ∈ Z (8.19)

ũb,d,bl,ϕ′

tr,k = ũb,d,bl,ϕ
tr,k

∀p ∈ P, tr ∈ TR+(p), k ∈ K, b ∈ B, d ∈ D, bl ∈ BL,

ϕ, ϕ′ ∈ Z | qϕ

[p−1] = qϕ′

[p−1] (8.20)

124 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

8.4 Deep Reinforcement Learning Framework

In the previous section, an explicit MIP model is provided that grows rapidly with
problem size due to time-indexed variables and constraints. As an alternative, we
propose an MDP formulation of the MPP, modeling it as a sequential decision pro-
cess. This structure scales with episode length and the sizes of the state and action
spaces, avoiding the combinatorial growth inherent in MIPs. In this section, we ex-
tend the DRL framework from [217] by refining the MDP, the policy model and fea-
sibility mechanisms. For completeness, we restate the formal and decomposed MDP
formulations for the MPP under demand uncertainty, incorporating extensions for
blocks and PBS patterns. We then introduce the architecture of AI2STOW, integrat-
ing updated self-attention (SA) mechanisms into the dynamic embeddings, before
defining the action mask to enforce PBS.

8.4.1 Formal Markov Decision Process

We define an episodic discounted MDP to model the MPP under demand uncer-
tainty. The MDP is represented asM = (S, X, T ,R, PNP−1

1 , γ), where Tepi = NNP−1
1 is

a finite horizon equal to the number of load ports. Let us also define the shapes of the
utilization, vessel location, and cargo demand as nu = |B| × |D| × |BL| × |K| × |TR|,
nc = |B| × |D| × |BL|, and nq = |K| × |TR|, respectively.

Before formally introducing the aspects of M, we first provide some intuition on
this sequential decision-making problem. Each step of the MDP corresponds to a
port call, where the state captures the vessel’s utilization up and the cargo demand
at each port qp. An action xp represents the placement of specific cargo at vessel
locations in the current port. Transitions related to vessel utilization involve adding
loaded cargo and removing discharged cargo, while transitions related to demand
correspond to the realization of demand upon port arrival. The reward at each step
is the cargo revenue minus the hatch overstowage and excess crane move costs.

Formally, the current state sp ∈ S is defined as sp = (up, qp, ζ), where vessel uti-
lization up ∈ R

nu
≥0, and realized demand qp ∈ R

nq
≥0. The environment parameters

ζ include the expected demand µ ∈ R
nq
≥0 and its standard deviation σ ∈ R

nq
>0. The

demand is characterized by load ports i, discharge ports j, and cargo types k, where
(i, j, k) ∈ TR× K. Further, the TEU per container is given by teu ∈ {1, 2}nq , cargo
weight by w ∈ R

nq
>0, and cargo revenue by rev ∈ R

nq
>0. For consistency in dimension-

ality, teu and w, previously defined with shape |K| in Section 8.3, are expanded to
shape nq = |K| × |TR| in the MDP. The initial state is given by s0 = (u0, q0, ζ), where
the vessel starts empty with u0 = 0nu , and the realized demand q0 at the initial port.
The parameters ζ are randomly initialized at the start of each episode.

The action xp ∈ X represents the placement of containers on the vessel, updating
the utilization up, where xp ∈ R

nu
>0 and is analogous to ub,d,bl

tr,k ∀tr ∈ TR+
p , k ∈ K, b ∈

B, d ∈ D, bl ∈ BL. Actions xp are subject to a feasible region, defined by polyhedron
PH(sp) = {xp ∈ R

nu
>0 : A(sp)xp ≤ b(sp)}. Here, A(sp) ∈ Rmu×nu is the constraint

matrix, b(sp) ∈ Rmu is the bound vector, and mu is the number of constraints. As
shown in [160], linearly relaxed MPPs outperform integer MPPs, as the subsequent
SPP discretizes the solution. Consequently, we adopt real-valued actions instead of
integer-valued actions.

8.4. Deep Reinforcement Learning Framework 125

Given a traditional MPP with utilization up [220], the constraints of PH(sp) are de-
fined in terms of actions xp and pre-loading utilization u′p = ub,d,bl

tr,k ∀tr ∈ TRROB
p , k ∈

K, b ∈ B, d ∈ D, bl ∈ BL. We also introduce the Hadamard product ⊙ for element-
wise multiplication.

x⊤p 1nc ≤ qp (8.21)

xpteu ≤ c− u′pteu (8.22)

-1⊤
(
(lm−lcgw)⊙xp

)
≤ -1⊤

(
(lcgw−lm)⊙u′p

)
(8.23)

1⊤
(
(lm−lcgw)⊙xp

)
≤ 1⊤

(
(lcgw−lm)⊙u′p

)
(8.24)

-1⊤
(
(vm−vcgw)⊙xp

)
≤ -1⊤

(
(vcgw−vm)⊙u′p

)
(8.25)

1⊤
(
(vm−vcgw)⊙xp

)
≤ 1⊤

(
(vcgw−vm)⊙u′p

)
(8.26)

xp ≤ M(di(u′p) + 1− eu(u′p)) (8.27)

Constraint (8.21) restricts the load xp to the available demand qp, while Constraint
(8.22) ensures that xp does not exceed the residual TEU capacity. Constraints (8.23)–(8.24)
impose limits on the longitudinal center of gravity (LCG), whereas Constraints (8.25)–(8.26)
enforce similar bounds on the vertical center of gravity (VCG). These stability con-
straints are derived from Constraints (8.15)–(8.19), as presented in [217]. Finally,
Constraint (8.27) enforces PBS patterns on the action variable xp, where di(u′p) ∈
{0, 1}nu indicates of available locations based on used PODs in u′p, and eu(u′p) ∈
{0, 1}nu denotes currently empty locations based on u′p.

The stochastic transition function T (sp+1|sp, xp) ∈ ∆(S) updates the current state.
During episodes, the transition comprises multiple components:

• Upon port arrival, port demand qp is revealed.

• Subsequently, onboard cargo is discharged up+1 = up ⊙ (1− e−p), where e−p ∈
{0, 1}nq is a binary mask indicating the cargo type and transport to nullify in
up.

• Finally, cargo is loaded onboard up+1 = up + xp. Action xp is based on the
current utilization up and revealed demand qp of port p. Future port demand
stays unknown.

The deterministic reward function is defined in Equation (8.28) and computes profit
as the difference between revenue and costs. Revenue is given by min(q, x⊤1nc)

⊤rev,
where rev ∈ R

nq
>0 is the per-unit revenue, x ∈ R

nq×nc
≥0 the cargo allocation, and

q ∈ Z
nq
>0 the demand vector. The pointwise minimum ensures revenue is only col-

lected up to demand. Costs are determined using state-dependent auxiliary vari-
ables: hatch overstows ho(sp, p) ∈ R

|B|
>0 and excess crane moves cm(sp, p) ∈ R

|B|−1
>0 .

These costs are weighted by ctho ∈ R>0 and ctcm ∈ R>0, respectively.

R(s, x, p) = rev min
(
x⊤1nc , q

)
− ctho1⊤ho(s, p) + ctcm1⊤cm(s, p). (8.28)

126 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

8.4.2 Decomposed Markov Decision Process

The formal MDP defines an action space of size |X| ∝ |B| · |D| · |BL| · |K| · |P|. An
action simultaneously places all container types and transports on the vessel, which
obtains an action space with high dimensionality that may impede learning effi-
ciency [108]. An alternative is to decompose the formal MDP as a sequence of gran-
ular decisions indexed by (i, j, k), where (i, j) ∈ TR represents transport routes and
k ∈ K denotes cargo types. Consequently, actions sequentially handle each transport
(p, j) and cargo type k at port p, followed by sailing to the next port. This decompo-
sition reduces the action space to |X| = |B| · |D| · |BL| while distributing decisions
over an extended time horizon t ∈ H = {0, 1, . . . , Tseq} with Tseq = |K| · |TR|. Due to
its reduced size, we prefer the decomposed MDP.

The state st = (ut, qt, ζ) depends on time step t, including vessel utilization ut ∈
R

nu
≥0 and realized demand qt ∈ R

nq
≥0. The environment parameter ζ remains un-

changed. Given the time t, however, we can extract relevant parameters from ζ,
such as polt, polt, kt, rev(polt,podt,kt).

At each step t, the action xt ∈ R
nc
≥0 assigns containers to the utilization ut. Each

action is constrained by the feasible region PH(st), defined as PH(st) = {xt ∈ R
nc
>0 :

A(st)xt ≤ b(st)}. Here, A(st) ∈ Rmc×nc is the constraint matrix, b(st) ∈ Rmc is the
bound vector, and mc represents the number of constraints. Note that Constraints
(8.21)-(8.27) are reformulated to align with PH(st).

The stochastic transition consists of loading at each time step t, where xt is added to
ut, while discharging and demand realization occur only upon arrival at a new port,
indicated by t ∈ Tnew port:

Tnew port =
{

t∈H | ∃p∈PNP−1
1 , t = |K|

(
(p− 1)(NP− 1)− p(p− 1)

2

)}
. (8.29)

The revenue at step t is computed as rev(polt, podt, kt)1⊤xt. However, costs depend
on knowing all loading operations at port p, which is aggregated in utilization ut at
the last step of the port t ∈ Tleave port:

Tleave port =
{

t∈ H | ∃p∈PNP−1
1 , t = |K|

(
p(NP− 1)− p(p− 1)

2

)
− 1
}

. (8.30)

As a result, the cost signal is sparse, being evaluated only once per port p rather than
at each step.

8.4.3 Proposed Architecture

The AI2STOW architecture comprises three key components: an encoder-decoder
model parameterized by θ, a feasibility projection layer and the DRL implementa-
tion. As illustrated in Figure 8.2, the encoder-decoder model employs a look-ahead
policy πθ(x|st) that considers an estimate of future states, which is conditioned on
the state st and parameterized by a mean µθ(st) and standard deviation σθ(st). By
training within the decomposed MDP and applying policy projection, the frame-
work iteratively generates actions xt to construct feasible solutions.

8.4. Deep Reinforcement Learning Framework 127

FIGURE 8.2: Deep reinforcement learning architecture with feasibility
projection for actor-critic methods [217]

Encoder-Decoder Model

Figure 8.3 presents the encoder-decoder model, originally based on the work of
[123], with architectural adjustments highlighted. Note that +,×, ∥ denote sum-
mation, multiplication and concatenation operations in Figure 8.3.

The core idea behind encoder-decoder models is to convert the input into a com-
pact, low-dimensional representation that allows subsequent models to efficiently
extract features and incorporate new information. For instance, the encoder uses
embedding ecargo : 8× nq → E, mapping input ζ to a representation of shape E. The
encoder f : E→ Z maps the embedding output to latent variable z ∈ Z. The context
embeddings takes z and utilization ut as input by econt : Z × nu → E, whereas the
dynamic embedding takes z and qt as input by edynam : Z × nq → E. In turn, the
actor decoder uses both context and dynamic representations to map g : 2× E→ X.
The embeddings transform different parts of the input data into representations, en-
abling the model to process specific groups of features and learn meaningful patterns
from them. This will be discussed in more detail in the text below.

The cargo embedding ecargo(ζ) parameterized by θcr maps cargo-related episode in-
formation in ζ into a feature representation for the encoder. To incorporate posi-
tional information, we apply sinusoidal positional encoding [222], which augments
the embeddings with continuous signals that enable the model to distinguish ele-
ment order and capture position-dependent structure.

An attention encoder f (ecargo(ζ)) parameterized by θenc maps ecargo(ζ) to latent vari-
able z using multi-head attention (MHA) to identify relevant features dynamically
[222]. In MHA, query (Q), key (K), and value (V) are learned projections of the in-
put that enable the model to selectively weigh and aggregate input elements based
on their contextual relevance, where attention weights are computed by comparing
queries with keys to determine how much focus to place on each value. Then, we
use a feed-forward network (FFN) with ReLU activation to introduce non-linearity,
layer normalization to stabilize training, residual connections to sum the MHA out-
put with its input to facilitate gradient flow and preserve input information, and
dropout to prevent overfitting [76].

128 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

Q Q

V

V V

+
Q

+

K
×

×

||

KK

+

+

FIGURE 8.3: Layers of the encoder and the actor-critic decoder [217]

The context embedding econt(ut, z), parameterized by θco, focuses on time t, extract-
ing time-specific features from the utilization ut and latent variable z. These features
provide the MHA query with a representation of the vessel’s current condition, en-
abling the policy to make decisions based on the present.

The dynamic embedding edynam(qt, z), parameterized by θdn, leverages SA to capture
temporal dependencies in demand qt over horizon H. By dynamically weighing past
and present observations, SA identifies trends and long-term patterns, enhancing
decision-making [222]. This embedding combines real demand and latent factors
to produce keys and values for an MHA layer. By emphasizing relevant historical
patterns while filtering noise, it enables the model to anticipate future conditions
and optimize long-term strategies.

As proposed in [123], our actor decoder g(econt(ut, z), edynam(qt, z)) is also an atten-
tion model, parameterized by θact. However, our actor takes input from the context
and dynamic embedding. An MHA layer with a forward-looking mask bases de-
cisions on steps t, t + 1, . . . , Tseq to anticipate future events. Subsequently, an FFN
extracts features, after which a pointer mechanism performs a soft selection of rele-
vant steps using key-value inputs [224]. A softplus activation outputs positive logits
(µθ(st), σθ(st)).

8.4. Deep Reinforcement Learning Framework 129

Our critic model Vθcri(st, z), parameterized by θcri, estimates the value of state st
and latent variable z through an FFN outputting Vθcri(st, z) ∈ R, providing a low-
variance baseline to guide and stabilize policy updates.

The actor logits parameterize a stochastic policy πθ(x | st) = N (µθ(st), σθ(st)),
which enables sampling actions xt ∼ πθ(x | st) to construct solutions, while pro-
moting exploration and supporting gradient-based optimization.

Feasibility Mechanisms

A variety of feasibility mechanisms can be used to ensure policy πθ adheres to fea-
sible region PH(st). A straightforward approach is to include feasibility regular-
ization (FR) in the loss function, as shown in Equations (8.31) and (8.32). In previ-
ous work, we argued that FR faces significant challenges when applied to dynamic,
state-dependent feasible regions [217]. The primary difficulty lies in determining
the Lagrangian multiplier λ f , as balancing multiple constraints with varying scales
requires expensive hyperparameter optimization. Despite these limitations, FR re-
mains a useful baseline for comparison.

L(θ) =−Lactor(θ) + λ fLfeas(θ) (8.31)

Lfeas(θ) =Et
[
(A(st)xθ(st)− b(st))>0

]
(8.32)

Projection layers P : X → X enforce feasibility by mapping policy samples onto
feasible sets by non-linear transformations, which distort the original action density
and require Jacobian-based log-probability corrections [33]. However, such correc-
tions can be undefined, leading to biased gradients, particularly when using closed-
form (convex) solvers like [1]. Moreover, these solvers are often too slow for practical
use during training. We instead favor efficient, differentiable projection layers with
well-defined Jacobians, such as the violation projection (VP) layer in [220]. Regard-
less of the limitations, solvers remain valuable at inference, where differentiability
and speed are less critical, providing a reliable post-processing step to enforce feasi-
bility.

Furthermore, PH(st) transforms from a convex to a non-convex polyhedron if PBS
is included, as the introduction of binary values creates a discontinuity in the poly-
hedron. To preserve convexity, we propose omitting Constraint (8.27) from PH(st)
to allow VP to handle the remaining convex constraints, whereas the non-convex
constraint can be handled by action masking. Masking is a differentiable operation
that preserves the linear structure, allowing constraint enforcement without output
distortion [203]. We define xm(st) ∈ {0, 1}nq as a state-dependent action mask. How-
ever, since the policy essentially says not to execute an action for some elements in
xt, we want the probability of this element occurring to be 0. Hence, Equations (8.33)
and (8.34) define the action masking and handling of log probabilities.

x′t = xm(st)⊙ xt (8.33)
log π(a|s) = xm(st)⊙ log π(a|s) + (1− xm(st)) · (−∞) (8.34)

Subsequently, we define a state-dependent action mask xm(st) to enforce PBS pat-
terns. Algorithm 5 defines the PBS action mask, which ensures the grouping of cargo

130 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

with POD j into blocks while maximizing the available space. Recall that blocks in-
clude both above-deck and below-deck locations. The algorithm works as follows:

1. The algorithm starts with computing POD demand, residual capacity and POD
locations indicator based on the state st. Then, it identifies locations that are
either empty or already used by POD j.

2. The algorithm calculates the amount of demand required to be placed in empty
locations, given the residual capacity.

3. To maintain stability, a random score is assigned to half of the bay-block pairs
and reflected symmetrically to the other half. Only empty bay-block pairs are
considered.

4. The scored bay-block pairs are sorted in descending order, and a top-k subset is
selected such that the cumulative capacity of those empty locations is sufficient
to meet the remaining demand.

5. Finally, the mask is constructed by marking the selected top-k empty locations
as valid, while preserving locations already used by POD j.

Algorithm 5 Action Mask for PBS

Require: POD j ∈ P, realized demand q ∈ Z
nq
≥0, TEU capacity c ∈ Z

nc
>0, utilization u ∈

R
nc×nq
≥0

Ensure: Valid location mask xm ∈ {0, 1}nc

1: Compute Utilization Status:
2: POD demand: qpod = ∑i∈P ∑k∈K q(i,j,k)

3: Residual capacity: cres = c− u · teu
4: POD indicator: ilb,d,bl,j = I

(
∑i∈P ∑k∈K u(b,d,bl,i,j,k) > 0

)
∀b ∈ B, d ∈ D, bl ∈ BL, j ∈ P

5: Empty locations: el = {(b, d, bl) | ilb,d,bl,j = 0, ∀j ∈ P}
6: Used locations with POD j: ulj = {(b, d, bl) | ilb,d,bl,j = 1}
7:
8: Compute Remaining Demand to Fulfill:
9: rq← max

(
0, qpod −∑(b,d,bl)∈ulj

cb,d,bl
res

)
10: fq← min

(
1⊤cres, rq

)
11:
12: Symmetric Random Scoring of Empty Bay Blocks:
13: Sample random scores: scb,bl ∼ U (0, 1)
14: Reflect symmetrically: s̃cb,bl = scmin(b, |B|−b+1), bl
15: Bay-block empty mask: msb,bl =

∧
d∈D I [(b, d, bl) ∈ el]

16: Apply mask: s̃c← s̃c⊙ms
17: Sort indices: Π← argsort(vec(s̃c), descending)
18:
19: Select Top-k Empty Locations Meeting Capacity Requirement:
20: cΠ ← gather(c by Π)
21: ĉ← cumsum(cΠ)
22: k← min {i | ĉi ≥ fq}
23: ˜xm[i]← I[i ∈ {Π1, . . . , Πk}]
24:
25: Merge Mask with Used Locations for POD:
26: xm← ˜xm∧ el∨ ulj
27: return xm

8.4. Deep Reinforcement Learning Framework 131

Deep Reinforcement Learning Implementation

Several DRL algorithms can be employed to train a policy in conjunction with a
feasibility projection layer. To this end, we provide a general pseudocode outlin-
ing the core steps of the training process in Algorithm 6. This pseudocode abstracts
the common structure of DRL training loops. The training involves iterative inter-
actions between the agent and the environment. Within the interactions, the policy
produces an action based on the current state, which is first element-wise multiplied
with state-dependent mask xm(st), and then passed through a projection layer for
convex constraints. The resulting projected actions are used to collect transitions,
which are stored in an experience buffer. This buffer is subsequently used to up-
date value estimates, compute the loss function that guides policy improvement,
and update the model parameters θ. The pseudocode is algorithm-agnostic and can
be instantiated as either on-policy (e.g., PPO) or off-policy (e.g., SAC), depending on
how the experience buffer D is populated and sampled.

Algorithm 6 General DRL Training with Feasibility Projection

Require: MDPM, initial policy πθ , projection layer P(·), mask layer xm(·), buffer D
Ensure: Trained policy πθ

1: for each training iteration do
2: Interact with environmentM using masked and projected policy P(xm(st)⊙πθ(st))
3: Store collected transitions in experience buffer D
4: Update performance metrics (e.g., Gt, V(st), Q(st, xt)) from buffer D
5: Compute loss L(θ) based on buffer D
6: Update parameters: θ ← θ − α∇θL(θ)
7: end for
8: return πθ

We also present a general pseudocode for inference in Algorithm 7. During infer-
ence, the trained policy generates actions based on the current state. A raw action is
sampled from the learned distribution and then passed through the projection layer
to enforce feasibility. The projected action is used to compute the reward and tran-
sition the environment to the next state. This process is repeated for a fixed time
horizon, and the trajectory of visited states and raw actions is recorded for analysis.

Algorithm 7 General DRL Inference with Feasibility Projection

Require: MDPM, trained stochastic policy πθ , projection layer P(·), mask layer xm(·)
Ensure: Trajectory {(st, x̃t)}

Tseq
t=0, episodic reward Rseq

1: Sample initial state s0 from environmentM
2: Initialize episodic reward Rseq ← 0
3: for t = 0 to Tseq do
4: Sample raw action x̃t ∼ πθ(st)
5: Apply masking: x′t ← xm(st)⊙ x̃t
6: Apply convex projection: xt ← P(x′t)
7: Observe reward rt = R(st, xt)
8: Observe next state st+1 ∼ T (· | st, xt)
9: Accumulate reward: Rseq ← Rseq + rt

10: Update state: st ← st+1
11: end for
12: return {(st, x̃t)}

Tseq
t=0, Rseq

132 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

8.5 Experimental Results

In this section, we examine the performance of AI2STOW on the MPP under de-
mand uncertainty based on a realistic problem to assess its scalability. We start by
discussing the experimental setup, after which we analyze the performance of the
AI2STOW policy. Subsequently, an ablation study is performed, after which man-
agerial insights are provided.

8.5.1 Experimental Setup

The largest container vessels range between 14,500 and 24,000 TEU [221]. To ade-
quately reflect such vessels, we assume the use of a vessel of 20,0000 TEU with 20
bays and 3 hatch covers in each bay. Typically, stowage planners use a horizon of 5
ports to mitigate the complexity of planning entire voyages. This provides a focused
and manageable scope for optimization. These and additional MPP parameters are
provided in Appendix C.1

In Appendix C.2, we define the instance generator used for the training and eval-
uation of AI2STOW, including a description of the container and TEU demand per
port. An upper bound ub ∈ Rnq is computed to align the expected demand with
the vessel’s maximum capacity, such that 1⊤ub ∝ 1⊤c. During training, ub is per-
turbed by a small random factor to encourage instance diversity. Demand instances
are then sampled from a uniform distribution U (0, ub(i,j,k)), for all (i, j) ∈ TR, k ∈ K.
To test generalization, the voyage length NP is varied during evaluation.

Several feasibility mechanisms are used in these experiments to address the con-
straints in PH(st). The baseline approach is training DRL with FR (DRL-FR), whereas
AI2STOW trains with FR, the general VP layer for convex constraints [217], and the
action mask to enforce PBS. Accordingly, the training projection layer, Ptrain, can be
denoted as PBS/VP or similar variants. During inference, a convex programming
(CP) layer can be used [1], possibly combined with PBS and policy clamping on TEU
capacity (PC) [217]. The resulting inference-time projection layer, Ptest, can thus be
expressed as PBS/CP/PC or a corresponding variant. Implementation details on
projection layers are provided in Appendix C.3.

We compare AI2STOW against two stochastic programming approaches: a stochas-
tic mixed integer program without anticipation (SMIP-NA), as described in Sec-
tion 8.3, and a stochastic MIP with perfect information (SMIP-PI), which relaxes the
non-anticipativity constraint. The SMIP-NA serves as a baseline for AI2STOW, while
SMIP-PI represents an expected upper bound. Since AI2STOW operates with contin-
uous actions, we construct the SMIP models using a linear relaxation of the decision
variables ũ, h̃o and ˜cm.

Training occurs offline on simulated instances provided by the instance generator.
Inference (or testing) occurs online on seeded simulated instances: AI2STOW mod-
els perform multiple inference rollouts to greedily select the best-performing solu-
tion. GPU-based experiments use an NVIDIA RTX A6000, and CPU-based runs
use an AMD EPYC 9454 48-Core Processor. Additionally, CPU experiments are
given a 1-hour runtime limit, after which the best solution is returned. Implemen-
tation details on the DRL algorithms and hyperparameters are also provided in Ap-
pendix C.3.

8.5. Experimental Results 133

8.5.2 Policy Performance

Table 8.4 presents a comparative evaluation of AI2STOW against baseline methods.
Across all test instances, each version of AI2STOW consistently outperforms SMIP-
NA in both objective value, achieving a 20 to 25 % improvement, and computa-
tion time, with reductions of approximately 20 times and 150 times for the CP and
VP variants, respectively. With regard to feasibility, only PBS/VP does not fully
guarantee feasibility. However, this limitation can be resolved either by fine tuning
the parameters in PBS/VP★ or by applying PBS/VP/PC to clip capacity violations.
While these results demonstrate significant performance gains, the SMIP-PI model
suggests that further improvements may be attainable if more accurate or complete
information were available. Nonetheless, AI2STOW stands out for its efficiency and
ability to make high-quality decisions under uncertainty. It also significantly outper-
forms DRL-FR, achieving a 70 % higher objective value while maintaining consistent
feasibility, whereas DRL-FR failed to produce any feasible solutions. This highlights
the practical advantage of projection layers over feasibility regularization.

Among the AI2STOW variants, PBS/CP demonstrates robustness by ensuring feasi-
bility across all instance sizes. However, this comes at the cost of computational effi-
ciency, with a 7 times increase in runtime compared to PBS/VP variants. In contrast,
the feasibility performance of PBS/VP and PBS/VP★ degrades when generalizing
to larger instances. This degradation can be attributed to the hyperparameter sensi-
tivity of the VP layer. Larger instances change the episode length and the magnitude
of actions, which requires fine-tuning of hyperparameters. To address this, clipping
on TEU capacity in PBS/VP/PC achieves feasible solutions with only a slight reduc-
tion in objective value compared to PBS/CP. This shows that VP, unlike CP, requires
targeted fine-tuning across voyage lengths to be generally effective, while adding
PC offers a simple and effective way to increase robustness.

In Table 8.4, there is a lack of results for SMIP models if NP ∈ {5, 6}. The expo-
nential growth of the scenario tree with increasing |Z| ∝ NP significantly impacts
computational cost and memory usage. While solving SMIP-NA and SMIP-PI for
NP = 4 is possible with a computational time of around 30 minutes, longer voyages
become impractical on our hardware due to excessive memory demands, as shown
in Appendix C.4. Even if we could hold the scenario tree in memory, we would also
face intractable computational times for SMIP-NA. This underscores the scalability
of DRL models, which can handle uncertainty implicitly. In contrast, all AI2STOW
models across all voyage lengths remain well within the practical tractability thresh-
old of 10 minutes for decision support in stowage planning [160].

134
C

hapter
8.

D
eep

R
einforcem

entLearning
under

U
ncertainty

atScale

TABLE 8.4: Experimental results comparing the AI2STOW framework with various inference-time projection layers (Ptest) against
baseline and upper-bound models. The DRL models are trained on voyages with 4 ports (NP = 4), while both DRL and SMIP models
are evaluated on N = 30 test instances. SMIP-NA (non-anticipative) serves as a baseline, while SMIP-PI (assumes perfect information)
represents an expected upper bound; both SMIPs use SST = 20 and are solved using CPLEX. Reported metrics include average objective
value in profit (O.), inference time in seconds (T.), and the percentage of feasible instances (F.). Generalization performance is assessed

on longer voyages with NP ∈ 5, 6, beyond the training distribution.

Methods Testing (NP = 4) Gen. (NP = 5) Gen. (NP = 6)

Model Ptest(·) O. ($) T. (s) F. (%) O. ($) T. (s) F. (%) O. ($) T. (s) F. (%)

AI2STOW PBS/CP 25637.52 76.37 100.00 34840.63 105.19 100.00 43496.30 182.63 100.00
PBS/VP 25352.06 10.59 86.67 34326.75 23.90 0.00 42515.64 38.79 0.00
PBS/VP★ 25404.68 11.54 100.00 34326.75 23.51 0.00 42515.64 38.34 0.00
PBS/VP/PC 25346.14 10.33 100.00 34052.90 22.83 100.00 41979.11 38.09 100.00

DRL-FR - 14959.52 3.19 0.00 19417.46 5.36 0.00 23471.99 7.96 0.00
SMIP-NA - 20647.22 1576.77 100.00 - - - - - -
SMIP-PI* - 33787.63 40.91 100.00 - - - - - -

8.5. Experimental Results 135

8.5.3 Ablation Study

Table 8.5 presents the results of an ablation study, which replaces or removes model
components of the model to assess their impact on performance. Replacing SA with
FF layers in the dynamic embedding, and substituting the AM policy with an MLP,
led to only marginal performance degradation when using PBS/CP as postprocess-
ing step inPtest. However, under PBS/VP projection, as used during training, replac-
ing SA with FF layers resulted in more feasibility violations. Interestingly, replacing
the AM with an MLP under PBS/VP improved feasibility performance. This sug-
gests that the problem instances are sufficiently regular for simpler architectures to
learn (e.g., MLPs). However, AMs are likely to outperform MLPs in less structured
and more challenging instances, where long-range dependencies and complex inter-
actions are present [222].

Regarding the projection layers, training with VP works well when using PBS/CP
during inference, even improving the objective at the cost of longer runtimes. How-
ever, when applying PBS/VP★ or VP★ during inference, feasibility drops signifi-
cantly, as PBS patterns are not enforced. This indicates that PBS/CP can effectively
resolve feasibility issues found during training. Still, we prefer solutions to remain
closer to the feasible region and rely less on post-processing through Ptest(·). No-
tably, training solely on PBS leads to significant reductions in the objective value
and depends on post-processing for feasibility.

TABLE 8.5: Ablation study results for variations of AI2STOW components
on N = 30 instances. The table specifies the DRL algorithm used for training
(Alg.), the policy model as an attention model (AM) or a multilayer percep-
tron (MLP), combined with a dynamic embedding layer using either self-
attention (SA) or a feedforward layer (FF), along with the training projection
Ptrain and testing projection Ptest. Reported metrics include the average ob-
jective value in profit (O.), inference time in seconds (T.), and the percentage

of feasible instances (F.).

Methods Testing (NP = 4)

Alg. Model Ptrain(·) Ptest(·) O. ($) T. (s) F. (%)

SAC SA-AM PBS/VP PBS/CP 25637.52 76.37 100.00
SAC SA-AM PBS/VP PBS/VP 25352.06 10.59 86.67
SAC FF-AM PBS/VP PBS/CP 25558.75 79.86 100.00
SAC FF-AM PBS/VP PBS/VP 25224.73 10.51 76.67
SAC FF-MLP PBS/VP PBS/CP 25463.42 71.74 100.00
SAC FF-MLP PBS/VP PBS/VP 25222.44 9.89 96.67

SAC SA-AM VP PBS/CP 26722.24 93.51 100.00
SAC SA-AM VP PBS/VP★ 25755.81 16.64 0.00
SAC SA-AM VP VP★ 30070.51 6.36 0.00
SAC SA-AM PBS PBS/CP 10501.61 9.76 100.00
SAC SA-AM PBS PBS/VP★ 10501.57 4.10 100.00
SAC SA-AM PBS PBS 10367.80 3.19 0.00

8.5.4 Managerial Insights

In Figure 8.4a, we assess the value of information by comparing profit under non-
anticipation (SMIP-NA), imperfect information (AI2STOW), and perfect information
(SMIP-PI). Access to additional information leads to substantial improvements in
profit relative to SMIP-NA, approximately 25% for AI2STOW and 60% for SMIP-PI.

136 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

While AI2STOW performs significantly better than the non-anticipative baseline, a
notable gap remains to the perfect-information upper bound, largely due to the high
uncertainty in uniform instances, which are inherently difficult to predict. As the
number of scenarios increases, the profit achieved by SMIP-NA gradually decreases
and begins to stabilize, indicating diminishing returns from additional information.
This trend is less evident in the perfect-information setting. However, convergence
is not fully observed within the experimental range: at SST = 24, SMIP-NA returned
only empty solutions within the 1-hour time limit, hence, the point is excluded from
Figure 8.4a. This suggests that beyond a certain scenario size, the scenario tree be-
comes computationally intractable, regardless of the tractability limit of practical
stowage planning.

Figure 8.4b illustrates the computational cost of SMIP-NA and SMIP-PI alongside
the training and inference time of AI2STOW. Expanding the scenario tree is compu-
tationally expensive, with SMIP-NA exhibiting an exponential increase in runtime.
The only deviation from this trend occurs at 24 scenarios, where SMIP-NA exceeds
the 1-hour time limit. SMIP-PI also shows a steady increase in computational time
as scenario size grows. Additionally, the estimated runtime for solving a single in-
stance with AI2STOW is lower than that of SMIP-NA at 20 and 24 scenarios. This
suggests that, even with just 30 test instances, the one-time offline training cost of
AI2STOW is already justified. As the number of instances increases, this training
time is further amortized, improving the cost-effectiveness in larger deployments.
If the training budget is sufficient, then the resulting inference time is significantly
lower compared to the runtime of SMIP models.

In Figure 8.4c, the performance of AI2STOW with SA-AM, FF-AM, and FF-MLP is
evaluated under varying levels of distributional shift. Note that AI2STOW is trained
with UR = 1.1. The results indicate that all three models perform similarly across
different distribution shifts with consistent variability, while SA-AM consistently
achieves slightly higher profits in shifting scenarios. This suggests that reducing
model complexity does not compromise performance. A closer examination of the
distribution shift reveals an asymmetric response. When the distribution is shifted
toward lower UR values, performance decreases in a manner that scales approx-
imately with the reduced demand, which can be expected as these scenarios fall
within the support of the original uniform demand distribution. Conversely, in-
creasing UR does not yield improved performance. This indicates that none of the
models effectively handle substantial shifts beyond the original distribution, high-
lighting their limited extrapolation capability under significant demand increases.

From a practical perspective, we show that including stochastic cargo demand re-
sults in a more realistic and complex optimization problem. Particularly challenging
to solve using explicit scenario tree formulations, which quickly become intractable.
We demonstrate that AI2STOW efficiently generates solutions that implicitly han-
dle uncertainty and consistently identifies master plans with higher expected profit.
Even when accounting for training time, our approach is computationally superior
to SMIP models. To demonstrate generalization, AI2STOW adapts well to previ-
ously unseen and larger voyage lengths. However, under significant distribution
shifts, its performance can stagnate. Moreover, its success depends heavily on the
quality of training data; when this data is representative of realistic instances, the
method performs effectively in practice. This underscores the importance of realis-
tic demand simulators to support the training of DRL-based methods.

8.5. Experimental Results 137

4 8 12 16 20 24

2

2.2

2.4

2.6

2.8

3

3.2

3.4

·104

Number of Scenarios

Pr
ofi

t(
$) SMIP-NA

SMIP-PI
AI2STOW/PBS/CP

(A) Profit with 95% CI across scenario sizes.

4 8 12 16 20 24 AI2STOW
100

101

102

103

104

Number of Scenarios and DRL Model

C
om

pu
ta

ti
on

Ti
m

e
(s

,l
og

sc
al

e)

SMIP-NA
SMIP-PI

AI2STOW Inference
AI2STOW Training
Stowage Timelimit

(B) Average computational time across scenario sizes for SMIP models and AI2STOW.
For AI2STOW, the reported time includes both training and inference averaged over 30

instances. Additional instances would further smooth the training time estimate.

0.7 0.9 1.1 1.3 1.5

0

1

2

3

·104

UR Parameter Value

Pr
ofi

t(
$) SA-AM

FF-AM

FF-MLP

(C) Profit with 95% CI under distributional shift.

FIGURE 8.4: Sensitivity analysis across scenario size and distribu-
tional shift

138 Chapter 8. Deep Reinforcement Learning under Uncertainty at Scale

8.6 Conclusion

This article introduces AI2STOW, an end-to-end deep reinforcement learning model
designed to solve the MPP under demand uncertainty, specifically tailored for real-
istic vessel sizes and operational planning horizons. AI2STOW builds on previous
work [217] by extending the MDP to include paired block stowage patterns along-
side existing global objectives, such as revenue maximization and the minimization
of hatch overstowage and excess crane moves. It also respects vessel capacity and
ensures both longitudinal and vertical stability.

Experimental results show that AI2STOW generates feasible and adaptive stowage
plans for simulated instances on a realistic-sized vessel and operational voyage lengths.
AI2STOW also outperforms baseline methods from both deep reinforcement learn-
ing and stochastic programming. These findings provide strong evidence that DRL
is a promising approach for scalable stowage planning.

Looking ahead, we aim to improve the MDP’s representativeness by incorporating
local objectives and constraints. We also plan to integrate this framework with the
SPP for more efficient end-to-end stowage plan construction. Finally, we encour-
age exploration into hybrid approaches that combine ML with CO frameworks as
alternatives to purely end-to-end learning.

8.6. Conclusion 139

140

Chapter 9

Conclusion and Future Directions

This chapter summarizes the key findings of this dissertation, reflects on their broader
implications, discusses the ethical considerations of the study, and outlines direc-
tions for future research.

9.1 Conclusion

This thesis set out to investigate scalable solution methods in ML and CO to effi-
ciently generate solutions to (subproblems of) the CSPP, thereby supporting decision-
making in stowage planning. The findings indicate that while advances in CO and
ML can significantly enhance the computational efficiency of solution methods, each
presents distinct strengths and limitations. Neither CO nor ML provides a univer-
sally superior, or silver bullet, solution to the challenging CSPP or its subproblems.

With respect to sub-objective 1, the findings indicate that a wide range of CO ap-
proaches and only a limited number of ML methods have been applied to non-
standardized versions of the CSPP and its subproblems, often relying on non-public
problem instances. These observations highlight the need for a more unified ap-
proach to the CSPP with a clear problem formulation and publicly available bench-
mark datasets. To support this, the minimal requirements for a representative CSPP
are defined in this thesis, along with a set of benchmark instances. The issue of
representativeness is mostly relevant to the CSPP and MPP, while the SPP is close to
being representative for industrial problems. Several research gaps are identified for
representative operational constraints in the CSPP and MPP, including paired block
stowage patterns, valid restows, lashing requirements, and demand uncertainty. In
terms of solution methods, there is a clear need for scalable and efficient approaches
capable of handling the complexity of these constraints.

To address sub-objective 2, this thesis presents novel formulations of MPP. First,
a novel 0-1 IP model is proposed, which searches within the space of valid block
stowage patterns. By abstracting away direct container-to-capacity assignments,
this formulation significantly reduces the number of decision variables compared
to traditional MIP approaches. Second, the thesis proposes MDP formulations of the
MPP, modeling it as a sequential decision process. MDPs scale with episode length
for a given state and action space, while MIPs scale with the number of indices and
constraints on variables, often growing rapidly with the problem size. Third, the in-
tegration of paired block stowage patterns is introduced in both the 0-1 IP model and
an MDP formulation, representing a novel inclusion of this operational constraint.

9.2. Discussion 141

Finally, this thesis incorporates demand uncertainty directly into the MPP, which has
not yet been addressed within the MPP.

As part of sub-objective 3, the findings indicate that the 0-1 IP model outperforms
the traditional MIP formulation in terms of both optimality and runtime while pro-
viding a sufficiently accurate representation of the MPP on real-world instances.
However, for larger problem instances, the runtime of the 0-1 IP model exceeds the
10-minute tractability threshold. In parallel, DRL methods are used to generate so-
lutions for the MDPs. These methods typically produce fast solutions, often within
2 minutes per instance. Nevertheless, DRL requires extensive training on gener-
ated instances to learn policies that yield profitable solutions without a guarantee
of optimality. Moreover, the MDP formulations do not inherently ensure feasibility,
and feasibility has proven difficult to learn through reward shaping or feasibility
regularization alone. To address this challenge, the thesis emphasizes the use of
differentiable projection layers, which have shown promising results in improving
feasibility while retaining the efficiency of DRL-based approaches.

In response to sub-objective 4, two key theoretical contributions are established.
First, this thesis demonstrated that searching within the space of valid block stowage
patterns is NP-hard, confirming the inherent combinatorial complexity of the task.
Second, our proposed differentiable projection layer based on violation gradient de-
scent is shown to minimize the violation of convex inequality constraints within a
continuous optimization framework, allowing integration with gradient-based learn-
ing models.

9.2 Discussion

The CSPP is essential to a reliable and efficient global supply chain, which is the
backbone of international trade. Given that container shipping has relatively low
emissions per cargo tonne-kilometer, effective stowage planning supports both op-
erational performance and the broader goals of sustainable logistics and the global
green transition. The CSPP is inherently challenging due to the wide variety of ob-
jectives and constraints involved in realistic settings. Capturing its full complexity
requires additional efforts to incorporate practical considerations into solving repre-
sentative problem formulations. Despite its operational relevance and complexity,
the CSPP remains underrepresented in academic research. This planning problem
requires greater attention, not due to a lack of relevance, but because its significance
calls for deeper and more rigorous investigation.

From a decision-support perspective, the CO- and ML-based approaches reduce
computational costs, enhance feasibility in ML models, and improve adaptability
under uncertainty. They enable rapid what-if analysis, can integrate with automated
planning systems, and bridge the gap between theoretical and operational planning.
These scalable decision-support systems pave the way for more resilient and efficient
container shipping.

A key contribution of this thesis is addressing uncertainty in future port calls, which
is often overlooked in prior work, as discussed in Chapter 4. One of the few ex-
ceptions is [49], which uses a rolling horizon matheuristic to manage scenario tree
complexity. In contrast, this thesis offers a scalable DRL model that implicitly cap-
tures uncertainty without relying on explicit scenario trees. Practically, the model

142 Chapter 9. Conclusion and Future Directions

can serve as a warm-start solution within existing decision-support tools, accelerat-
ing convergence and improving robustness. It can also function as an exploratory
tool, helping planners understand the effects of uncertainty on decision quality and
manage operational risk more effectively.

Given the minimal requirements of a representative problem and benchmark data,
this thesis establishes a foundation for reproducible evaluation, meaningful compar-
ison, and accelerated development of future stowage optimization methods. Simi-
larly, the open-source MDP environments can benchmark algorithms and facilitate
research into sequential decision-making approaches, allowing researchers to flexi-
bly test, compare, and iterate on policies.

This dissertation investigated exact CO methods and ML heuristics as two alter-
native solution methods to better understand their respective strengths and limita-
tions. The findings indicate that exact CO methods offer guarantees of optimality
and feasibility, but they often struggle to scale and require explicit modeling of real-
ity. In contrast, ML heuristics scale efficiently and learn implicit representations of
real-world complexity, yet they lack reliable performance guarantees. These insights
support the argument in favor of hybrid approaches that combine the strengths of
both paradigms while mitigating their shortcomings.

While recent efforts (e.g., [169, 130]), including this work, make progress toward
more representative formulations of the CSPP by incorporating more realistic con-
straints, the studied problems remain simplified and do not yet capture the full
complexity of real-world objectives and operational requirements. The formula-
tion proposed by [198] offers a more comprehensive standard for the CSPP but also
highlights the difficulty of solving such instances. In general, as problem complex-
ity increases, exact CO methods become computationally intractable, and heuristic
frameworks struggle to balance objectives and feasibility. In particular, ML-based
heuristics are challenged by explicit, non-convex feasible regions. Bridging this gap
remains an open challenge, particularly the integration of combinatorial optimiza-
tion into end-to-end differentiable frameworks that offer performance guarantees.

Empirical evaluation of the CSPP is hindered by the limited availability of publicly
accessible data. Although instance generators exist [18, 53, 58, 177], they frequently
lack sufficient realism for widespread applicability. Real-world stowage planning
data intrinsically reflects complex factors such as internal organizational policies,
global trade dynamics, and external events, resembling a similar complexity found
in financial markets. As a result, the simulators integrated into our MDP share these
same limitations. Consequently, developing instance generators capable of accu-
rately representing realistic scenarios is particularly challenging but also very useful.
The development of such generators requires deep domain insights and extensive
publicly available data.

Furthermore, I would like to share some personal reflections on the thesis process.
Given the complexity of the CSPP, the steep learning curve required to understand
the domain-specific background should be acknowledged. In retrospect, prior famil-
iarity with container shipping could have significantly accelerated the early stages
of the research, particularly within the constraints of a limited timeframe. In the
project’s time constraints, I have committed to specific problem formulations that
aligned with the research scope and goals. Nevertheless, I fully acknowledge the
possible existence of alternative formulations that may offer different perspectives

9.3. Ethical Considerations 143

on the problem. Moreover, my perspective on both the CSPP and the research
process itself has evolved significantly. What began as a mathematical optimiza-
tion problem gradually revealed itself as a human-in-the-loop decision-making chal-
lenge, shaped by operational constraints and safety-critical considerations. At the
same time, I came to see AI-based research not merely as analysis and experiment-
ing but as a craft that demands intuition, patience, and iterative refinement. These
experiences have enriched my understanding of research and enhanced my capacity
to navigate complex, real-world problems.

9.3 Ethical Considerations

Decision-support tools have significant potential to enhance decision-making pro-
cesses. However, maintaining human oversight is essential to ensure fairness, ac-
countability, and transparency. While these models can substantially augment hu-
man judgment, they must never entirely replace it, especially in high-stakes scenar-
ios. To mitigate automation bias effectively, it is crucial to implement safeguards
that allow users to question, challenge, or override AI-generated outputs. Addition-
ally, continuous validation and regular auditing of these systems are necessary to
maintain trust and uphold fairness.

The use of AI models in decision-making incurs significant costs, both economically
and environmentally. Energy consumption is a key factor, as it is directly propor-
tional to the runtime and size of AI models. As such, it is essential to align the model
size and runtime budget with the specific task. Assuming unlimited resources is un-
realistic and irresponsible as it neglects the importance of resource management and
sustainable AI practices.

9.4 Future Directions

Building upon the work presented in this thesis, future research could focus on de-
veloping hybrid solution methods that integrate ML into CO frameworks. These hy-
brid approaches aim to mitigate the scalability challenges faced by many CO meth-
ods while achieving feasible solutions with near-optimal objectives. One potential
avenue is the development of ML-driven LNS, where an ML policy selects relevant
neighborhoods during the search process, as opposed to relying on randomized se-
lection [172]. Another promising direction is to extend the work in this thesis by
proposing a three-phase matheuristic framework. The first phase could involve a
variant of AI2STOW [218], followed by the second phase, which would incorporate
a representative MPP model as described in [221], and the third phase could involve
solving the representative SPP model [166]. This approach would allow AI2STOW
to warm-start with an MIP model, which in turn generates input variables for the
SPP model.

An alternative direction of research could address the challenge posed by the lim-
ited availability of benchmark data, which may hinder the ability of ML-based ap-
proaches to learn meaningful representations. To overcome this issue, further work
could focus on developing a representative instance generator that simulates mar-
ket dynamics and economic factors. In parallel, the inherent structure of container
vessels, characterized by pre-planned voyages and a cellular layout, suggests that
graph representation learning could be an effective method to leverage the structure

144 Chapter 9. Conclusion and Future Directions

and inform ML policies. Additionally, container vessels deal with hydrodynam-
ics and stress forces due to weather conditions and vessel motion. Future research
could explore the use of physics-informed ML to model and predict these physical
phenomena more accurately, offering deeper insights into the behavior of container
vessels under varying conditions.

145

146

Bibliography

[1] Akshay Agrawal, Brandon Amos, Shane Barratt, and Stephen Boyd. 2019. Differentiable Con-
vex Optimization Layers. In Advances in Neural Information Processing Systems. DOI: 10.5555
/3454287.3455145.

[2] Shabbir Ahmed. 2006. Convexity and decomposition of mean-risk stochastic programs. Math-
ematical Programming, 106, 3, (May 2006), 433–446. DOI: 10.1007/s10107-005-0638-8.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network flows: Theory, algo-
rithms, and applications. Prentice Hall. ISBN: 978-1-292-04270-1.

[4] Mai L. Ajspur, Rune M. Jensen, and Kent H. Andersen. 2019. A decomposed fourier-motzkin elim-
ination framework to derive vessel capacity models. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11756 LNCS.
Pages: 100. Springer International Publishing. ISBN: 978-3-030-31139-1. DOI: 10.1007/978-3
-030-31140-7_6.

[5] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19). event-
place: Anchorage, AK, USA. Association for Computing Machinery, New York, NY, USA, 2623–
2631. ISBN: 978-1-4503-6201-6. DOI: 10.1145/3292500.3330701.

[6] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. en. In Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. (Apr. 2018). DOI: 10.1609/aaai.v32i1.11797.

[7] Daniela Ambrosino, Davide Anghinolfi, Massimo Paolucci, and Anna Sciomachen. 2010. An
Experimental Comparison of Different Heuristics for the Master Bay Plan Problem. In Experi-
mental Algorithms. Vol. 6049. Springer Berlin Heidelberg, 314–325. DOI: 10.1007/978-3-642
-13193-6_27.

[8] Daniela Ambrosino, Massimo Paolucci, and Anna Sciomachen. 2015. A MIP Heuristic for Multi
Port Stowage Planning. Transportation Research Procedia, 10, July, 725–734. Publisher: Elsevier
B.V. DOI: 10.1016/j.trpro.2015.09.026.

[9] Daniela Ambrosino, Massimo Paolucci, and Anna Sciomachen. 2015. Computational evalu-
ation of a MIP model for multi-port stowage planning problems. Soft Computing. Publisher:
Springer Berlin Heidelberg. DOI: 10.1007/s00500-015-1879-y.

[10] Daniela Ambrosino, Massimo Paolucci, and Anna Sciomachen. 2015. Experimental evaluation
of mixed integer programming models for the multi-port master bay plan problem. Flexible
Services and Manufacturing Journal, 27, 2-3, 263–284. Publisher: Springer US. DOI: 10.1007/s1
0696-013-9185-4.

[11] Daniela Ambrosino, Massimo Paolucci, and Anna Sciomachen. 2018. Shipping Liner Company
Stowage Plans: An Optimization Approach. In Advances in Intelligent Systems and Computing.
Vol. 572. Jacek Żak, Yuval Hadas, and Riccardo Rossi, editors. Springer International Publish-
ing, Cham, 405–420. DOI: 10.1007/978-3-319-57105-8_20.

[12] Daniela Ambrosino, Anna Sciomachen, and Elena Tanfani. 2004. Stowing a containership: the
master bay plan problem. Transportation Research Part A, 38, 2, (Feb. 2004), 81–99. DOI: 10.101
6/j.tra.2003.09.002.

[13] Daniela Ambrosino, Anna Sciomachen, and Elena Tanfani. 2006. A decomposition heuristics
for the container ship stowage problem. Journal of Heuristics, 12, 3, (May 2006), 211–233. DOI:
10.1007/s10732-006-5905-1.

https://doi.org/10.5555/3454287.3455145
https://doi.org/10.5555/3454287.3455145
https://doi.org/10.1007/s10107-005-0638-8
https://doi.org/10.1007/978-3-030-31140-7_6
https://doi.org/10.1007/978-3-030-31140-7_6
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1007/978-3-642-13193-6_27
https://doi.org/10.1007/978-3-642-13193-6_27
https://doi.org/10.1016/j.trpro.2015.09.026
https://doi.org/10.1007/s00500-015-1879-y
https://doi.org/10.1007/s10696-013-9185-4
https://doi.org/10.1007/s10696-013-9185-4
https://doi.org/10.1007/978-3-319-57105-8_20
https://doi.org/10.1016/j.tra.2003.09.002
https://doi.org/10.1016/j.tra.2003.09.002
https://doi.org/10.1007/s10732-006-5905-1

Bibliography 147

[14] S. Arora and B. Barak. 2009. Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press. ISBN: 978-0-521-42426-4.

[15] Anastasios Haralampos Aslidis. 1989. Combinatorial algorithms for stacking problems. PhD thesis.
Massachusetts Institute of Technology, USA. https://dspace.mit.edu/handle/1721.1
/33478.

[16] Alper Atamtürk and Muhong Zhang. 2007. Two-Stage Robust Network Flow and Design Un-
der Demand Uncertainty. Operations Research, 55, 4, 662–673. DOI: 10.1287/opre.1070.042
8.

[17] Mordecai Avriel, Michal Penn, and Naomi Shpirer. 2000. Container ship stowage problem:
complexity and connection to the coloring of circle graphs. Discrete Applied Mathematics, 103,
1-3, (July 2000), 271–279. DOI: 10.1016/S0166-218X(99)00245-0.

[18] Mordecai Avriel, Michal Penn, Naomi Shpirer, and Smadar Witteboon. 1998. Stowage planning
for container ships to reduce the number of shifts. Annals of Operations Research, 76, 1-4, 55–71.
DOI: 10.1023/A:1018956823693.

[19] Mordecai; Avriel and Michal Penn. 1993. Exact and approximate solutions of the container ship
stowage problem. Computers & Industrial Engineering, 25, 271–274. DOI: 10.1016/0360-8352
(93)90273-Z.

[20] Jose Roberto Ayala Solares et al. 2020. Deep learning for electronic health records: A compara-
tive review of multiple deep neural architectures. Journal of Biomedical Informatics, 101, 103337.
DOI: https://doi.org/10.1016/j.jbi.2019.103337.

[21] Win Cho Aye, Malcolm Yoke Hean Low, Huang Shell Ying, Hsu Wen Jing, Liu Fan, and Zeng
Min. 2010. Visualization and simulation tool for automated stowage plan generation system.
Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, IMECS
2010, II, 1013–1019. https://www.iaeng.org/publication/IMECS2010/IMECS2010
_pp1013-1019.pdf.

[22] Anibal Azevedo, Ribeiro Cassilda Maria, Galeno José de Sena, Antônio Augusto Chaves, Luis
Leduino Salles Neto, and Antônio Carlos Moretti. 2014. Solving the 3D container ship loading
planning problem by representation by rules and meta-heuristics. International Journal of Data
Analysis Techniques and Strategies, 6, 3, 228–260. DOI: 10.1504/IJDATS.2014.063060.

[23] Anibal Tavares Azevedo, Luiz Leduino de Salles Neto, Antônio Augusto Chaves, and Antônio
Carlos Moretti. 2018. Solving the 3D stowage planning problem integrated with the quay crane
scheduling problem by representation by rules and genetic algorithm. Applied Soft Computing
Journal, 65, (Apr. 2018), 495–516. Publisher: Elsevier Ltd. DOI: 10.1016/j.asoc.2018.01.0
06.

[24] Gah-Yi Ban and Cynthia Rudin. 2019. The Big Data Newsvendor: Practical Insights from Ma-
chine Learning. Operations Research, 67, 1, 90–108. DOI: 10.1287/opre.2018.1757.

[25] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W.P. Savelsbergh, and Pamela
H. Vance. 1998. Branch-and-price: Column generation for solving huge integer programs. Number 3.
Vol. 46. Publication Title: Operations Research. INFORMS.

[26] Richard Bellman. 1957. Dynamic Programming. Princeton University Press. ISBN: 978-0-691-07951-
6.

[27] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2021. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational Research, 290, 2,
(Apr. 2021), 405–421. DOI: 10.1016/j.ejor.2020.07.063.

[28] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms for Hyper-
Parameter Optimization. In Advances in Neural Information Processing Systems. J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors. Vol. 24. Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab3
2cfd12577bc2619bc635690-Paper.pdf.

[29] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. 2018. Data-driven robust optimization.
en. Mathematical Programming, 167, 2, (Feb. 2018), 235–292. DOI: 10.1007/s10107-017-112
5-8.

https://dspace.mit.edu/handle/1721.1/33478
https://dspace.mit.edu/handle/1721.1/33478
https://doi.org/10.1287/opre.1070.0428
https://doi.org/10.1287/opre.1070.0428
https://doi.org/10.1016/S0166-218X(99)00245-0
https://doi.org/10.1023/A:1018956823693
https://doi.org/10.1016/0360-8352(93)90273-Z
https://doi.org/10.1016/0360-8352(93)90273-Z
https://doi.org/https://doi.org/10.1016/j.jbi.2019.103337
https://www.iaeng.org/publication/IMECS2010/IMECS2010_pp1013-1019.pdf
https://www.iaeng.org/publication/IMECS2010/IMECS2010_pp1013-1019.pdf
https://doi.org/10.1504/IJDATS.2014.063060
https://doi.org/10.1016/j.asoc.2018.01.006
https://doi.org/10.1016/j.asoc.2018.01.006
https://doi.org/10.1287/opre.2018.1757
https://doi.org/10.1016/j.ejor.2020.07.063
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1007/s10107-017-1125-8
https://doi.org/10.1007/s10107-017-1125-8

148 Bibliography

[30] Hans-Georg Beyer and Hans-Paul Schwefel. 2002. Evolution Strategies: A Comprehensive Intro-
duction. Vol. 1. Publication Title: Natural Computing. Springer. DOI: 10.1023/A:101505992
8466.

[31] Mevlut Savas Bilican, Ramazan Evren, and Mumtaz Karatas. 2020. A Mathematical Model and
Two-Stage Heuristic for the Container Stowage Planning Problem with Stability Parameters.
IEEE Access, 8, 113392–113413. DOI: 10.1109/ACCESS.2020.3003557.

[32] J.R. Birge and F. Louveaux. 2011. Introduction to Stochastic Programming. Springer Series in Oper-
ations Research and Financial Engineering. Springer New York. ISBN: 978-1-4614-0237-4.

[33] Christopher M. Bishop. 2006. Pattern recognition and machine learning. en. Information science and
statistics. Springer, New York. ISBN: 978-0-387-31073-2.

[34] Natashia Boland, Jeffrey Christiansen, Brian Dandurand, Andrew Eberhard, Jeff Linderoth,
James Luedtke, and Fabricio Oliveira. 2018. Combining Progressive Hedging with a Frank–
Wolfe Method to Compute Lagrangian Dual Bounds in Stochastic Mixed-Integer Program-
ming. en. SIAM Journal on Optimization, 28, 2, (Jan. 2018), 1312–1336. DOI: 10.1137/16M10
76290.

[35] R.C. Botter and M.A. Brinati. 1992. Stowage container planning: a model for getting an optimal
solution. Computer Applications in Automation of Shipyard Operation and Ship Design, VII, C, 217–
228. https://trid.trb.org/View/443380.

[36] Stephen P. Boyd and Lieven Vandenberghe. 2004. Convex optimization. en. (Version 29 ed.). Cam-
bridge University Press, Cambridge New York Melbourne New Delhi Singapore. ISBN: 978-0-
521-83378-3.

[37] Berit Brouer, Fernando Alvarez, Christian Plum, David Pisinger, and Mikkel Sigurd. 2013. A
Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design.
Transportation Science, 48, (Jan. 2013). DOI: 10.1287/trsc.2013.0471.

[38] E. Burke, K. Jackson, J. H. Kingston, and R. Weare. 1997. Automated university timetabling:
The state of the art. The Computer Journal, 40, 9, (Jan. 1997), 565–571. DOI: 10.1093/comjnl/4
0.9.565.

[39] Edmund K. Burke, Graham Kendall, John Newall, Emma Hart, Peter Ross, and Stefan Schulen-
burg. 2003. Hyper-heuristics: An emerging direction in modern search technology. In Handbook
of Metaheuristics. Springer, 457–474. ISBN: 978-1-4419-1663-1.

[40] Miguel Calvo-Fullana, Santiago Paternain, Luiz F. O. Chamon, and Alejandro Ribeiro. 2021.
State Augmented Constrained Reinforcement Learning: Overcoming the Limitations of Learn-
ing With Rewards. IEEE Transactions on Automatic Control, 69, 4275–4290. https://api.sem
anticscholar.org/CorpusID:232035640.

[41] Claus C. Carøe and Rüdiger Schultz. 1999. Dual decomposition in stochastic integer program-
ming. en. Operations Research Letters, 24, 1-2, (Feb. 1999), 37–45. DOI: 10.1016/S0167-6377
(98)00050-9.

[42] Yimei Chang, Masoud Hamedi, and Ali Haghani. 2022. Solving integrated problem of stowage
planning with crane split by an improved genetic algorithm based on novel encoding mode.
Measurement and Control, (Sept. 2022). DOI: 10.1177/00202940221097981.

[43] Shih Liang Chao and Pi Hung Lin. 2021. Minimizing overstowage in master bay plans of large
container ships. Maritime Economics and Logistics, 23, 1, 71–93. Publisher: Palgrave Macmillan
UK. DOI: 10.1057/s41278-019-00126-6.

[44] Rui Chen and James Luedtke. 2022. On sample average approximation for two-stage stochastic
programs without relatively complete recourse. en. Mathematical Programming, 196, 1-2, (Nov.
2022), 719–754. DOI: 10.1007/s10107-021-01753-9.

[45] Shilin Chen, Jaya Krishnan, Jing Zhang, Sudipta Seal, Ian McGough, Wenyi Wang, and Kun
Chen. 2021. A deep learning model for predicting next-generation sequencing depth from DNA
probe sequences. Nature Communications, 12, 1, 1–10. Publisher: Nature Publishing Group. DOI:
10.1038/s41467-021-24497-8.

[46] Wenbo Chen, Mathieu Tanneau, and Pascal Van Hentenryck. 2024. End-to-End Feasible Opti-
mization Proxies for Large-Scale Economic Dispatch. en. IEEE Transactions on Power Systems,
39, 2, 4723–4734. DOI: 10.1109/TPWRS.2023.3317352.

https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1109/ACCESS.2020.3003557
https://doi.org/10.1137/16M1076290
https://doi.org/10.1137/16M1076290
https://trid.trb.org/View/443380
https://doi.org/10.1287/trsc.2013.0471
https://doi.org/10.1093/comjnl/40.9.565
https://doi.org/10.1093/comjnl/40.9.565
https://api.semanticscholar.org/CorpusID:232035640
https://api.semanticscholar.org/CorpusID:232035640
https://doi.org/10.1016/S0167-6377(98)00050-9
https://doi.org/10.1016/S0167-6377(98)00050-9
https://doi.org/10.1177/00202940221097981
https://doi.org/10.1057/s41278-019-00126-6
https://doi.org/10.1007/s10107-021-01753-9
https://doi.org/10.1038/s41467-021-24497-8
https://doi.org/10.1109/TPWRS.2023.3317352

Bibliography 149

[47] DW Cho. 1981. Development of a methodology for containership load planning. PhD. Oregon State
University. https://ir.library.oregonstate.edu/downloads/g158bm271.

[48] Chien Chang Chou and Pao Yi Fang. 2021. Applying expert knowledge to containership stowage
planning: an empirical study. Maritime Economics and Logistics, 23, 1, 4–27. Publisher: Palgrave
Macmillan UK. DOI: 10.1057/s41278-018-0113-0.

[49] J. Christensen, A. Erera, and D. Pacino. 2019. A rolling horizon heuristic for the stochastic cargo
mix problem. Transportation Research Part E: Logistics and Transportation Review, 123. DOI: 10.1
016/j.tre.2018.10.010.

[50] J. Christensen and D. Pacino. 2017. A matheuristic for the Cargo Mix Problem with Block
Stowage. Transportation Research Part E: Logistics and Transportation Review, 97. DOI: 10.101
6/j.tre.2016.10.005.

[51] European Commission. 2007. Freight transport logistics action plan. Tech. rep. COM(2007) 607.
European Union, (Oct. 2007). https://eur-lex.europa.eu/EN/legal-content/summ
ary/freight-transport-logistics-action-plan.html.

[52] Andrea Conca, Angela Di Febbraro, Davide Giglio, and Francesco Rebora. 2018. Automation
in freight port call process: Real time data sharing to improve the stowage planning. In vol. 30.
DOI: 10.1016/j.trpro.2018.09.009.

[53] Laura Cruz-reyes, Paula Hernández H, Patricia Melin, Héctor J Fraire H, and Julio Mar O. 2013.
Constructive Algorithm for a Benchmark in Ship Stowage Planning, 393–408. DOI: 10.1007
/978-3-642-33021-6_31.

[54] Laura Cruz-Reyes et al. 2015. Lower and Upper Bounds for the Master Bay Planning Problem.
International Journal of Combinatorial Optimization Problems and Informatics, 6, 1, 42–52. https:
//ijcopi.org/ojs/article/view/61.

[55] Alberto Delgado, Rune Møller Jensen, and Nicolas Guilbert. 2012. A placement heuristic for a
commercial decision support system for container vessel stowage. 38th Latin America Conference
on Informatics, CLEI 2012 - Conference Proceedings. DOI: 10.1109/CLEI.2012.6427181.

[56] Alberto Delgado, Rune Møller Jensen, Kira Janstrup, Trine Høyer Rose, and Kent Høj Ander-
sen. 2012. A Constraint Programming model for fast optimal stowage of container vessel bays.
European Journal of Operational Research, 220, 1, (July 2012), 251–261. DOI: 10.1016/j.ejor.2
012.01.028.

[57] Alberto Delgado, Rune Møller Jensen, and Christian Schulte. 2009. Generating optimal stowage
plans for container vessel bays. In vol. 5732 LNCS, 6–20. DOI: 10.1007/978-3-642-04244
-7_4.

[58] Ding Ding and Mabel C. Chou. 2015. Stowage Planning for Container Ships: A Heuristic Al-
gorithm to Reduce the Number of Shifts. European Journal of Operational Research. Publisher:
Elsevier Ltd. DOI: 10.1016/j.ejor.2015.03.044.

[59] Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. 2020. Natural Policy
Gradient Primal-Dual Method for Constrained Markov Decision Processes. In Advances in Neu-
ral Information Processing Systems. H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H.
Lin, editors. Vol. 33. Curran Associates, Inc., 8378–8390. https://proceedings.neurips
.cc/paper_files/paper/2020/file/5f7695debd8cde8db5abcb9f161b49ea-Pap
er.pdf.

[60] Priya L. Donti, David Rolnick, and J. Zico Kolter. 2021. DC3: A learning method for optimiza-
tion with hard constraints. en. In Proceedings of the 9th International Conference on Learning Rep-
resentations. (Apr. 2021). DOI: 10.48550/arXiv.2104.12225.

[61] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. 1996. Ant System: Optimization by
a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 26, 1, 29–41. DOI: 10.1109/3477.484436.

[62] Jay Doshi, Kunal Parmar, Raj Sanghavi, and Narendra Shekokar. 2023. A comprehensive dual-
layer architecture for phishing and spam email detection. Computers & Security, 133, 103378.
DOI: https://doi.org/10.1016/j.cose.2023.103378.

https://ir.library.oregonstate.edu/downloads/g158bm271
https://doi.org/10.1057/s41278-018-0113-0
https://doi.org/10.1016/j.tre.2018.10.010
https://doi.org/10.1016/j.tre.2018.10.010
https://doi.org/10.1016/j.tre.2016.10.005
https://doi.org/10.1016/j.tre.2016.10.005
https://eur-lex.europa.eu/EN/legal-content/summary/freight-transport-logistics-action-plan.html
https://eur-lex.europa.eu/EN/legal-content/summary/freight-transport-logistics-action-plan.html
https://doi.org/10.1016/j.trpro.2018.09.009
https://doi.org/10.1007/978-3-642-33021-6_31
https://doi.org/10.1007/978-3-642-33021-6_31
https://ijcopi.org/ojs/article/view/61
https://ijcopi.org/ojs/article/view/61
https://doi.org/10.1109/CLEI.2012.6427181
https://doi.org/10.1016/j.ejor.2012.01.028
https://doi.org/10.1016/j.ejor.2012.01.028
https://doi.org/10.1007/978-3-642-04244-7_4
https://doi.org/10.1007/978-3-642-04244-7_4
https://doi.org/10.1016/j.ejor.2015.03.044
https://proceedings.neurips.cc/paper_files/paper/2020/file/5f7695debd8cde8db5abcb9f161b49ea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/5f7695debd8cde8db5abcb9f161b49ea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/5f7695debd8cde8db5abcb9f161b49ea-Paper.pdf
https://doi.org/10.48550/arXiv.2104.12225
https://doi.org/10.1109/3477.484436
https://doi.org/https://doi.org/10.1016/j.cose.2023.103378

150 Bibliography

[63] Opher Dubrovsky, Gregory Levitin, and Michal Penn. 2002. A genetic algorithm with a com-
pact solution encoding for the container ship stowage problem. Journal of Heuristics, 8, 6, 585–
599. DOI: 10.1023/A:1020373709350.

[64] J. Dupacova, N. Gröwe-Kuska, and W. Römisch. 2003. Scenario reduction in stochastic pro-
gramming. en. Mathematical Programming, 95, 3, (Mar. 2003), 493–511. DOI: 10.1007/s10107
-002-0331-0.

[65] Amina El Yaagoubi, Mohamed Charhbili, Jaouad Boukachour, and Ahmed El Hilali Alaoui.
2022. Multi-objective optimization of the 3D container stowage planning problem in a barge
convoy system. Computers & Operations Research, (Mar. 2022), 105796–105796. Publisher: Perga-
mon. DOI: 10.1016/J.COR.2022.105796.

[66] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. 2020. Implementation Matters in Deep Policy Gradients: A
Case Study on PPO and TRPO. In Proceedings of the International Conference on Learning Repre-
sentations. (May 2020). https://openreview.net/forum?id=r1etN1rtPB.

[67] European Commission. 2023. Reducing Emissions from the Shipping Sector. (2023) https:
//climate.ec.europa.eu/eu-action/transport/reducing-emissions-shippi
ng-sector_en#events.

[68] Veronika Eyring et al. 2024. Pushing the frontiers in climate modelling and analysis with ma-
chine learning. Nature Climate Change, 14, 9, (Sept. 2024), 916–928. DOI: 10.1038/s41558-02
4-02095-y.

[69] Simone Foa, Corrado Coppola, Giorgio Grani, and Laura Palagi. 2022. Solving the vehicle rout-
ing problem with deep reinforcement learning. Computing Research Repository, (July 2022). htt
p://arxiv.org/abs/2208.00202.

[70] Janna Franzkeit, Anne Schwientek, and Carlos Jahn. 2020. Stowage Planning for Inland Con-
tainer Vessels: A Literature Review. In Issue: September, 247–280. ISBN: 978-3-7531-2347-9.

[71] Rodolphe M. Freville. 2004. Hybrid Metaheuristics: An Emerging Approach to Optimization.
In Handbook of Metaheuristics. Springer, 457–474. ISBN: 978-1-4419-1663-1.

[72] Yasuhiro Fujita and Shin-ichi Maeda. 2018. Clipped Action Policy Gradient. In Proceedings of
the 35th International Conference on Machine Learning. (Feb. 2018). https://proceedings.ml
r.press/v80/fujita18a/fujita18a.pdf.

[73] Rui Gao and Anton Kleywegt. 2023. Distributionally Robust Stochastic Optimization with
Wasserstein Distance. Mathematics of Operations Research, 48, 2, 603–655. DOI: 10.1287/moo
r.2022.1275.

[74] Gendreau, M. and Potvin, J. Y. 2019. Handbook of Metaheuristics. (2nd ed.). Vol. 146. Springer.
ISBN: 978-1-4419-1663-1.

[75] Fred Glover. 1989. Tabu Search—Part I. ORSA Journal on Computing, 1, 3, 190–206. Publisher:
INFORMS. DOI: 10.1287/ijoc.1.3.190.

[76] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. ISBN:
978-0-262-03561-3. http://www.deeplearningbook.org.

[77] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Advances in
Neural Information Processing Systems (NeurIPS), 2672–2680. https://papers.nips.cc/p
aper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract
.html.

[78] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings
of the 35th International Conference on Machine Learning. PMLR, (Aug. 2018). DOI: 10.48550/a
rXiv.1801.01290.

[79] Ibrahim Y. Hafez, Ahmed Y. Hafez, Ahmed Saleh, Amr A. Abd El-Mageed, and Amr A. Abo-
hany. 2025. A systematic review of AI-enhanced techniques in credit card fraud detection. Jour-
nal of Big Data, 12, 1, (Jan. 2025), 6. DOI: 10.1186/s40537-024-01048-8.

https://doi.org/10.1023/A:1020373709350
https://doi.org/10.1007/s10107-002-0331-0
https://doi.org/10.1007/s10107-002-0331-0
https://doi.org/10.1016/J.COR.2022.105796
https://openreview.net/forum?id=r1etN1rtPB
https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en#events
https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en#events
https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en#events
https://doi.org/10.1038/s41558-024-02095-y
https://doi.org/10.1038/s41558-024-02095-y
http://arxiv.org/abs/2208.00202
http://arxiv.org/abs/2208.00202
https://proceedings.mlr.press/v80/fujita18a/fujita18a.pdf
https://proceedings.mlr.press/v80/fujita18a/fujita18a.pdf
https://doi.org/10.1287/moor.2022.1275
https://doi.org/10.1287/moor.2022.1275
https://doi.org/10.1287/ijoc.1.3.190
http://www.deeplearningbook.org
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.1186/s40537-024-01048-8

Bibliography 151

[80] Milad Haghani, Frances Sprei, Khashayar Kazemzadeh, Zahra Shahhoseini, and Jamshid Aghaei.
2023. Trends in electric vehicles research. Transportation Research Part D: Transport and Environ-
ment, 123, 103881. DOI: https://doi.org/10.1016/j.trd.2023.103881.

[81] Ben Hambly, Renyuan Xu, and Huining Yang. 2023. Recent advances in reinforcement learning
in finance. Mathematical Finance, 33, 3, 437–503. DOI: https://doi.org/10.1111/mafi.1
2382.

[82] Masoud Hamedi. 2011. CONTAINERSHIP LOAD PLANNING WITH CRANE OPERATIONS.
PhD. University of Maryland, USA.

[83] Mathias Offerlin Herup, Gustav Christian Wichmann Thiesgaard, Jaike Van Twiller, and Rune
Møller Jensen. 2022. A Linear Time Algorithm for Optimal Quay Crane Scheduling. In Compu-
tational Logistics. Vol. 13557. Springer Nature Switzerland, Barcelona, Spain, 60–73. DOI: 10.10
07/978-3-031-16579-5.

[84] John H. Holland. 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press.
ISBN: 978-0-262-27555-2.

[85] John N. Hooker. 2007. Planning and Scheduling to Minimize Tardiness. In Principles and Practice
of Constraint Programming (Lecture Notes in Computer Science). Vol. 4741. Springer, 314–328.
DOI: 10.1007/11564751_25.

[86] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. 2022. Efficient Active Search for Combi-
natorial Optimization Problems. In Proceedings of the International Conference on Learning Repre-
sentations. http://arxiv.org/abs/2106.05126.

[87] André Hottung, Shunji Tanaka, and Kevin Tierney. 2020. Deep learning assisted heuristic tree
search for the container pre-marshalling problem. Computers & Operations Research, 113, 104781.
DOI: https://doi.org/10.1016/j.cor.2019.104781.

[88] André Hottung and Kevin Tierney. 2019. Neural Large Neighborhood Search for the Capaci-
tated Vehicle Routing Problem. In Proceedings of the European Conference on Artificial Intelligence.
(Nov. 2019). DOI: 10.3233/FAIA200124.

[89] Hsien Pin Hsu, Chia Nan Wang, Hsin Pin Fu, and Thanh Tuan Dang. 2021. Joint scheduling of
yard crane, yard truck, and quay crane for container terminal considering vessel stowage plan:
An integrated simulation-based optimization approach. Mathematics, 9, 18. DOI: 10.3390/ma
th9182236.

[90] Min Hu and Wei Cai. 2017. Multi-objective optimization based on improved genetic algorithm
for containership stowage on full route. 2017 4th International Conference on Industrial Engineer-
ing and Applications, ICIEA 2017, 224–228. DOI: 10.1109/IEA.2017.7939211.

[91] Wenbin Hu, Zhengbing Hu, Lei Shi, Peng Luo, and Wei Song. 2012. Combinatorial optimiza-
tion and strategy for ship stowage and loading schedule of container terminal. Journal of Com-
puters, 7, 8, 2078–2092. DOI: 10.4304/jcp.7.8.2078-2092.

[92] International Chamber of Shipping. 2023. Environmental Performance: Comparison of CO2
Emissions by Different Modes of Transport. https://www.ics-shipping.org/shippin
g-fact/environmental-performance-environmental-performance/.

[93] International Maritime Organization. 2004. International Convention for the Control and Man-
agement of Ships’ Ballast Water and Sediments (BWM Convention). (2004). https://www.i
mo.org/en/OurWork/Environment/Pages/BallastWaterManagement.aspx.

[94] International Maritime Organization. 2023. Emission Control Areas (ECAs) designated under
MARPOL Annex VI. (2023). https://www.imo.org/en/OurWork/Environment/Page
s/Emission-Control-Areas-(ECAs)-designated-under-regulation-13-of-
MARPOL-Annex-VI-(NOx-emission-control).aspx.

[95] International Maritime Organization. 2023. Ships’ Routeing: Traffic Separation Schemes (TSS).
(2023). https://www.imo.org/en/OurWork/Safety/Pages/ShipsRouteing.aspx.

[96] International Maritime Organization. 2024. International Maritime Dangerous Goods Code (IMDG
Code). (42nd ed.). International Maritime Organization, London, UK. ISBN: 978-92-801-1797-4.

https://doi.org/https://doi.org/10.1016/j.trd.2023.103881
https://doi.org/https://doi.org/10.1111/mafi.12382
https://doi.org/https://doi.org/10.1111/mafi.12382
https://doi.org/10.1007/978-3-031-16579-5
https://doi.org/10.1007/978-3-031-16579-5
https://doi.org/10.1007/11564751_25
http://arxiv.org/abs/2106.05126
https://doi.org/https://doi.org/10.1016/j.cor.2019.104781
https://doi.org/10.3233/FAIA200124
https://doi.org/10.3390/math9182236
https://doi.org/10.3390/math9182236
https://doi.org/10.1109/IEA.2017.7939211
https://doi.org/10.4304/jcp.7.8.2078-2092
https://www.ics-shipping.org/shipping-fact/environmental-performance-environmental-performance/
https://www.ics-shipping.org/shipping-fact/environmental-performance-environmental-performance/
https://www.imo.org/en/OurWork/Environment/Pages/BallastWaterManagement.aspx
https://www.imo.org/en/OurWork/Environment/Pages/BallastWaterManagement.aspx
https://www.imo.org/en/OurWork/Environment/Pages/Emission-Control-Areas-(ECAs)-designated-under-regulation-13-of-MARPOL-Annex-VI-(NOx-emission-control).aspx
https://www.imo.org/en/OurWork/Environment/Pages/Emission-Control-Areas-(ECAs)-designated-under-regulation-13-of-MARPOL-Annex-VI-(NOx-emission-control).aspx
https://www.imo.org/en/OurWork/Environment/Pages/Emission-Control-Areas-(ECAs)-designated-under-regulation-13-of-MARPOL-Annex-VI-(NOx-emission-control).aspx
https://www.imo.org/en/OurWork/Safety/Pages/ShipsRouteing.aspx

152 Bibliography

[97] International Organization for Standardization. 2020. ISO 668:2020 - Series 1 freight containers
— Classification, dimensions and ratings. (2020). https://www.iso.org/standard/8053
9.html.

[98] Cagatay Iris, Jonas Christensen, Dario Pacino, and Stefan Ropke. 2018. Flexible ship load-
ing problem with transfer vehicle assignment and scheduling. Transportation Research Part B:
Methodological, 111, (May 2018), 113–134. Publisher: Elsevier Ltd. DOI: 10.1016/j.trb.201
8.03.009.

[99] Isabel Correia, Isabel Correia, Francisco Saldanha-da-Gama, and Francisco Saldanha da Gama.
2015. Facility Location Under Uncertainty, (Jan. 2015), 177–203. MAG ID: 412237700. DOI: 10
.1007/978-3-319-13111-5_8.

[100] Kamal Jain and Vijay V. Vazirani. 2001. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the
ACM, 48, 2, 274–296. Publisher: ACM. DOI: 10.1145/375827.375845.

[101] Rune Møller Jensen and Mai Lise Ajspur. 2018. The Standard Capacity Model: Towards a
Polyhedron Representation of Container Vessel Capacity. In Computational Logistics. Vol. 8197.
Springer International Publishing, 175–190. ISBN: 978-3-642-41018-5. DOI: 10.1007/978-3-0
30-00898-7.

[102] Rune Møller Jensen and Mai Lise Ajspur. 2022. Revenue management in liner shipping: Ad-
dressing the vessel capacity challenge. Maritime Transport Research, 3, (Jan. 2022). Publisher:
Elsevier Ltd. DOI: 10.1016/j.martra.2022.100069.

[103] Rune Moller Jensen, Eilif Leknes, and Tom Bebbington. 2012. Fast interactive decision support
for modifying stowage plans using binary decision diagrams. In vol. 2196, 1555–1561. ISBN:
978-988-19251-9-0.

[104] Rune Møller Jensen, Dario Pacino, Mai Lise Ajspur, and Claus Vesterdal. 2018. Container Vessel
Stowage Planning. Weilbach. ISBN: 978-87-7790-311-3.

[105] Jian Jin and Weijian Mi. 2019. An AIMMS-based decision-making model for optimizing the in-
telligent stowage of export containers in a single bay. Discrete and Continuous Dynamical Systems
- Series S, 12, 4-5, 1101–1115. DOI: 10.3934/dcdss.2019076.

[106] John Jumper et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature,
596, 583–589. DOI: 10.1038/s41586-021-03819-2.

[107] Evangelos I. Kaisar. 2006. A STOWAGE PLANNING MODEL FOR MULTIPORT CONTAINER
TRANSPORTATION. University of Maryland. http://drum.lib.umd.edu/handle/1903
/9139.

[108] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. 2020. Action Space Shaping in Deep
Reinforcement Learning. en. In 2020 IEEE Conference on Games (CoG). (May 2020). https://a
pi.semanticscholar.org/CorpusID:214775114.

[109] J-G Kang and Y-D Kim. 2002. Stowage planning in maritime container transportation. Journal
of the Operational Research Society, 53, 4, 415–426. http://www.ingentaconnect.com/con
tent/pal/01605682/2002/00000053/00000004/2601322.

[110] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. 2023. Champion-level drone racing using deep reinforcement learning.
Nature, 620, 123–129. DOI: 10.1038/s41586-023-06419-4.

[111] Kiros Gebrearegawi Kebedow and Johan Oppen. 2018. Including containers with dangerous
goods in the multi-port master bay planning problem. Mendel, 24, 2, 23–36. DOI: 10.13164/m
endel.2018.2.023.

[112] Kiros Gebrearegawi Kebedow and Johan Oppen. 2019. Including containers with dangerous
goods in the cargo mix problem for container vessel stowage. Communications - Scientific Letters
of the University of Zilina, 21, 2, 100–113. DOI: 10.26552/com.c.2019.2.100-113.

[113] Kiros Gebrearegawi Kebedow and Johan Oppen. 2019. Including containers with dangerous
goods in the slot planning problem. In Proceedings of the International Conference on Industrial
Engineering and Operations Management. Vol. 2019. Number: MAR, 225–232. http://www.ieo
msociety.org/ieom2019/papers/74.pdf.

https://www.iso.org/standard/80539.html
https://www.iso.org/standard/80539.html
https://doi.org/10.1016/j.trb.2018.03.009
https://doi.org/10.1016/j.trb.2018.03.009
https://doi.org/10.1007/978-3-319-13111-5_8
https://doi.org/10.1007/978-3-319-13111-5_8
https://doi.org/10.1145/375827.375845
https://doi.org/10.1007/978-3-030-00898-7
https://doi.org/10.1007/978-3-030-00898-7
https://doi.org/10.1016/j.martra.2022.100069
https://doi.org/10.3934/dcdss.2019076
https://doi.org/10.1038/s41586-021-03819-2
http://drum.lib.umd.edu/handle/1903/9139
http://drum.lib.umd.edu/handle/1903/9139
https://api.semanticscholar.org/CorpusID:214775114
https://api.semanticscholar.org/CorpusID:214775114
http://www.ingentaconnect.com/content/pal/01605682/2002/00000053/00000004/2601322
http://www.ingentaconnect.com/content/pal/01605682/2002/00000053/00000004/2601322
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.13164/mendel.2018.2.023
https://doi.org/10.13164/mendel.2018.2.023
https://doi.org/10.26552/com.c.2019.2.100-113
http://www.ieomsociety.org/ieom2019/papers/74.pdf
http://www.ieomsociety.org/ieom2019/papers/74.pdf

Bibliography 153

[114] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, 137–146. DOI: 10.1145/956750.956769.

[115] James Kennedy and Russell Eberhart. 1995. Particle Swarm Optimization. Proceedings of IEEE
International Conference on Neural Networks, 4, 1942–1948. DOI: 10.1109/ICNN.1995.488968.

[116] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan,
and Mubarak Shah. 2022. A survey of the recent architectures of deep convolutional neural
networks. Artificial Intelligence Review, 55, 4559–4604.

[117] Song-Kyoo Kim, Chan Yeob Yeun, Ernesto Damiani, and Nai-Wei Lo. 2019. A machine learning
framework for biometric authentication using electrocardiogram. IEEE access : practical innova-
tions, open solutions, 7, 94858–94868. DOI: 10.1109/ACCESS.2019.2927079.

[118] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. In
Proceedings of the International Conference on Learning Representations. (Dec. 2014). http://arx
iv.org/abs/1412.6980.

[119] Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. In Proceedings of
the 29th International Conference on Machine Learning. https://arxiv.org/abs/1312.611
4.

[120] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolu-
tional Networks. In International Conference on Learning Representations (ICLR). https://arxi
v.org/abs/1609.02907.

[121] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. 1983. Optimization by Simulated An-
nealing. Science, 220, 4598, 671–680. Publisher: AAAS. DOI: 10.1126/science.220.4598.6
71.

[122] Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. 2022. A Survey of Recommendation
Systems: Recommendation Models, Techniques, and Application Fields. en. Electronics, 11, 1,
(Jan. 2022), 141. DOI: 10.3390/electronics11010141.

[123] Wouter Kool, Herke van Hoof, and Max Welling. 2019. Attention, Learn to Solve Routing Prob-
lems! In Proceedings of the International Conference on Learning Representations. https://openr
eview.net/forum?id=ByxBFsRqYm.

[124] Aleksandra Korach, Berit Dangaard Brouer, and Rune Møller Jensen. 2020. Matheuristics for
slot planning of container vessel bays. European Journal of Operational Research, 282, 3, 873–885.
Publisher: Elsevier B.V. DOI: 10.1016/j.ejor.2019.09.042.

[125] Christian Kroer, Martin Kjaer Svendsen, Rune Møller Jensen, and Joseph Roland Kiniry. 2012.
SAT and SMT-based Interactive Configuration for Container Vessel Stowage Planning. Tech.
rep. http://www.columbia.edu/~ck2945/papers/KroerSvendsen12.pdf.

[126] Christian Kroer, Martin Kjær Svendsen, Rune M. Jensen, Joseph Kiniry, and Eilif Leknes. 2016.
Symbolic configuration for interactive container ship stowage planning. Computational Intelli-
gence, 32, 2, 259–283. DOI: 10.1111/coin.12051.

[127] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. 2020. POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. In
Proceedings of the 34th Conference on Neural Information Processing Systems. https://arxiv.o
rg/abs/2010.16011.

[128] Ailsa H. Land and Alison G. Doig. 1960. An Automatic Method of Solving Discrete Program-
ming Problems. Econometrica, 28. Publication Title: Econometrica. DOI: 10.1007/978-3-540
-68279-0_5.

[129] Gilbert Laporte. 2009. Fifty years of vehicle routing. Transportation Science, 43, 4, 408–416. DOI:
10.1287/trsc.1090.0301.

[130] Rune Larsen and Dario Pacino. 2021. A heuristic and a benchmark for the stowage planning
problem. Maritime Economics and Logistics, 23, 1, 94–122. DOI: 10.1057/s41278-020-00172
-5.

https://doi.org/10.1145/956750.956769
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ACCESS.2019.2927079
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.3390/electronics11010141
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://doi.org/10.1016/j.ejor.2019.09.042
http://www.columbia.edu/~ck2945/papers/KroerSvendsen12.pdf
https://doi.org/10.1111/coin.12051
https://arxiv.org/abs/2010.16011
https://arxiv.org/abs/2010.16011
https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.1287/trsc.1090.0301
https://doi.org/10.1057/s41278-020-00172-5
https://doi.org/10.1057/s41278-020-00172-5

154 Bibliography

[131] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86, 11, 2278–2324. DOI: 10.1109/5
.726791.

[132] Chaemin Lee, Mun Keong Lee, and Jae Young Shin. 2020. Lashing Force Prediction Model with
Multimodal Deep Learning and AutoML for Stowage Planning Automation in Containerships.
Logistics, 5, 1, 1–1. DOI: 10.3390/logistics5010001.

[133] Marc Levinson. 2016. The Box. (REV - Revised, 2 ed.). Princeton University Press. ISBN: 978-0-
691-17081-7. DOI: 10.2307/j.ctvcszztg.

[134] Jun Li, Yu Zhang, Sanyou Ji, and Lanbo Zheng. 2020. Solving inland container ship stowage
planning problem on full route through a two-phase approach. In vol. 12. Issue: 1-2, 65–91.
DOI: 10.1504/IJSTL.2020.105863.

[135] Jun Li, Yu Zhang, Jie Ma, and Sanyou Ji. 2018. Multi-Port Stowage Planning for Inland Con-
tainer Liner Shipping Considering Weight Uncertainties. IEEE Access, 6, 66468–66480. Pub-
lisher: Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/ACCESS.2018
.2878308.

[136] Meiyi Li, Soheil Kolouri, and Javad Mohammadi. 2023. Learning to Solve Optimization Prob-
lems With Hard Linear Constraints. en. IEEE Access, 11, 59995–60004. DOI: 10.1109/ACCESS
.2023.3285199.

[137] Fan Liu, Malcolm Yoke Hean Low, Wen Jing Hsu, Shell Ying Huang, Min Zeng, and Cho Aye
Win. 2011. Randomized algorithm with tabu search for multi-objective optimization of large
containership stowage plans. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 6971 LNCS, 256–272. DOI: 10.1007
/978-3-642-24264-9_20.

[138] Lloyd’s List. 2022. Shipping emissions rise 4.9% in 2021. (Jan. 2022). https://lloydslist
.com/LL1139627/Shipping-emissions-rise-49-in-2021.

[139] Andrea Lodi and Giulia Zarpellon. 2017. On learning and branching: a survey. TOP, 25, 2, (July
2017), 207–236. DOI: 10.1007/s11750-017-0451-6.

[140] Logistics eLearning. 2023. Largest container ships by year. (2023). https://logisticsele
arning.com/largest-container-ships-by-year/.

[141] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2018. Statistical and
machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13, 3, e0194889.

[142] Vittorio Maniezzo, Marco Antonio Boschetti, and Thomas St"utzle. 2021. Matheuristics: Algo-
rithms and Implementations. Springer International Publishing. ISBN: 978-3-030-70276-2. DOI: 10
.1007/978-3-030-70276-2.

[143] Harry Markowitz. 1952. Portfolio selection. The Journal of Finance, 7, 1, 77–91. DOI: 10.2307/2
975974.

[144] Silvano Martello and Paolo Toth. 1990. Knapsack problems: Algorithms and computer implementa-
tions. Wiley. ISBN: 978-0-471-92420-3.

[145] Gifford L. Martin, Sabah U. Randhawa, and Edward D. McDowell. 1988. Computerized container-
ship load planning: A methodology and evaluation. Computers and Industrial Engineering, 14, 4,
429–440. DOI: 10.1016/0360-8352(88)90045-9.

[146] Bernardo Martin-Iradi, Dario Pacino, and Stefan Ropke. 2022. The Multiport Berth Allocation
Problem with Speed Optimization: Exact Methods and a Cooperative Game Analysis. Trans-
portation Science, 56, 4, 972–999. DOI: 10.1287/trsc.2021.1112.

[147] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. 2021. Reinforcement
learning for combinatorial optimization: A survey. Computers & Operations Research, 134, (Oct.
2021), 105400–105400. DOI: 10.1016/j.cor.2021.105400.

[148] Azalia Mirhoseini et al. 2021. A graph placement methodology for fast chip design. Nature, 594,
7862, 207–212. DOI: 10.1038/s41586-021-03544-w.

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.3390/logistics5010001
https://doi.org/10.2307/j.ctvcszztg
https://doi.org/10.1504/IJSTL.2020.105863
https://doi.org/10.1109/ACCESS.2018.2878308
https://doi.org/10.1109/ACCESS.2018.2878308
https://doi.org/10.1109/ACCESS.2023.3285199
https://doi.org/10.1109/ACCESS.2023.3285199
https://doi.org/10.1007/978-3-642-24264-9_20
https://doi.org/10.1007/978-3-642-24264-9_20
https://lloydslist.com/LL1139627/Shipping-emissions-rise-49-in-2021
https://lloydslist.com/LL1139627/Shipping-emissions-rise-49-in-2021
https://doi.org/10.1007/s11750-017-0451-6
https://logisticselearning.com/largest-container-ships-by-year/
https://logisticselearning.com/largest-container-ships-by-year/
https://doi.org/10.1007/978-3-030-70276-2
https://doi.org/10.1007/978-3-030-70276-2
https://doi.org/10.2307/2975974
https://doi.org/10.2307/2975974
https://doi.org/10.1016/0360-8352(88)90045-9
https://doi.org/10.1287/trsc.2021.1112
https://doi.org/10.1016/j.cor.2021.105400
https://doi.org/10.1038/s41586-021-03544-w

Bibliography 155

[149] Nenad Mladenović and Pierre Hansen. 1997. Variable Neighborhood Search. Computers & Op-
erations Research, 24, 11, 1097–1100. Publisher: Elsevier. DOI: 10.1016/S0305-0548(97)000
31-2.

[150] Volodymyr Mnih et al. 2015. Human-level control through deep reinforcement learning. Nature,
518, 7540, (Feb. 2015), 529–533. DOI: 10.1038/nature14236.

[151] Peyman Mohajerin Esfahani and Daniel Kuhn. 2018. Data-driven distributionally robust opti-
mization using the Wasserstein metric: performance guarantees and tractable reformulations.
en. Mathematical Programming, 171, 1-2, (Sept. 2018), 115–166. DOI: 10.1007/s10107-017-1
172-1.

[152] Maria Flavia Monaco, Marcello Sammarra, and Gregorio Sorrentino. 2014. The Terminal-Oriented
Ship Stowage Planning Problem. European Journal of Operational Research, (May 2014). Publisher:
Elsevier B.V. DOI: 10.1016/j.ejor.2014.05.030.

[153] MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. 2018. Rein-
forcement Learning for Solving the Vehicle Routing Problem. In Advances in Neural Information
Processing Systems. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett, editors. Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/pa
per_files/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf.

[154] Nisan, Noam, Roughgarden, Tim, Tardos, Éva, and Vazirani, Vijay V. 2007. Algorithmic game
theory. en. Cambridge university press, New York. ISBN: 978-0-521-87282-9.

[155] S Nugroho, E B Djatmiko, Murdjito, E W Ardhi, H Supomo, and I G N S Buana. 2021. Regula-
tory framework of a computer-based stowage planning: safety and efficiency considerations.
IOP Conference Series: Materials Science and Engineering, 1052, 1, 012065–012065. DOI: 10.1088
/1757-899x/1052/1/012065.

[156] OpenAI. 2023. GPT-4 technical report. (2023). https://arxiv.org/abs/2303.08774.

[157] David W. Otter, Julian R. Medina, and Jugal K. Kalita. 2020. A survey of the usages of deep
learning for natural language processing. IEEE Transactions on Neural Networks and Learning
Systems, 32, 2, 604–624. DOI: 10.1109/TNNLS.2020.2979670.

[158] Dario Pacino. 2013. An LNS Approach for Container Stowage Multi-port Master Planning. In
Computational Logistics, 35–44. DOI: 10.1007/978-3-642-41019-2_3.

[159] Dario Pacino. 2018. Crane Intensity and Block Stowage Strategies in Stowage Planning. In Com-
putational Logistics. Vol. 11184 LNCS. Springer, 191–206. DOI: 10.1007/978-3-030-00898-
7_12.

[160] Dario Pacino, Alberto Delgado, RM Jensen, and Tom Bebbington. 2011. Fast generation of near-
optimal plans for eco-efficient stowage of large container vessels. Computational Logistics, 286–
301. http://link.springer.com/chapter/10.1007/978-3-642-24264-9_22.

[161] Dario Pacino, Alberto Delgado, Rune Møller Jensen, and Tom Bebbington. 2012. An accurate
model for seaworthy container vessel stowage planning with ballast tanks. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7555 LNCS, 17–32. DOI: 10.1007/978-3-642-33587-7_2.

[162] Dario Pacino and Rune Møller Jensen. 2010. A 3-Phase Randomized Constraint Based Local
Search Algorithm for Stowing Under Deck Locations of Container Vessel Bays. (2010). https
://pure.itu.dk/files/108203401/ITU-TR-2010-123_pdf.pdf.

[163] Dario Pacino and Rune Møller Jensen. 2013. Fast slot planning using constraint-based local
search. Lecture Notes in Electrical Engineering, 186 LNEE, 49–63. DOI: 10.1007/978-94-007-
5651-9-4.

[164] Manfred Padberg and Giovanni Rinaldi. 1991. A Branch-and-Cut Algorithm for the Resolution
of Large-Scale Symmetric Traveling Salesman Problems. SIAM Review, 33, 1. Publication Title:
SIAM Review. http://www.jstor.org/stable/2030652.

[165] Anthony Papavasiliou and Shmuel S. Oren. 2012. A stochastic unit commitment model for
integrating renewable supply and demand response. In 2012 IEEE Power and Energy Society
General Meeting, 1–6. DOI: 10.1109/PESGM.2012.6344858.

https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/s10107-017-1172-1
https://doi.org/10.1007/s10107-017-1172-1
https://doi.org/10.1016/j.ejor.2014.05.030
https://proceedings.neurips.cc/paper_files/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
https://doi.org/10.1088/1757-899x/1052/1/012065
https://doi.org/10.1088/1757-899x/1052/1/012065
https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1007/978-3-642-41019-2_3
https://doi.org/10.1007/978-3-030-00898-7_12
https://doi.org/10.1007/978-3-030-00898-7_12
http://link.springer.com/chapter/10.1007/978-3-642-24264-9_22
https://doi.org/10.1007/978-3-642-33587-7_2
https://pure.itu.dk/files/108203401/ITU-TR-2010-123_pdf.pdf
https://pure.itu.dk/files/108203401/ITU-TR-2010-123_pdf.pdf
https://doi.org/10.1007/978-94-007-5651-9-4
https://doi.org/10.1007/978-94-007-5651-9-4
http://www.jstor.org/stable/2030652
https://doi.org/10.1109/PESGM.2012.6344858

156 Bibliography

[166] Francisco Parreño, Dario Pacino, and Ramon Alvarez-Valdes. 2016. A GRASP algorithm for
the container stowage slot planning problem. Transportation Research Part E: Logistics and Trans-
portation Review, 94, 141–157. DOI: 10.1016/j.tre.2016.07.011.

[167] C Parreño-Torres. 2020. Improving container terminal efficiency: New models and algorithms
for Premarshalling and Stowage Problems. April. http://roderic.uv.es/handle/1055
0/75440.

[168] Consuelo Parreño-Torres, Ramon Alvarez-Valdes, and Francisco Parreño. 2019. Solution strate-
gies for a multiport container ship stowage problem. Mathematical Problems in Engineering, 2019.
DOI: 10.1155/2019/9029267.

[169] Consuelo Parreño-Torres, Hatice Çalık, Ramon Alvarez-Valdes, and Rubén Ruiz. 2021. Solving
the generalized multi-port container stowage planning problem by a matheuristic algorithm.
Computers and Operations Research, 133, 105383–105383. Publisher: Elsevier Ltd. DOI: 10.1016
/j.cor.2021.105383.

[170] M. V. F. Pereira and L. M. V. G. Pinto. 1991. Multi-stage stochastic optimization applied to
energy planning. Mathematical Programming, 52, 1, (May 1991), 359–375. DOI: 10.1007/BF015
82895.

[171] Michael L. Pinedo. 2016. Scheduling: Theory, algorithms, and systems. (5th ed.). Springer. ISBN:
978-3-319-26580-3.

[172] David Pisinger and Stefan Røpke. 2010. Large Neighborhood Search. In Handbook of Metaheuris-
tics. (2nd ed.). Springer, 399–420. ISBN: 978-1-4419-1663-1.

[173] Shubham Suresh Pol and Avtar Singh. 2021. Task scheduling algorithms in cloud computing:
a survey. In 2021 2nd international conference on secure cyber computing and communications (IC-
SCCC), 244–249. DOI: 10.1109/ICSCCC51823.2021.9478160.

[174] Momina Qureshi, Masood Ahmad Arbab, and Sadaqat ur Rehman. 2024. Deep learning-based
forecasting of electricity consumption. Scientific Reports, 14, 1, (Mar. 2024), 6489. DOI: 10.1038
/s41598-024-56602-4.

[175] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. 2017. The Ben-
ders decomposition algorithm: A literature review. en. European Journal of Operational Research,
259, 3, (June 2017), 801–817. DOI: 10.1016/j.ejor.2016.12.005.

[176] Dalia Rashed, Amr Eltawil, and Mohamed Gheith. 2021. A Fuzzy Logic-Based Algorithm to
Solve the Slot Planning Problem in Container Vessels. Logistics, 5, 4, 67–67. DOI: 10.3390/lo
gistics5040067.

[177] R. Roberti and D. Pacino. 2018. A decomposition method for finding optimal container stowage
plans. Transportation Science, 52, 6, 1444–1462. DOI: 10.1287/trsc.2017.0795.

[178] R. T. Rockafellar and Roger J.-B. Wets. 1991. Scenarios and Policy Aggregation in Optimization
Under Uncertainty. en. Mathematics of Operations Research, 16, 1, (Feb. 1991), 119–147. DOI: 10
.1287/moor.16.1.119.

[179] Werner Römisch. 2009. Scenario Reduction Techniques in Stochastic Programming. en. In Stochas-
tic Algorithms: Foundations and Applications. Vol. 5792. Osamu Watanabe and Thomas Zeug-
mann, editors. Series Title: Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–14. ISBN: 978-3-642-04943-9 978-3-642-04944-6. DOI: 10.1007/978-3-6
42-04944-6_1.

[180] Francesca Rossi, Peter Van Beek, and Toby Walsh. 2006. Handbook of Constraint Programming.
Elsevier. ISBN: 978-0-444-52726-4.

[181] Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad. 1998. Computationally man-
ageable combinational auctions. Management Science, 44, 8, 1131–1147. https://www.jstor
.org/stable/2634691.

[182] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning representa-
tions by back-propagating errors. Nature, 323, 6088, 533–536. DOI: 10.1038/323533a0.

[183] S Russell and P Norvig. 2020. Artificial Intelligence: A Modern Approach. (4th edition ed.). Pear-
son. ISBN: 978-0-13-461099-3. http://aima.cs.berkeley.edu/.

https://doi.org/10.1016/j.tre.2016.07.011
http://roderic.uv.es/handle/10550/75440
http://roderic.uv.es/handle/10550/75440
https://doi.org/10.1155/2019/9029267
https://doi.org/10.1016/j.cor.2021.105383
https://doi.org/10.1016/j.cor.2021.105383
https://doi.org/10.1007/BF01582895
https://doi.org/10.1007/BF01582895
https://doi.org/10.1109/ICSCCC51823.2021.9478160
https://doi.org/10.1038/s41598-024-56602-4
https://doi.org/10.1038/s41598-024-56602-4
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.3390/logistics5040067
https://doi.org/10.3390/logistics5040067
https://doi.org/10.1287/trsc.2017.0795
https://doi.org/10.1287/moor.16.1.119
https://doi.org/10.1287/moor.16.1.119
https://doi.org/10.1007/978-3-642-04944-6_1
https://doi.org/10.1007/978-3-642-04944-6_1
https://www.jstor.org/stable/2634691
https://www.jstor.org/stable/2634691
https://doi.org/10.1038/323533a0
http://aima.cs.berkeley.edu/

Bibliography 157

[184] Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and Thibaut
Vidal. 2025. A survey of contextual optimization methods for decision-making under uncer-
tainty. European Journal of Operational Research, 320, 2, 271–289. DOI: https://doi.org/10.1
016/j.ejor.2024.03.020.

[185] D. J. Saginaw and A. N. Perakis. 1989. Decision support system for containership stowage
planning. Marine Technology and SNAME News, 26, 1, 47–61. DOI: 10.5957/mt1.1989.26.1
.47.

[186] Lorenzo Schena, Pedro A. Marques, Romain Poletti, Samuel Ahizi, Jan Van den Berghe, and
Miguel A. Mendez. 2024. Reinforcement Twinning: From digital twins to model-based rein-
forcement learning. Journal of Computational Science, 82, 102421. DOI: https://doi.org/10
.1016/j.jocs.2024.102421.

[187] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. 2016.
High-Dimensional Continuous Control Using Generalized Advantage Estimation. In 4th In-
ternational Conference on Learning Representations. http://arxiv.org/abs/1506.02438.

[188] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proxi-
mal Policy Optimization Algorithms. arXiv:1707.06347. (July 2017). DOI: doi.org/10.48550
/arXiv.1707.06347.

[189] Anna Sciomachen and Elena Tanfani. 2003. The master bay plan problem: A solution method
based on its connection to the three-dimensional bin packing problem. IMA Journal of Manage-
ment Mathematics, 14, 3, 251–269. DOI: 10.1093/imaman/14.3.251.

[190] Anna Sciomachen and Elena Tanfani. 2007. A 3D-BPP approach for optimising stowage plans
and terminal productivity. European Journal of Operational Research, 183, 1433–1446. DOI: 10.10
16/j.ejor.2005.11.067.

[191] Cristina Serban and Doina Carp. 2017. A genetic algorithm for solving a container storage
problem using a residence time strategy. Studies in Informatics and Control, 26, 1, 59–66. DOI:
10.24846/v26i1y201707.

[192] A. Shapiro. 2003. Monte Carlo sampling approach to stochasticprogramming. en. ESAIM: Pro-
ceedings, 13, (Dec. 2003), 65–73. J.P. Penot, editor. DOI: 10.1051/proc:2003003.

[193] Alexander Shapiro. 2011. Analysis of stochastic dual dynamic programming method. en. Euro-
pean Journal of Operational Research, 209, 1, (Feb. 2011), 63–72. DOI: 10.1016/j.ejor.2010.0
8.007.

[194] Yifan Shen, Ning Zhao, Mengjue Xia, and Xueqiang Du. 2017. A deep Q-learning network for
ship stowage planning problem. Polish Maritime Research, 24, S3, 102–109. DOI: 10.1515/pom
r-2017-0111.

[195] JJ Shields. 1984. Containership Stowage: A Computer-Aided Preplanning System. http://t
rid.trb.org/view.aspx?id=419881.

[196] David Silver et al. 2017. Mastering the game of Go without human knowledge. Nature, 550,
7676, (Oct. 2017), 354–359. DOI: 10.1038/nature24270.

[197] Keerthana Sivamayil, Elakkiya Rajasekar, Belqasem Aljafari, Srete Nikolovski, Subramaniyaswamy
Vairavasundaram, and Indragandhi Vairavasundaram. 2023. A Systematic Study on Reinforce-
ment Learning Based Applications. en. Energies, 16, 3. DOI: 10.3390/en16031512.

[198] A. Sivertsen, L. Reinhardt, and RM Jensen. 2025. A representative model and benchmark suite
for the container stowage planning problem. Under review.

[199] Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2023. Fairness and Machine Learning: Lim-
itations and Opportunities. MIT Press. ISBN: 978-0-262-04861-3.

[200] Xu-yan Song, Xiao-chen Dou, Yuan Ren, and Xiao Liu. 2010. Research on application of simu-
lation technology in container ship stowage problem of port logistics. Proceedings IE & EM 2010
: 2010 IEEE 17th International Conference on Industrial Engineering and Engineering Management,
29–31. Publisher: IEEE.

[201] Statista. 2023. Global container ship CO2 emissions by month 2023. (2023). https://www.st
atista.com/statistics/1480859/monthly-shipping-emissions-worldwide-c
ontainer-ships/.

https://doi.org/https://doi.org/10.1016/j.ejor.2024.03.020
https://doi.org/https://doi.org/10.1016/j.ejor.2024.03.020
https://doi.org/10.5957/mt1.1989.26.1.47
https://doi.org/10.5957/mt1.1989.26.1.47
https://doi.org/https://doi.org/10.1016/j.jocs.2024.102421
https://doi.org/https://doi.org/10.1016/j.jocs.2024.102421
http://arxiv.org/abs/1506.02438
https://doi.org/doi.org/10.48550/arXiv.1707.06347
https://doi.org/doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1093/imaman/14.3.251
https://doi.org/10.1016/j.ejor.2005.11.067
https://doi.org/10.1016/j.ejor.2005.11.067
https://doi.org/10.24846/v26i1y201707
https://doi.org/10.1051/proc:2003003
https://doi.org/10.1016/j.ejor.2010.08.007
https://doi.org/10.1016/j.ejor.2010.08.007
https://doi.org/10.1515/pomr-2017-0111
https://doi.org/10.1515/pomr-2017-0111
http://trid.trb.org/view.aspx?id=419881
http://trid.trb.org/view.aspx?id=419881
https://doi.org/10.1038/nature24270
https://doi.org/10.3390/en16031512
https://www.statista.com/statistics/1480859/monthly-shipping-emissions-worldwide-container-ships/
https://www.statista.com/statistics/1480859/monthly-shipping-emissions-worldwide-container-ships/
https://www.statista.com/statistics/1480859/monthly-shipping-emissions-worldwide-container-ships/

158 Bibliography

[202] Statista. 2024. Container shipping worldwide. Tech. rep. https://www.statista.com/to
pics/1367/container-shipping/#topicOverview.

[203] Roland Stolz, Hanna Krasowski, Jakob Thumm, Michael Eichelbeck, Philipp Gassert, and Matthias
Althoff. 2025. Excluding the Irrelevant: Focusing Reinforcement Learning through Continuous
Action Masking. In Proceedings of the 38th Conference on Neural Information Processing Systems.
DOI: 10.48550/arXiv.2406.03704.

[204] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learning with Neu-
ral Networks. In Advances in Neural Information Processing Systems (NeurIPS), 3104–3112. DOI:
10.5555/2969033.2969173.

[205] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
ISBN: 978-0-262-03924-6.

[206] Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter
Stone. 2024. Deep reinforcement learning for robotics: a survey of real-world successes. Annual
Review of Control, Robotics, and Autonomous Systems. DOI: https://doi.org/10.1146/ann
urev-control-030323-022510.

[207] Ran Tao, Pan Zhao, Jing Wu, Nicolas Martin, Matthew T. Harrison, Carla Ferreira, Zahra Kalan-
tari, and Naira Hovakimyan. 2023. Optimizing Crop Management with Reinforcement Learn-
ing and Imitation Learning. en. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization,
Macau, SAR China, (Aug. 2023), 6228–6236. ISBN: 978-1-956792-03-4. DOI: 10.24963/ijcai
.2023/691.

[208] The Economist. 2013. Free exchange - The humble hero. The Economist, (May 2013). https:
//www.economist.com/finance-and-economics/2013/05/18/the-humble-hero.

[209] Theo Notteboom, Athanasios Pallis, and Jean-Paul Rodrigue. 2022. Port Economics, Management
and Policy. English. (1st ed.). Routledge. ISBN: 978-0-429-31818-4. DOI: 10.4324/9780429318
184.

[210] Simon Thevenin, Yossiri Adulyasak, and Jean-François Cordeau. 2022. Stochastic Dual Dy-
namic Programming for Multiechelon Lot Sizing with Component Substitution. en. INFORMS
Journal on Computing, 34, 6, (Nov. 2022), 3151–3169. DOI: 10.1287/ijoc.2022.1215.

[211] Kevin Tierney, Dario Pacino, and Rune Møller Jensen. 2014. On the complexity of container
stowage planning problems. Discrete Applied Mathematics, 169, 225–230. DOI: 10.1016/j.dam
.2014.01.005.

[212] Massimo Tipaldi, Raffaele Iervolino, and Paolo Roberto Massenio. 2022. Reinforcement learn-
ing in spacecraft control applications: Advances, prospects, and challenges. Annual Reviews in
Control, 54, 1–23. DOI: https://doi.org/10.1016/j.arcontrol.2022.07.004.

[213] Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, Aythami Morales, and Javier Ortega-
Garcia. 2020. Deepfakes and beyond: A Survey of face manipulation and fake detection. Infor-
mation Fusion, 64, 131–148. DOI: https://doi.org/10.1016/j.inffus.2020.06.014.

[214] Eric J. Topol. 2019. High-performance medicine: the convergence of human and artificial intel-
ligence. Nature Medicine, 25, 44–56.

[215] United Nations Conference on Trade and Development. 2021. Review of Maritime Transport
2021. Tech. rep. United Nations. https://unctad.org/publication/review-maritim
e-transport-2021.

[216] United Nations Conference on Trade and Development. 2023. Container port throughput, an-
nual. (2023). https://unctadstat.unctad.org/datacentre/dataviewer/US.Cont
PortThroughput.

[217] Jaike Van Twiller, Yossiri Adulyasak, Erick Delage, Djordje Grbic, and Rune Møller Jensen.
2025. Navigating Demand Uncertainty in Container Shipping: Deep Reinforcement Learning
for Enabling Adaptive and Feasible Master Stowage Planning. en. arXiv:2502.12756 [cs]. (Feb.
2025). DOI: 10.48550/arXiv.2502.12756.

[218] Jaike Van Twiller, Djordje Grbic, and Rune Moller Jensen. 2025. AI2STOW: End-to-End Deep
Reinforcement Learning to Construct Master Stowage Plans under Demand Uncertainty. Un-
der Review. (2025).

https://www.statista.com/topics/1367/container-shipping/#topicOverview
https://www.statista.com/topics/1367/container-shipping/#topicOverview
https://doi.org/10.48550/arXiv.2406.03704
https://doi.org/10.5555/2969033.2969173
https://doi.org/https://doi.org/10.1146/annurev-control-030323-022510
https://doi.org/https://doi.org/10.1146/annurev-control-030323-022510
https://doi.org/10.24963/ijcai.2023/691
https://doi.org/10.24963/ijcai.2023/691
https://www.economist.com/finance-and-economics/2013/05/18/the-humble-hero
https://www.economist.com/finance-and-economics/2013/05/18/the-humble-hero
https://doi.org/10.4324/9780429318184
https://doi.org/10.4324/9780429318184
https://doi.org/10.1287/ijoc.2022.1215
https://doi.org/10.1016/j.dam.2014.01.005
https://doi.org/10.1016/j.dam.2014.01.005
https://doi.org/https://doi.org/10.1016/j.arcontrol.2022.07.004
https://doi.org/https://doi.org/10.1016/j.inffus.2020.06.014
https://unctad.org/publication/review-maritime-transport-2021
https://unctad.org/publication/review-maritime-transport-2021
https://unctadstat.unctad.org/datacentre/dataviewer/US.ContPortThroughput
https://unctadstat.unctad.org/datacentre/dataviewer/US.ContPortThroughput
https://doi.org/10.48550/arXiv.2502.12756

Bibliography 159

[219] Jaike Van Twiller, Djordje Grbic, and Rune Møller Jensen. 2023. Towards a Deep Reinforcement
Learning Model of Master Bay Stowage Planning. en. In Computational Logistics. Vol. 14239. Se-
ries Title: Lecture Notes in Computer Science. Springer Nature Switzerland, Berlin, Germany,
105–121. DOI: 10.1007/978-3-031-43612-3_6.

[220] Jaike Van Twiller, Agnieszka Sivertsen, Rune M. Jensen, and Kent H. Andersen. 2024. An Effi-
cient Integer Programming Model for Solving the Master Planning Problem of Container Vessel
Stowage. In Computational Logistics. Springer Nature Switzerland, Monterrey, Mexico, 236–253.
DOI: 10.1007/978-3-031-71993-6_16.

[221] Jaike Van Twiller, Agnieszka Sivertsen, Dario Pacino, and Rune Møller Jensen. 2024. Literature
survey on the container stowage planning problem. European Journal of Operational Research,
317, 3, 841–857. DOI: https://doi.org/10.1016/j.ejor.2023.12.018.

[222] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural
Information Processing Systems. Vol. 30. Curran Associates, Inc. https://proceedings.neu
rips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa
-Paper.pdf.

[223] Vijay V. Vazirani. 2001. Approximation Algorithms. Springer. ISBN: 978-3-642-08469-0.

[224] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks. In Advances in
Neural Information Processing Systems. C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R.
Garnett, editors. Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/pa
per_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

[225] Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang,
Zhaoran Wang, Chao Huang, and Qi Zhu. 2023. Enforcing Hard Constraints with Soft Bar-
riers: Safe Reinforcement Learning in Unknown Stochastic Environments. In Proceedings of the
40th International Conference on Machine Learning. DOI: 10.5555/3618408.3619930.

[226] I D Wilson and P A Roach. 2000. Container stowage planning: a methodology for generating
computerised solutions. Journal of the Operational Research Society, 51, 11, (Nov. 2000), 1248–1255.
DOI: 10.1057/palgrave.jors.2601022.

[227] ID Wilson, PA Roach, and JA Ware. 2001. Container stowage pre-planning: using search to
generate solutions, a case study. Knowledge-Based Systems, 14, 3-4, 137–145. http://www.sci
encedirect.com/science/article/pii/S0950705101000909.

[228] Wolsey, L. A. 2020. Integer Programming. (2nd ed.). Wiley, (Sept. 2020). ISBN: 978-1-119-60653-6.

[229] Allen J. Wood, Bruce F. Wollenberg, and Gerald B. Sheblé. 2013. Power generation, operation, and
control. (3rd ed.). Wiley. ISBN: 978-0-471-79055-6.

[230] Qingcai Wu, Qiucheng Xia, and Maochuan Wu. 2021. Research on intelligent loading system
for container ships. IOP Conference Series: Earth and Environmental Science, 632, 2. DOI: 10.108
8/1755-1315/632/2/022074.

[231] Zhikuang Xin, Zhenghong Wu, Dong Zhu, Xiaoguang Wang, Jue Wang, and Yangang Wang.
2024. Reinforcement learning for scientific application: a survey. In Knowledge science, engineer-
ing and management: 17th international conference, KSEM 2024, birmingham, UK, august 16–18,
2024, proceedings, part V. Springer-Verlag, Birmingham, United Kingdom and Berlin, Heidel-
berg, 188–202. ISBN: 978-981-97-5488-5. DOI: 10.1007/978-981-97-5489-2_17.

[232] Shen Yifan, Zhao Ning, and Mi Weijian. 2016. Group-Bay Stowage Planning Problem for Con-
tainer Ship. Polish Maritime Research, 23, s1, 152–159. DOI: 10.1515/pomr-2016-0060.

[233] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018. Recent trends in
deep learning-based natural language processing. IEEE Computational Intelligence Magazine, 13,
3, 55–75. DOI: 10.1109/MCI.2018.2840738.

[234] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. 2021. Reinforcement learning in
healthcare: a survey. Acm Computing Surveys, 55, 1, (Nov. 2021). DOI: 10.1145/3477600.

[235] Wei Ying Zhang, Yan Lin, Zhuo Shang Ji, and Guang Fa Zhang. 2008. Review of containership
stowage plans for full routes. Journal of Marine Science and Application, 7, 278–285. DOI: 10.100
7/s11804-008-7087-8.

https://doi.org/10.1007/978-3-031-43612-3_6
https://doi.org/10.1007/978-3-031-71993-6_16
https://doi.org/https://doi.org/10.1016/j.ejor.2023.12.018
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.5555/3618408.3619930
https://doi.org/10.1057/palgrave.jors.2601022
http://www.sciencedirect.com/science/article/pii/S0950705101000909
http://www.sciencedirect.com/science/article/pii/S0950705101000909
https://doi.org/10.1088/1755-1315/632/2/022074
https://doi.org/10.1088/1755-1315/632/2/022074
https://doi.org/10.1007/978-981-97-5489-2_17
https://doi.org/10.1515/pomr-2016-0060
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1145/3477600
https://doi.org/10.1007/s11804-008-7087-8
https://doi.org/10.1007/s11804-008-7087-8

160 Bibliography

[236] Ning Zhao, Yuechao Guo, Tianyu Xiang, Mengjue Xia, Yifan Shen, and Chao Mi. 2018. Con-
tainer Ship Stowage Based on Monte Carlo Tree Search. Journal of Coastal Research, 83, 540–547.
DOI: 10.2112/SI83-090.1.

[237] Huiling Zhu, Mingjun Ji, and Wenwen Guo. 2020. Integer Linear Programming Models for the
Containership Stowage Problem. Mathematical Problems in Engineering, 2020. DOI: 10.1155/2
020/4382745.

[238] Sebastian Zurheide and Kathrin Fischer. 2015. Revenue management methods for the liner
shipping industry. Flexible Services and Manufacturing Journal, 27, 2-3, (Sept. 2015), 200–223. Pub-
lisher: Springer New York LLC. DOI: 10.1007/s10696-014-9192-0.

https://doi.org/10.2112/SI83-090.1
https://doi.org/10.1155/2020/4382745
https://doi.org/10.1155/2020/4382745
https://doi.org/10.1007/s10696-014-9192-0

161

Appendix A

Appendices of Literature Review

A.1 Experimental Results of Multi-Port Planning

TABLE A.1: Reported results from multi-port planning of [160] and
[109]

TEUs Num. ports Solve time (sec.)

Results from [160]
4755 4 10
9618 4 30
9984 4 21
2584 5 3
4755 5 21
4456 6 16
6545 6 5
8490 6 31
6717 7 23
7490 8 10
4478 9 5
5047 9 263
5052 9 214
4478 10 332
7344 10 252
9160 10 2079
9118 11 3711
9118 11 timeout
5044 14 timeout
9160 16 69

Results from [109]
2500 4 32
3000 4 21
4000 4 32
2500 6 119
3000 6 121
4000 6 123
2500 8 366
3000 8 381
4000 8 399

162 Appendix A. Appendices of Literature Review

A.2 Network-Flow Model

The model is based on a network-flow formulation. For a detailed description of the
network structure, we refer the reader to the original publication [43]. Following is
an extension of the common sets and parameters needed for this formulation.

Sets
N The set of all nodes
P The set of ports
A The set of all arcs
A−i ,A+

i The set of outgoing and incoming arcs of node i ∈ N
OD The set of transports (origin/destination port pairs) (o, d) ∈ P× P
ODON The set of transports t = (o, d) ∈ OD for which o ≤ p and d > p
ODA The set of transports t = (o, d) ∈ OD for which o = p or d = p
ATR

t The set of all arcs belonging to the transport t ∈ OD
Aτ

t The set of arcs connecting the transport nodes and the container type
nodes

AL
tl The set of arcs connecting the container type nodes and the block nodes

Kt The number of containers in transport t ∈ OD
Eij The number of containers flowing through the type nodes
Parameters
S The source node
T The sink node
qi Is equal to q for i = S, −q for i = T and zero for all other nodes, where

q is the total number of containers to be stowed
τL(i) The length of container type node i ∈ T
τW(i) The weight of container type node i ∈ T
TEUi The TEU value of container type node i ∈ T

As the following is a network-flow formulation, the decision variables xij ∈ R+ rep-
resent the flow (the number) of containers from the source to the sink node, through
the arcs (i, j) ∈ A.

min ∑
p∈P
CTyT

p (A.1)

s.t.

∑
(i,j)∈A−i

xij − ∑
(i,j)∈A+

i

xij = qi ∀i ∈ N (A.2)

xij = Kt ∀t ∈ OD, (i, j) ∈ ATR
t (A.3)

xij = Eij ∀t ∈ OD, (i, j) ∈ Aτ
t (A.4)

∑
t∈ODONp

∑
(i,j)∈AL

tl

TEUixij ≤ C20
l ∀p ∈ P, l ∈ L (A.5)

∑
t∈ODONp

∑
(i,j)∈AL

tl ,τ(i)=α

xij ≤ Cα
l ∀p ∈ P, l ∈ L, α ∈ {20, 40, R} (A.6)

∑
t∈ODOD

p

∑
(i,j)∈AL

tl

τW(i)xij ≤WMax
l ∀p ∈ P, l ∈ L (A.7)

xij ≤ Myij ∀p ∈ P, t ∈ ODA
p , (i, j) ∈ ALU

tl (A.8)

A.2. Network-Flow Model 163

∑
t∈ODO

p

∑
(i,j)∈ALO

tl

xij ≤ M(1− yij) ∀p ∈ P, t ∈ ODA
p , (i, j) ∈ ALU

tl (A.9)

∑
b∈N

∑
l∈BLb

∑
AL

tl

xij ≤ yT
p ∀p ∈ P, N ∈ Bin (A.10)

The model’s objective is the minimization of the makespan at each port (A.1). This
objective differs from the original publication, but this change was necessary for
the sake of the comparison. Constraint (A.2) is the classic flow-conservation con-
straint between the source and the sink node. To ensure that cargo is correctly
routed through the network, it is necessary to constraint containers within their
respective origin-destination arcs (A.3), and the correct container type arcs (A.4).
Constraints (A.5), (A.6), and (A.7) are the revised capacity and weight constraints.
The absence of hatch=overstowage is ensured by constraints (A.8), which indicate
the presents of container moves in below deck locations, and constraint (A.9) which
imposes that no hatch-overstowage is allowed. Finally, constraint (A.10) calculates
the makespan at each port.

164

Appendix B

Appendices of DRL under
Uncertainty

B.1 MDP of Master Planning Problem

B.1.1 Sets and Parameters

Provided the sets and parameters in Section 7.2, we introduce additional subsets of
the transport set TR given port p ∈ P:

• Onboard transports: TROB
p = {(i, j)∈P2 | i ≤ p, j > p}

• Arrival transports: TRAC
p = {(i, j)∈P2 | i < p, j > p}

• Load transports: TR+
p = {(p, j)∈P2 | j > p}

• Discharge transports: TR−p = {(i, p)∈P2 | i < p}

• Transports in crane operations: TRM
p = TR+

p ∪ TR−p

Considering episode parameters ζ, we define:

• Transports: tr = (i, j) ∈ TR

• Cargo types: k = (κ1, κ2, κ3) ∈ K

For each combination (i, j, k), we associate the expected demand µ(i,j,k), standard
deviation σ(i,j,k), TEU per container teu(i,j,k), container weight w(i,j,k), and revenue
per container rev(i,j,k).

The TEU per container depends on k as:

teu(k) =

{
1, if κ1 = 20 ft.
2, if κ1 = 40 ft.

.

B.1. MDP of Master Planning Problem 165

Similarly, the container weight is defined by:

w(k) =

1, if κ2 = Light
2, if κ2 = Medium
3, if κ2 = Heavy

.

Both teu and w are broadcasted to shape nq = |K| × |TR| in the MDP formulations
for consistency in dimensionality.

The revenue function is given by:

rev(i, j, k) =

{
(j− i)(1− LR)+0.1, if κ3 = Long
(j− i)+0.1, if κ3 = Spot

.

The parameters µ and σ are randomly generated, as shown in Appendix B.3.

B.1.2 Formal MDP

We define the MDP by decomposing the traditional CO problem outlined in [220].

In the traditional MPP, cargo is loaded onto a vessel at each port in a voyage. Let
u ∈ Rnu represent the vessel’s utilization over the voyage, which is defined by the
set of ports P = {1, 2, . . . , NP}. Let us also recall the following:

nu = |B| × |D| × |K| × |TR|

nc = |B| × |D|, nq = |K| × |TR| nu = {nc × nq}

Utilization u can be decomposed into individual voyage legs, corresponding to the
segments between consecutive ports. Specifically, we decompose as:

u = (u0, u1, . . . , uNP−1)

where each up ∈ Rnu represents the vessel’s utilization immediately after operations
at port p.

Feasible Region

Suppose we have a feasible region for the MPP, where:

• A′ ∈ Rmu×nu is the constraint matrix,

• b′ ∈ Rmu is the bound vector,

• up ∈ R
nu
≥0 is the nonnegative vessel utilization.

The feasible region, denoted as PH, is given by:

PH(sp) = {up ∈ R
nu
≥0 | A′up ≤ b′} .

166 Appendix B. Appendices of DRL under Uncertainty

At port p, utilization can be decomposed into load operations and pre-load utiliza-
tion:

up = u′p + u+
p ,

where:

• u+
p ∈ R

nu
≥0 represents load operations,

• u′p = up−1 − u−p is the utilization before load operations,

• up−1 ∈ R
nu
≥0 is the previous step’s utilization,

• u−p ∈ R
nu
≥0 is the discharge operations.

Consequently, we can rewrite the feasible region as:

PH(sp) = {u+
p ∈ R

nu
≥0 | A′u+

p ≤ b′ − A′u′p} .

B.1.3 Decomposed MDP

Utilization can be decomposed into sequential steps to refine temporal granularity,
thereby obtaining an decomposed MDP formulation. We decompose u as:

u = (u0, u1, . . . , uTseq) ,

where ut ∈ Rnu represents the utilization at time step t, and t ∈ H = {1, 2, . . . , Tseq}
denotes the episodic horizon H.

Each step t represents a transport and cargo type, as tuple (polt, podt, kt). Algorithm
8 illustrates an episode of the decomposed MDP. First, we reset the state s0, initialize
time t, and an empty trajectory. The episode iterates over load ports (polt), discharge
ports (podt), and cargo classes (kt). At each step, we sample action xt from policy
πθ(x|st) conditioned on state st and episode parameters ζ, and transition to state
st+1. Afterwards, we store the results in the trajectory and increment time t. This
process continues until all combinations of polt, podt, and kt are explored, accumu-
lating a total of Tseq steps.

Transitions

We use a stochastic transition function T (st+1|st, xt, ζ) ∈ ∆(S). The transition con-
sists of sequential steps:

1. If t ∈ Tnew port, port demand is revealed. This means we show q(i,j,k)t ∀(i, j) ∈
TR+

polt
, k ∈ K.

2. If t ∈ Tnew port, onboard cargo is discharged ut+1 = ut ⊙ (1− e−t), where e−t ∈
{0, 1}nq is a binary mask indicating the cargo type and transport to nullify in
ut.

3. Each time t, cargo is loaded onboard ut+1 = ut + xt ⊙ e+t , where e+t ∈ {0, 1}nq

is a binary indicator specifying cargo types and transports to add to ut.

B.1. MDP of Master Planning Problem 167

Algorithm 8 Episode of Augmented MDP

1: Require: T , πθ , ζ, Q
2: q(i,j,k)Tseq

∼ Q(µ(i,j,k), σ(i,j,k)) ∀(i, j) ∈ TR, k ∈ K
3: s0 ← (0nu , qTseq ⊙ e+0), t← 0, Trajectory← {}
4: for polt = 1 to NP − 1 do
5: for podt = polt + 1 to NP do
6: for kt ∈ K do
7: xt ∼ πθ(x|st, ζ)
8: st+1 ∼ T (st, xt, ζ)
9: Append (st, xt, rt, st+1) to Trajectory

10: t← t + 1
11: end for
12: end for
13: end for
14: return Trajectory

Additionally, we define the set of time steps before we leave for a new port p + 1 is
defined as follows:

Tleave port =
{

t ∈ H | ∃p ∈ PNP−1
1 such that

t = |K|
(

p(NP− 1)− p(p− 1)
2

)
− 1
}

.

Finally, the set of time steps at which we arrive at a new port p is defined as follows:

Tnew port =
{

t ∈ H | ∃p ∈ PNP−1
1 such that

t = |K|
(
(p− 1)(NP− 1)− p(p− 1)

2

)}
.

Feasible Region

The state-dependent feasible region for each time t is formulated as:

PH(st) = {ut ∈ R
nu
≥0 | A′ut ≤ b′}

Similar to the port utilization, utilization can be decomposed into load operations
and pre-load utilization:

ut = u′t + u+
t

where:

• u+
t ∈ R

nu
≥0 represents load operations,

• u′t = ut−1 − u−t is the utilization before load operations,

• ut−1 ∈ R
nu
≥0 is the previous step’s utilization,

• u−t ∈ R
nu
≥0 is the discharge operations.

168 Appendix B. Appendices of DRL under Uncertainty

Using the decomposition, we obtain the feasible region as:

PH(st) = {ut ∈ R
nu
≥0 | A′(u+

t + u′t) ≤ b′}

Substituting Load Operations for Actions

Actions xt correspond to transformed load operations u+
t , given by:

xt = u+
t M(st), M(st) ∈ {0, 1}nu×nc ,

where M(st) is a state-dependent sparsity mask that selects relevant elements from
u+

t .

However, load operations are subject to mu constraints, whereas actions adhere to
mc constraints. To bridge this difference, we define the state-dependent constraint
matrix:

A(st) = T(st)
⊤A′M(st), T(st) ∈ {0, 1}mu×mc ,

where:

• A′ is the original constraint matrix of shape (mu, nu),

• T(st) maps the constraints of u+
t to that of xt

• M(st) maps the space of u+
t to that of xt,

Similarly, we introduce a state-dependent bound:

b′′(st) = T(st)
⊤b′,

where:

• b′ is the original bound of shape (mu, 1),

• T(st) maps the constraints of u+
t to that of xt

Feasible Region for Actions

Using the refined notation, we express the state-dependent feasible region in terms
of actions:

PH(st) = {xt ∈ R
nc
≥0 | A(st)xt ≤ b′′(st)− A′u′t}.

Next, we define the updated bound as:

b(st) = b′′(st)− A′u′t.

Substituting this into the feasible region, we obtain:

PH(st) = {xt ∈ R
nc
≥0 | A(st)xt ≤ b(st)}.

B.1.4 MPP Constraints

Let us specify the MPP constraints of PH(sp) and PH(st).

B.1. MDP of Master Planning Problem 169

Demand Constraints

Let us consider the demand subset of PH(sp) as:

PH(sp)dem = {xp ∈ R
nu
≥0 | A′demxp ≤ b′dem − A′demu′p} .

We sum over all vessel locations to obtain an aggregated number of containers of
shape nq. Note that only current load actions xp are relevant for qp, hence we can
omit A′demu′p as pre-loading utilization has already satisfied its demand require-
ments.

x⊤p 1nc ≤ qp

Consider the demand subset of PH(st) as:

PH(st)dem = {xt ∈ R
nc
≥0 | A(st)demxt ≤ b′(st)dem − A′demu′t} .

Right now, we can sum the full vector xt as it needs to sum to scalar q(polt,podt,kt)
t .

Again, previous steps are irrelevant to demand, hence we can disregard A′demu′t to
obtain:

1⊤xt ≤ q(polt,podt,kt)
t

Capacity Constraints

Let us consider the constraint subset of PH(sp) as:

PH(sp)cap = {xp ∈ R
nu
≥0 | A′capxp ≤ b′cap − A′capu′p} .

We sum TEU of all cargo types and transports in xp to obtain TEU use per location
with shape nc. The TEU of pre-load utilization is also considered by subtracting it
from the vessel capacity, obtaining the following:

xpteu ≤ c− u′pteu ,

Consider the demand subset of PH(st) as:

PH(st)cap = {xt ∈ R
nc
≥0 | A(st)capxt ≤ b′(st)cap − A′capu′t} .

Now, we can do the same trick based on a single scalar teu(polt,podt,kt) multiplied with
the sum of action xt.

teu(polt,podt,kt)1⊤xt ≤ c− u′tteu ,

Stability Constraints

The stability constraints require some algebra to derive for PH(sp) and PH(st).

170 Appendix B. Appendices of DRL under Uncertainty

The lcg constraint in its original form is given by:

1⊤(lm⊙ up)

1⊤(w⊙ up)
≤ lcg .

Applying the utilization decomposition, we can obtain the formulation for PH(sp):

1⊤(lm⊙ up) ≤ lcg1⊤(w⊙ up)

1⊤(lm⊙ u+
p) + 1⊤(lm⊙ u′p) ≤ lcg1⊤(w⊙ u+

p)

+ lcg1⊤(w⊙ u′p)

1⊤(lmp ⊙ xp)− lcg1⊤(w⊙ xp) ≤ lcg1⊤(w⊙ u′p)

− 1⊤(lm⊙ u′p)

1⊤
(
(lm−lcgw)⊙xp

)
≤ 1⊤

(
(lcgw−lm)⊙u′p

)
.

This approach extends to both the lower and upper bounds for the lcg and vcg,
ensuring that vessel stability is properly maintained at every step.

Based on the PH(sp) constraint, we can substitute load operations for actions and
obtain the formulation for PH(st):

1⊤
(
(lm(t)−lcgw(t))⊙xt

)
≤ 1⊤

(
(lcgw−lm)⊙u′p

)
.

where w(t) = w(polt,podt,kt) and lm(t) = lm(polt,podt,kt)

B.1.5 Auxiliary Variables

The reward function contains two auxiliary variables derived from state s, which in-
cur costs due to inefficient port operations. At port p, Equation (B.1) creates an indi-
cator of hatch movements hm(s, p) ∈ {0, 1}|B|, whereas Equation (B.2) computes the
number of on-deck containers during hatch movements, causing hatch overstowage
ho(s, p) ∈ R

|B|
≥0.

hm(s, p) =

(
∑
k∈K

∑
tr∈TRM

p

u(b,dbelow,k,tr)
t > 0

)
(B.1)

ho(s, p) = hm(s, p)

(
∑
k∈K

∑
tr∈TRAC

p

u(b,dabove,k,tr)
t

)
(B.2)

Equation (B.3) computes the target crane moves at port p by equally spreading the
total demand per port over pairs of adjacent bays, where δcm is the allowed deviation
from the equal spread set by ports. Subsequently, Equation (B.4) computes the excess
crane moves cm(s, p) ∈ R

|B|−1
≥0

cm(s, p) = (1 + δcm)
2
|B| ∑

tr∈TRM
p

∑
k∈K

q(tr,k)
t (B.3)

B.2. Feasibility Mechanisms 171

cm(s, p) = max

(
∑

d∈D
∑
k∈K

∑
tr∈TRM

p

u(0:|B|−1,d,k,tr)
t + u(1:|B|,d,k,tr)

t − cm(s, p), 0

)
(B.4)

B.2 Feasibility Mechanisms

Table B.1 provides an overview of implemented feasibility mechanisms.

TABLE B.1: Feasibility mechanisms and relation to constraints

Type Implementation Constraints

FR Composite loss Constraints PH(st)
VP VP(xt, A(st), b(st), αv, δv) Constraints PH(st)
WS W(xt, qt) Demand qt
PC C(xt, 0, c− u′tteu) TEU capacity c

B.2.1 Log Probability Adjustments

This subsection provides technical details on the adjustments made to the log-probability
distribution of the policy as a result of non-linear transformations to distribution
samples.

Projecting actions alters the policy’s probability density, necessitating consideration
of the change of variables principle [33]. This principle ensures valid volume scaling
by requiring the transformation f (x) to satisfy:

1. Differentiability: f (x) must be differentiable to compute the Jacobian J f (x)
and determine local volume scaling.

2. Non-Singularity: The Jacobian determinant must be non-zero (det(J f (x)) ̸= 0)
to prevent dimensional collapse.

3. Invertibility: f (x) must be locally or globally invertible to ensure a one-to-one
mapping between points in the original and transformed spaces.

These properties ensure the transformation is smooth, one-to-one, and well-behaved,
enabling the use of the Jacobian adjustment log π′(x|s) = log π(x|s)− log |det(J f (x))|
as a valid probability scaling factor.

Weighted Scaling Projection Layer.

Suppose we have variable x ∈ Rn
>0 and scalar y ∈ R>0 and the following piecewise

linear function:

P(x, y) =

{
x if 1⊤x ≤ y

x
1⊤x · y if 1⊤x > y

Case 1: 1⊤x ≤ y.

P(x, y) = x

172 Appendix B. Appendices of DRL under Uncertainty

∂

∂x
P(x, y) =

∂x
∂x

JP (x, y) = In

Case 2: 1⊤x > y, where we apply the product rule and then the quotient rule of
differentiation.

P(x, y) =
x

1⊤x
· y

∂

∂x
P(x, y) =

∂

∂x

(x
1⊤x
· y
)

∂

∂x
P(x, y) =

∂

∂x

(x
1⊤x

)
· y

JP (x, y) = y · 1
(1⊤x)2

(
In1⊤x− x · 1⊤

)
JP (x, y) =

y · In

(1⊤x)
− y · x⊤

(1⊤x)2

We obtain the following Jacobian of function P(x, y):

JP (x, y) =

{
In if 1⊤x ≤ y

y
(1⊤x)2

(
In1⊤x− x1⊤

)
if 1⊤x > y

Finally, we verify that Jacobian adjustment is allowed for the weighted scaling pro-
jection by:

1. P(x, y) has been shown to be differentiable.

2. Provided that x, y > 0, either case is positive definite as the diagonal elements
are strictly positive. We obtain det(JP (x, y)) > 0, thus the Jacobian in non-
singular.

3. P(x, y) is locally invertible as det(JP (x, y)) ̸= 0.

Violation Projection Layer.

Suppose we have function P(x, A, b) = x − ηv A⊤(Ax − b)>0 with x ∈ Rn
>0, ηv ∈

R>0, A ∈ Rm×n
≥0 , b ∈ Rm

≥0, and m > n.

Case 1: ηv A⊤(Ax− b) = 0.

P(x, A, b) = x
∂

∂x
P(x, A, b) =

∂x
∂x

JP (x, A, b) = In

B.2. Feasibility Mechanisms 173

Case 2: ηv A⊤(Ax− b) > 0, where we apply the chain rule on the second term.

P(x, A, b) = x− ηv A⊤(Ax− b)
∂

∂x
P(x, A, b) =

∂

∂x

(
x− ηv A⊤(Ax− b)

)
JP (x, A, b) = In − ηv A⊤A

Both cases are combined in the following matrix formulation with diagonal matrix
Diag = diag((Ax− b) > 0):

JP (x, A, b) = In − ηv A⊤DiagA

Finally, we can confirm that Jacobian adjustment is allowed for the violation projec-
tion layer by:

1. P(x, A, b) is differentiable as shown above.

2. Due to the full rank nature of the identity In and A⊤DiagA when Diag = Im,
we get det(JP (x, A, b)) ̸= 0, and hence the Jacobian is non-singular.

3. P(x, A, b) is locally invertible as det(JP (x, A, b)) ̸= 0. It is not globally invert-
ible, due to the piece-wise nature of (Ax− b)>0.

Policy Clipping

We can implement a clipped Gaussian distribution that enforces element-wise bounds
on a standard Gaussian [72]. Let µθ and σ2

θ denote the policy’s mean and variance,
with bounds lbpc and ubpc, and Φ(·) being the cumulative distribution function of the
standard Gaussian. Actions are sampled from N (µθ , σ2

θ) and clipping the result to
[lbpc, ubpc]. Provided this transformation, we compute the log probabilities log π(x|s)
for action x by:

log π(x|s) =

log Φ

(
lbpc−µθ

σθ

)
if x ≤ lbpc,

− (x−µθ)
2

2σ2
θ

− log(
√

2πσ2
θ) if lbpc < x < ubpc,

log
(

1−Φ
(

ubpc−µθ

σθ

))
if x ≥ ubpc

B.2.2 Violation Projection Layer

We define a feasible region of action x as the polyhedron:

PH = {x ∈ Rn : Ax ≤ b, x ≥ 0},

where A ∈ Rm×n and b ∈ Rm.

Constraints in PH may be violated during optimization. To quantify these violations,
we introduce the violation function:

V(x) = (Ax− b)>0,

174 Appendix B. Appendices of DRL under Uncertainty

where V(x)mi > 0 indicates that constraint mi is violated, and V(x)mi = 0 means the
constraint is satisfied.

Violation Gradient Descent. To minimize constraint violations, we update x for
a fixed number of iterations using gradient descent on the violation term ∥V(x)∥2

2,
which represents the squared distance to feasibility. Differentiating with respect to
x, we derive the update rule:

x′ = x− ηv∇x∥V(x)∥2
2

= x− ηv2A⊤V(x).

Since the step size ηv ∈ (0, 1) is a tunable parameter, we simplify the update function
to:

x′ = x− ηv A⊤V(x).

Theorem 1 (Convergence of Violation Gradient Descent). Let x0 ∈ Rn be an initial
point, and consider update:

xk+1 = xk − ηv A⊤V(xk),

where:

• V(x) = max(0, Ax − b) is the element-wise function onto nonnegative constraint
values.

• ηv ∈ (0, 1) is a step size parameter.

• A ∈ Rm×n has full row rank.

• The feasible region PH = {x ∈ Rn : Ax ≤ b, x ≥ 0} is nonempty.

Then, the sequence {xk} satisfies:

1. The function g(x) = ∥V(x)∥2
2 is non-increasing.

2. xk converges to a feasible point x∗ or a local minimum violation point.

Proof. Define the violation function:

g(x) = ∥V(x)∥2
2.

Since V(x) is an elementwise projection onto nonnegative values, and some function
h(y) = max(0, y) is convex and non-decreasing, then the function g(x) = ∥V(x)∥2

2
is convex when Ax− b is affine.

We apply gradient descent on g(x) using the update rule:

xk+1 = xk − ηv∇xg(xk).

By the standard descent lemma [36], for a sufficiently small step size ηv, we have:

g(xk+1) ≤ g(xk)− ηv∥∇xg(xk)∥2
2.

B.3. Instance Generator 175

Since ηv > 0 and ∥∇xg(xk)∥2
2 ≥ 0, it follows that:

g(xk+1) ≤ g(xk).

Thus, g(xk) is non-increasing.

Since g(xk) is also lower-bounded by 0, it must converge to some limit g∗ ≥ 0. This
implies:

lim
k→∞
∥V(xk)∥2 = c̃, for some c̃ ≥ 0.

If c̃ = 0, then xk converges to a feasible point, meaning V(xk) = 0. If c̃ > 0, then xk
converges to a local minimum of g(x), where no further descent is possible, satisfy-
ing ∇xg(xk) = 0, which implies A⊤V(xk) = 0.

B.3 Instance Generator

During training, we simulate problem instances based on a Gaussian distribution
with element i:

q(i,j,k) ∼ N
(
µ(i,j,k), σ(i,j,k)) ∀(i, j) ∈ TR, k ∈ K.

Here, µ is the expected value of cargo demand, initialized by a uniform generator
U (lb, ub), while the standard deviation of demand is defined as σ(i,j,k) = CV · µ(i,j,k),
where the coefficient of variation (CV) controls the spread of each element based
on µ(i,j,k). Note that CV is normally defined as CV(i,j,k) = σ(i,j,k)

µ(i,j,k) , so we use σ(i,j,k) =

CV · µ(i,j,k) to control the spread of the distribution.

We initialize µ(i,j,k) ∼ U (0, µ(i,j,k)), where the upper bound on the expected value is
found as follows:

µ =
2UR · 1⊤c

NC
,

where UR is the rate of total utilization present in the demand (e.g., 1.2 means total
demand is 120% of total capacity), and NC ∈ R

|TR|
>0 is a matrix to spread the demand

over different elements proportional to the number of transports remaining to be
loaded.

During generalization testing, we simulate problem instances based on a continuous
uniform generator:

q(i,j,k) ∼ U (lb(i,j,k), ub(i,j,k)).

To ensure similar mean and variance of the instances, we derive parameters lb and
ub from the definition of the continuous uniform distribution, as follows:

µ(i,j,k) = (lb(i,j,k) + ub(i,j,k))/2

(σ(i,j,k))2 = (ub(i,j,k) − lb(i,j,k))2/12

176 Appendix B. Appendices of DRL under Uncertainty

We rewrite to:

lb(i,j,k) = µ(i,j,k) −
√
(12(σ(i,j,k))2)/2

ub(i,j,k) = µ(i,j,k) +
√
(12(σ(i,j,k))2)/2

B.4 Multi-Stage Stochastic MIP

B.4.1 Multi-Stage Scenario Tree

A scenario tree is a directed tree represented as TST = (VST, EST), where VST is the
set of nodes, each corresponding to a decision or uncertainty realization at a given
stage. EST ⊆ VST ×VST is the set of directed edges representing transitions between
nodes over time.

The tree consists of:

1. A root node v1 ∈ VST, representing the initial state at the first port.

2. Stages p = 1, 2, . . . , NP − 1, where each node v belongs to a stage p(v). We
denote stages by p, as stages are equivalent to ports in a voyage.

3. Branching structure, where each node has child nodes that correspond to pos-
sible future realizations.

4. A probability measure PST : VST → [0, 1] assigning probabilities to nodes, en-
suring:

∑
v′∈child(v)

P(v′) = P(v), ∀v ∈ VST.

5. Scenario paths ϕ ∈ Z , which are root-to-leaf paths representing possible real-
izations of uncertainty over time.

B.4.2 MIP Formulation

We define the MPP under demand uncertainty as a multi-stage stochastic MIP.

Decision Variables. The following variables are included:

• Vessel utilization: ũb,d,ϕ
tr,k ∈ Z≥0

• Hatch overstowage: h̃oϕ
p,b ∈ Z≥0

• Makespan of cranes: ˜cmϕ
p ∈ Z≥0

• Hatch movement: ˜hmϕ
p,b ∈ {0, 1}

All integer constraints are relaxed linearly in the implementation. Additionally, we
use a sufficiently large constant, denoted by big M, to impose logical constraints as
needed.

B.4. Multi-Stage Stochastic MIP 177

Objective. The objective function (B.5) maximizes the revenue with parameter rev(i,j,k) ∈
R>0 and minimizes hatch-overstowage with parameter ctho ∈ R>0 and crane moves
costs with parameter ctcm ∈ R>0 over scenario paths ϕ ∈ Z each with probability
Pϕ. We assume each scenario path has equal probability.

Constraints. Constraint (B.6) enforces that the onboard utilization cannot exceed
the cargo demand q, whereas Constraint (B.7) limits each vessel location to the TEU
capacity c for each bay b ∈ B and deck d ∈ D. In Constraint (B.8), we indicate
that hatches need to be opened if below deck cargo needs to be loaded or dis-
charged. Based on these movements, Constraint (B.9) models the amount of hatch
overstowage in containers. Subsequently, we compute the target of crane moves z
in Constraint (B.10), after which Constraint (B.11) computes the excess number of
crane moves ˜cm.

Additionally, we model the longitudinal and vertical stability in Constraints (B.13)
until (B.16). First, we compute the longitudinal moment, vertical moment and to-
tal weight in Constraints (B.13), (B.14) and (B.12), respectively. Second, Constraint
(B.15) bounds lcg between lcg and lcg. Third, Constraint (B.16) bounds vcg between
vcg and vcg. Both lcg and vcg are linearized equivalents of the original Constraints
(7.1) and (7.2), respectively. Furthermore, we include non-anticipation in Constraint
(B.17) to prevent leveraging future demand realizations.

max ∑
ϕ∈Z

Pϕ ∑
p∈P

∑
b∈B

∑
d∈D

∑
k∈K

∑
tr∈TR+(p)

rev(i,j,k)ũb,d,ϕ
tr,k

− cthoh̃oϕ
p,b − ctcm ˜cmϕ

p (B.5)

s.t. ∑
b∈B

∑
d∈D

ũb,d,ϕ
tr,k ≤ qϕ

tr,k

∀p ∈ P, tr ∈ TROB(p), k ∈ K, ϕ ∈ Z (B.6)

∑
k∈K

∑
tr∈TROB(p)

teutr,kũb,d,ϕ
tr,k ≤ cb,d

∀p ∈ P, b ∈ B, d ∈ D, ϕ ∈ Z (B.7)

∑
k∈K

∑
tr∈TRM(p)

ũb,dh,ϕ
tr,k ≤ M ˜hmϕ

p,b

∀p ∈ P, b ∈ B, ϕ ∈ Z (B.8)

∑
k∈K

∑
tr∈TRAC(p)

ũb,do ,ϕ
tr,k −M(1− ˜hmϕ

p,b) ≤ h̃oϕ
p,b

∀p ∈ P, b ∈ B, ϕ ∈ Z (B.9)

zϕ
p = (1 + δcm)

2
|B| ∑

tr∈TRM(p)
∑
k∈K

qϕ
tr,k

∀p ∈ P, ϕ ∈ Z (B.10)

∑
b∈b′

∑
d∈D

∑
k∈K

∑
tr∈TRM(p)

ũb,d,ϕ
tr,k − zϕ

p ≤ ˜cmϕ
p

∀p ∈ P, b′ ∈ B′, ϕ ∈ Z (B.11)

twϕ
p = ∑

k∈K
wk ∑

tr∈TROB(p)
∑

d∈D
∑
b∈B

ũb,d,ϕ
tr,k

178 Appendix B. Appendices of DRL under Uncertainty

∀p ∈ P, ϕ ∈ Z (B.12)

lmϕ
p = ∑

b∈B
ldb ∑

k∈K
wk ∑

tr∈TROB(p)
∑

d∈D
ũb,d,ϕ

tr,k

∀p ∈ P, ϕ ∈ Z (B.13)

vmϕ
p = ∑

d∈D
vdd ∑

k∈K
wk ∑

tr∈TROB(p)
∑
b∈B

ũb,d,ϕ
tr,k

∀p ∈ P, ϕ ∈ Z (B.14)

lcgtwϕ
p ≤ lmϕ

p ≤ lcgtwϕ
p

∀p ∈ P, ϕ ∈ Z (B.15)

vcgtwϕ
p ≤ vmϕ

p ≤ vcgtwϕ
p

∀p ∈ P, ϕ ∈ Z (B.16)

ũb,d,ϕ′

tr,k = ũb,d,ϕ
tr,k

∀p ∈ P, tr ∈ TR+(p), k ∈ K,

b ∈ B, d ∈ D, ϕ, ϕ′ ∈ Z | qϕ

[p−1] = qϕ′

[p−1] (B.17)

B.5 Deep RL Implementation Details

B.5.1 PPO Algorithm

PPO is an on-policy reinforcement learning algorithm that seeks to maximize ex-
pected cumulative reward while enforcing stable policy updates via clipped impor-
tance sampling [188], as outlined in Algorithm 9. The agent collects trajectories,
computing nppo-step return to evaluate performance with Vθ(s) as estimated state
value:

G(nppo)
t =

nppo−1

∑
kppo=0

γkrt+kppo + γnppoVθ(st+nppo), (B.18)

To reduce variance, we adopt Generalized Advantage Estimation (GAE) [187]:

ÂGAE
t =

∞

∑
lppo=0

(γλ)lppo δt+lppo , (B.19)

δt = rt + γVθ(st+1)−Vθ(st). (B.20)

Here, δt is the temporal difference (TD) residual, which quantifies the advantage of
taking action xt at state st.

The actor is updated using the PPO clipped surrogate loss:

Lactor(θ) = Et

[
min

(
ratiot(θ)ÂGAE

t ,

clip(ratiot(θ), 1− ϵ, 1 + ϵ)ÂGAE
t

)]
, (B.21)

where the probability ratio is defined as:

ratiot(θ) =
πθ(xt|st)

πθold(xt|st)
. (B.22)

B.5. Deep RL Implementation Details 179

The critic aims to minimize the squared TD error:

Lcritic(θ) = Et

[(
Vθ(st)− G(nppo)

t
)2
]
. (B.23)

Finally, the total PPO objective, including feasibility regularization from Equation
(7.11), is given by:

L(θ) = Lactor(θ) + λcLcritic(θ) + λ fLfeas(θ)

− λeEt
[
entropy(πθ)

]
, (B.24)

where λc, λ f , and λe are weighting coefficients for the critic loss, feasibility regular-
ization, and entropy regularization respectively.

Algorithm 9 Proximal Policy Optimization (PPO)

1: Require: Model parameters θ, steps n, learning rate η
2: for each gradient update do
3: for each step t do
4: Collect n-step trajectories {(st, xt, rt, st+1)}
5: Compute n-step returns G(nppo)

t
6: Compute advantage estimates ÂGAE

t
7: end for
8: Update parameters: θ ← θ + η∇θL(θ)
9: end for

10: return Policy πθ

B.5.2 SAC Algorithm

Soft Actor-Critic (SAC) is an off-policy reinforcement learning algorithm that op-
timizes both reward maximization and entropy to encourage efficient exploration
[78], as outlined in Algorithm 10. It is based on maximum entropy reinforcement
learning, which aims to learn a stochastic policy that not only maximizes cumulative
rewards but also maintains high entropy for robustness and stability. SAC leverages
a soft Q-learning approach, using two Q-functions to mitigate overestimation bias,
an entropy-regularized policy update, and an automatically adjusted temperature
parameter to balance exploration and exploitation.

The algorithm maintains an actor network for policy learning, two Q-function crit-
ics for value estimation, a target Q-network for stable learning, and an adaptive
temperature parameter to regulate entropy. The loss functions for standard SAC
are derived from the Bellman backup equation and the policy gradient formulation,
ensuring convergence to an optimal stochastic policy. We also include feasibility
regularization from Equation (7.11) in the actor loss.

• Compute target Q-value:

Qtarget(st, xt) = rt + γEst+1,xt+1∼π

[
min
l=1,2

Ql
θ(st+1, xt+1)− α log πθ(xt+1|st+1)

]

180 Appendix B. Appendices of DRL under Uncertainty

• Critic loss:
Lcritic(θ) = E

[
(Qθ(st, xt)−Qtarget(st, xt))

2
]

• Actor loss:

Lactor(θ) = E
[
α log πθ(xt|st)−Qθ(st, xt) + λ fLfeas(θ)

]
• Temperature loss:

Lα(θ) = E
[
− α(log πθ(xt|st) + entropytarget)

]
This formulation ensures stability and encourages exploration by adapting the trade-
off between exploitation and exploration dynamically.

Algorithm 10 Soft Actor-Critic (SAC)

1: Require: Parameters: actor θactor, critics θ1
critic, θ2

critic, targets (θ1
target, θ2

target) =

(θ1
critic, θ2

critic), temperature α, learning rate actor ηa, learning rate critic ηc, learn-
ing rate temperature ηα, soft update parameter τ, replay buffer D.

2: for each iteration do
3: for each environment step t do
4: Sample action xt ∼ πθ(xt|st)
5: Perform transition st+1 ∼ T (st+1|st, xt)
6: Observe reward rt = R(st, xt),
7: Store (st, xt, rt, st+1) in D.
8: end for
9: for each gradient step do

10: Sample a minibatch (st, xt, rt, st+1) from D.
11: Compute target Q-value: Qtarget(st, xt)
12: Update parameters:
13: θl

critic ← θl
critic − ηc∇lLcritic(θ) for l ∈ {1, 2}

14: θactor ← θactor − ηa∇Lactor(θ)
15: α← α− ηα∇Lα(θ)
16: θl

target ← τθl
critic + (1− τ)θl

target for l ∈ {1, 2}
17: end for
18: end for
19: return Policy πθ

B.5.3 Hyperparameters

The parameters of the MPP environment are shown in Table B.2.

Table B.3 provides the hyperparameters of projected and vanilla PPO and SAC.

B.5.4 Additional Experiments

In Table B.4, we analyze different configurations of feasibility regularization (FR).
First, we evaluate performance under the same hyperparameters as AM-P policies.
Second, we examine the effect of significantly increasing λ f . Third, we assess per-
formance with specific hyperparameter tuning, including λ f . These experiments

B.5. Deep RL Implementation Details 181

TABLE B.2: Environment parameters

Parameters Symbol Value

Voyage length NP 4
Number of bays NB 10
Cardinality deck set |D| 2
Cardinality cargo set |K| 12
Cardinality transport set |TR| 6
Vessel TEU 1⊤c 1,000
Long term contract reduction LR 0.3
Utilization rate demand UR 1.1
lcg bounds (lcg, lcg) (0.85,1.05)
vcg bounds (vcg, vcg) (0.95,1.15)
Crane moves allowance δcm 0.25
Overstowage costs ctho 0.33
Crane move costs ctho 0.5

indicate that FR can reduce the distance to the feasible region, however, achieving
fully feasible instances remains a challenge.

182 Appendix B. Appendices of DRL under Uncertainty

TABLE B.3: Hyperparameters for projected and vanilla PPO and SAC

Settings Projection Algorithms Vanilla Algorithms

Hyperparameters Symbol PPO SAC PPO SAC

Actor Network Attention Attention Attention Attention
Number of Heads 8 8 4 4
Hidden Layer Size 128 128 256 256
Encoder Layers 3 3 2 1
Decoder Layers 3 3 3 3
Critic Network 1×MLP 2×MLP 1×MLP 2×MLP
Critic Layers 4 4 4 4
Target Network No Soft Update No Soft Update
Target Update Rate τ N/A 0.005 N/A 0.005
Dropout Rate 0.009 0.009 0.073 0.164
Max Policy Std. 1.931 1.931 1.118 1.779

Optimizer Adam Adam Adam Adam
Learning Rate η 2.04× 10−4 2.04× 10−4 9.64× 10−4 9.10× 10−4

Batch Size 64 64 64 64
Embedding Size 128 128 128 128
Discount Factor γ 0.99 0.99 0.99 0.99
GAE λ 0.95 N/A 0.95 N/A
Value Coefficient λc 0.50 N/A 0.50 N/A
Entropy Coefficient λe 0.010 Learned 0.061 Learned
Feasibility Penalty λ f 0.0677 0.0677 0.302 0.065
Clip Parameter ϵ 0.2 N/A 0.2 N/A
Replay Buffer No Yes No Yes
Replay Buffer Size N/A 104 N/A 104

Mini-batch Size 16 16 32 16
Update Epochs 5 1 1 1
Entropy Target N/A −|X| N/A −|X|
Projection Learning Rate ηv 0.05 0.05 N/A N/A
Projection Epochs 100 100 N/A N/A
Inference Projection Stop δv 0.05 0.05 N/A N/A

Training Budget 7.2× 107 7.2× 107 7.2× 107 7.2× 107

Validation Budget 5.0× 103 5.0× 103 5.0× 103 5.0× 103

Validation Frequency Every 20% Every 20% Every 20% Every 20%

B.5. Deep RL Implementation Details 183

TABLE B.4: Performance evaluation on N instances of feasibility reg-
ularization (FR) with hyperparameter (H.P.) settings: projected hy-
perparameters (Proj.), ensuring a fair comparison with projection-
based policies, and tuned hyperparameter (Tune), optimized specifi-
cally for PPO and SAC with FR. While we use λ f as the control pa-
rameter for FR, tuning involves adjusting a Lagrangian multiplier for
each constraint. Average performance metrics include objective value
in profit (Ob.), inference time in seconds (Time), percentage of feasi-
ble instances (F.I.), and total absolute distance to the feasible region

d(PH(st)). Note that † indicates infeasible objectives.

Methods Testing (N = 30)

Alg. Model F.M. H.P. λ f Ob. ($) Time (s) F.I. (%) d(PH(st))

SAC AM FR Proj. 0.0677 1139.78† 13.82 0.00 62.77
SAC AM FR Proj. 0.677 1031.55† 13.45 0.00 120.74
SAC AM FR Tune 0.065 1113.03† 12.63 0.00 37.55

PPO AM FR Proj. 0.0677 2606.87† 13.36 0.00 3171.86
PPO AM FR Proj. 0.677 2593.29† 13.20 0.00 3381.59
PPO AM FR Tune 0.302 1842.46† 11.74 0.00 754.21

184

Appendix C

Appendices of DRL under
Uncertainty at Scale

C.1 MPP Parameters

The parameters of the MPP are shown in Table C.1.

TABLE C.1: MPP parameters

Parameters Symbol Values

Voyage lengths NP {4,5,6}
Number of bays NB 20
Cardinality deck set |D| 2
Cardinality block set |BL| 2
Cardinality cargo set |K| 12
Cardinality transport set |TR| 6
Vessel TEU 1⊤c 20,000
Long term contract reduction LR 0.3
Utilization rate demand UR 1.1
lcg bounds (lcg, lcg) (0.85,1.05)
vcg bounds (vcg, vcg) (0.95,1.15)
Crane moves allowance δcm 0.25
Overstowage costs ctho 0.33
Crane move costs ctho 0.5

C.2 Instance Generator

This Appendix introduces the instance generator used to sample demand, after which
a descriptive analysis visualizes the demand distribution.

Algorithm 11 generates transport matrices of cargo demand based on a perturbed
uniform distribution, designed to simulate stowage planning problem instances.
Given vessel capacity c and perturbation factor ρ, an upper bound matrix ub is
first computed proportionally to the total vessel capacity. To introduce controlled
randomness, a perturbation is applied element-wise using samples Ui,j,k ∼ U (0, 1),
scaling each upper bound within the interval [1− ρ, 1+ ρ]. This yields the perturbed
bounds ũb, which represent the maximum admissible demand per transport (i, j)
and cargo type k. Demand samples qi,j,k are then drawn from a uniform distribution
over the interval [1, ũbi,j,k], where the outcome is continuous or discrete depending

C.3. Implementation Details of AI2STOW 185

on whether the model assumes real-valued or integer-valued demand variables. The
expected value µ and standard deviation σ of the uniform distribution are derived
analytically from ũb, reflecting the first and second moments of the demand distri-
bution. The resulting tuple (q, µ, σ) provides necessary information on the demand
distribution.

Algorithm 11 Generate Cargo Demand with Uniform Distribution
Input: Capacity c, perturbation ρ
Output: Realized, expected and standard dev. demand (q, µ, σ)

Compute upper bound matrix ub ∝ UR · 1⊤c
Apply random perturbation with Ui,j,k ∼ U (0, 1):

ũbi,j,k = ubi,j,k ×
(
1 + (2×Ui,j − 1)× ρ

)
∀(i, j) ∈ TR, k ∈ K,

Generate uniform sample:

qi,j,k ∼
{
U (1, ũbi,j,k) if q ∈ R

nq
>0

UZ(1, ũbi,j,k) if q ∈ Z
nq
>0

∀(i, j) ∈ TR, k ∈ K

Compute expected value: µ = 1
2 ũb

Compute standard deviation: σ = ũb√
12

return q, µ, σ

C.3 Implementation Details of AI2STOW

In this appendix, we first define the SAC algorithm, then discuss implemented pro-
jection layers, and finally describe relevant hyperparameters. Parts of this appendix
are adapted from our previous work [217].

C.3.1 SAC Algorithm

Soft Actor-Critic (SAC) is an off-policy reinforcement learning algorithm that op-
timizes both reward maximization and entropy to encourage efficient exploration
[78], as outlined in Algorithm 12. It is based on maximum entropy reinforcement
learning, which aims to learn a stochastic policy that not only maximizes cumulative
rewards but also maintains high entropy for robustness and stability. SAC leverages
a soft Q-learning approach, using two Q-functions to mitigate overestimation bias,
an entropy-regularized policy update, and an automatically adjusted temperature
parameter to balance exploration and exploitation.

The algorithm maintains an actor network for policy learning, two Q-function crit-
ics for value estimation, a target Q-network for stable learning, and an adaptive
temperature parameter to regulate entropy. The loss functions for standard SAC
are derived from the Bellman backup equation and the policy gradient formulation,
ensuring convergence to an optimal stochastic policy. We also include feasibility
regularization from Equation (8.32) in the actor loss.

• Compute target Q-value:

186 Appendix C. Appendices of DRL under Uncertainty at Scale

(A) Container demand distribution (B) TEU demand distribution

FIGURE C.1: Simulated demand for NP = 4 by instance generator

(A) Container demand distribution (B) TEU demand distribution

FIGURE C.2: Simulated demand for NP = 5 by instance generator

(A) Container demand distribution (B) TEU demand distribution

FIGURE C.3: Simulated demand for NP = 6 by instance generator

C.3. Implementation Details of AI2STOW 187

Qtarget(st, xt) = rt + γEst+1,xt+1∼π

[
min
l=1,2

Ql
θ(st+1, xt+1)− α log πθ(xt+1|st+1)

]
• Critic loss:

Lcritic(θ) = E
[
(Qθ(st, xt)−Qtarget(st, xt))

2
]

• Actor loss:

Lactor(θ) = E
[
α log πθ(xt|st)−Qθ(st, xt) + λ fLfeas(θ)

]
• Temperature loss:

Lα(θ) = E
[
− α(log πθ(xt|st) + entropytarget)

]
This formulation ensures stability and encourages exploration by dynamically adapt-
ing the trade-off between exploitation and exploration.

C.3.2 Projection Layers

This subsection introduces the projection layers used in the article.

Violation Projection

In previous work [217], we discussed the violation projection on a convex polyhe-
dron of constraints. For full technical details, we refer to [217].

Algorithm 13 defines a violation projection (VP) layer that reduces inequality con-
straint violations by shifting a point x closer to the feasible region of the convex
polyhedron PH = {x ∈ Rn

>0 : Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm. The inequal-
ity constraint Ax ≤ b ensures that PH is convex, enabling gradient-based reduction
of violation V(x) [36].

To measure feasibility, we compute the element-wise violation V(x) = (Ax − b)>0,
where V(x)mi > 0 indicates that constraint mi is violated, and V(x)mi = 0 indicates
satisfaction. To minimize violations, we iteratively update x using gradient descent
on the squared violation norm ∥V(x)∥2

2, which approximates the distance to the fea-
sible region PH. The update step is given by:

x′ = x− ηv∇x∥V(x)∥2
2 (C.1)

This is equivalent to the update rule shown in Algorithm 13.

During training, the VP layer executes for a fixed number of epochs. However,
during inference, a stopping criterion is introduced: the projection halts when the
change in total violation, 1⊤V(x′)− 1⊤V(x), falls below a threshold δv. As a result,
the VP layer reduces the distance of x to the feasible region, incorporating constraint
awareness into otherwise unconstrained policies.

188 Appendix C. Appendices of DRL under Uncertainty at Scale

Algorithm 12 Soft Actor-Critic (SAC)

Require: Actor parameters θactor, critic parameters θ1
critic, θ2

critic
1: Initialize target critics: θ1

target ← θ1
critic, θ2

target ← θ2
critic

2: Initialize temperature parameter α
3: Set hyperparameters: learning rates ηa, ηc, ηα; soft update rate τsu; replay buffer
D

4: for each training iteration do
5: for each environment step do
6: Sample action xt ∼ πθactor(xt | st)
7: Observe next state st+1 ∼ T (st+1 | st, xt)
8: Observe reward rt = R(st, xt)
9: Store transition (st, xt, rt, st+1) in buffer D

10: end for
11: for each gradient update step do
12: Sample minibatch (st, xt, rt, st+1) from buffer D
13: Compute target Q-value:
14: Sample xt+1 ∼ πθactor(x | st+1)
15: Qtarget ← rt + γ ·minl=1,2 Qθl

target
(st+1, xt+1)− α log πθactor(xt+1 | st+1)

16: for l = 1 to 2 do
17: Update critic θl

critic using:
18: θl

critic ← θl
critic − ηc∇θl

critic
Lcritic

19: end for
20: Update actor parameters:
21: θactor ← θactor − ηa∇θactorLactor
22: Update temperature:
23: α← α− ηα∇αLα

24: for l = 1 to 2 do
25: Soft update target critic:
26: θl

target ← τsu · θl
critic + (1− τsu) · θl

target
27: end for
28: end for
29: end for
30: return Policy πθactor

Algorithm 13 Violation Projection Layer

Require: Input vector x ∈ Rn
>0, parameters (A, b, ηv, δv)

Ensure: Projected vector x′

1: Initialize x′ ← x
2: Define violation function: V(x)← max(Ax− b, 0) (element-wise)
3: for each iteration i = 1 to epochs do
4: Set x ← x′

5: Update x′ ← x− ηv A⊤V(x)
6: if 1⊤V(x′)− 1⊤V(x) ≤ δv then
7: break
8: end if
9: end for

10: return x′

C.3. Implementation Details of AI2STOW 189

Policy Clipping

In our previous work [217], we also introduced policy clipping (PC) to enforce TEU
capacity constraints. Policy clipping applies element-wise lower and upper bounds
to a vector x, ensuring it remains within a specified box-constrained region. This is
implemented using the function:

C(x, lbpc, ubpc) = max
(

min(x, ubpc), lbpc
)

where lbpc and ubpc represent the element-wise lower and upper bounds, respec-
tively. While PC is simple and efficient, it is only applicable to box constraints. For
more complex convex constraint structures, we rely on the VP layer. Full implemen-
tation details are provided in [217].

Convex Program Layer

Given a convex polyhedron PH = {x ∈ Rn | Ax ≤ b}, we incorporate a differen-
tiable convex optimization layer following [1], where the solution to a parameterized
convex problem is treated as the output of a network layer. Specifically, we solve

x⋆(θ) = arg min
x∈PH

f (x, θ),

where θ denotes parameters produced by upstream layers and f (x, θ) is a convex
objective. Gradients ∂x⋆/∂θ are computed via implicit differentiation of the KKT
conditions, enabling end-to-end training. However, since the mapping θ 7→ x⋆(θ) is
defined implicitly via the solution of an optimization problem, the Jacobian deter-
minant det(∂x⋆/∂θ) is not tractable. As a result, the layer cannot be used to compute
log-density corrections via the change-of-variables formula, limiting its applicability
in likelihood-based or flow-based generative models. use in likelihood-based mod-
els.

To promote numerical stability, we incorporate slack variables into the stability con-
straint and apply a large penalty (e.g., 104) for violations. Specifically, we relax
constraints of the form g(x) ≤ 0 to g(x) ≤ ε, and penalize ε in the objective via
λcp∥ε∥1. This soft enforcement accommodates intermediate actions that may tem-
porarily breach stability constraints, as can arise in the MDP.

190 Appendix C. Appendices of DRL under Uncertainty at Scale

C.3.3 Hyperparameters

TABLE C.2: Hyperparameters of AI2STOW. Note that the hyperpa-
rameters are identical for DRL-FR, except for λ f as we performed pa-

rameter tuning to set it to λ f = 0.195

Hyperparameters Symbol AI2STOW

Actor Network Attention
Number of Heads 8
Hidden Layer Size 512
Encoder Layers 3
Decoder Layers 4
Critic Network 2×MLP
Critic Layers 5
Target Network Soft Update
Target Update Rate τsu 0.005
Dropout Rate 0.009
Max Policy Std. 9.460

Optimizer Adam
Learning Rate η 1.46× 10−4

Batch Size 64
Embedding Size 128
Discount Factor γ 0.99
Entropy Coefficient λe Learned
Feasibility Penalty λ f 0.283
Replay Buffer Size 104

Mini-batch Size 32
Entropy Target −|X|
Projection Learning Rate ηv 0.010
Projection Epochs 273
Inference Projection Stop δv 0.024
Finetuned Projection Learning Rate ηv

★ 0.01
Finetuned Projection Epochs 300
Finetuned Inference Projection Stop δv

★ 0.01
Slack penalty of CP λcp 1× 104

Training Budget 7.2× 106

Validation Budget 5.0× 103

Validation Frequency Every 20%
Inference Rollouts 5

C.4 Additional Experiments

Table C.3 illustrates the rapid growth in computational demands of the scenario tree
in the SMIP-NA model with SST = 20. As the voyage length NP increases, the num-
ber of scenario paths |Z|, as well as the runtime and memory usage, grow substan-
tially. For NP = 4, both runtime and memory consumption are measured directly
and serve as a baseline. Assuming an optimistic case of linear scaling with respect
to |Z|, the extrapolated values for NP = 5 and NP = 6 already exceed practical
hardware and runtime limits by a significant margin. This highlights the challenge
of solving large-scale instances of SMIP-NA with conventional computational re-
sources.

C.4. Additional Experiments 191

TABLE C.3: Evaluation of runtime and peak memory usage for the
SMIP-NA model with SST = 20, as the scenario tree expands with
increasing voyage length NP. Runtime and memory usage for NP = 5
and NP = 6 are extrapolated linearly based on the growth of |Z|
relative to NP = 4, and are marked with an asterisk (∗) to indicate

estimated values.

SMIP-NA Metrics

NP |Z| Runtime (s) Memory (GB)

4 400 1576.77 36.01
5 8,000 31,535.40* 720.23*

6 160,000 630,708.00* 14,404.66*

	Acknowledgements
	Abstract
	Resumé
	Samenvatting
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Research Motivation
	Thesis Statement
	Thesis Contributions
	List of Publications and Dissemination
	Thesis Outline

	Background
	Containers
	Vessel Characteristics
	Liner Shipping Business
	Service Network and Voyage
	Fleet Management
	Uptake Management
	Cargo Flow Management
	Stowage Planning

	Supply Chain
	Hinterland Transport
	Container Terminal and Yard Management
	Berth Allocation
	Quay Crane Scheduling
	Stowage Planning
	Load Sequencing
	Vessel Sailing
	Discharge Sequencing
	Hinterland Transport

	Preliminaries
	Foundations of Combinatorial Optimization
	Definitions
	Applications
	Solution Methods
	Challenges and Limitations

	Introduction to Machine Learning
	Definitions
	Applications
	Solution Methods
	Challenges and Limitations

	Fundamentals of Reinforcement Learning
	Definitions
	Applications
	Solution Methods
	Challenges and Limitations

	Literature Review
	Introduction
	Container Stowage Planning Problem
	Classification Scheme
	Literature Review
	k-Shift and Related Problems
	Multi-Port Container Stowage Planning
	Master Planning
	Slot Planning

	Single-Port Container Stowage Planning
	Computational Complexity
	Other Relevant Publications

	Research Agenda
	Representation Challenge
	Solution Methods
	Future Work
	k-Shift and Related Problems
	Multi-Port Container Stowage Planning
	Single-Port Container Stowage Planning

	Conclusion

	Integer Programming Model
	Introduction
	Related Work
	Mathematical Programming Models of the MPP
	Definitions and Assumptions
	Allocation Planning Model
	Template Planning Model
	Template Planning is NP-hard

	Results
	Conclusion

	Exploring Deep Reinforcement Learning
	Introduction
	Related Work
	Problem Formulation of Master Bay Planning Problem
	MIP Model of the MBPP

	Solving MBPP with Reinforcement Learning
	Proximal Policy Optimization Architecture
	Hyperparameter Tuning

	Results
	Conclusion

	Deep Reinforcement Learning under Uncertainty
	Introduction
	Definitions and Notation
	Related Work
	Markov Decision Processes
	Formal MDP
	Decomposed MDP

	Proposed Architecture
	Encoder-Decoder Model
	Feasibility Regularization in Actor-Critic Loss
	Feasibility Layers

	Experimental Results
	Experimental Setup
	Policy Performance
	Managerial Insights

	Conclusion and Future Directions

	Deep Reinforcement Learning under Uncertainty at Scale
	Introduction
	Related Work
	Container Stowage Planning
	Stochastic Programming
	Machine Learning for Optimization Problems

	Problem Formulation
	Deep Reinforcement Learning Framework
	Formal Markov Decision Process
	Decomposed Markov Decision Process
	Proposed Architecture
	Encoder-Decoder Model
	Feasibility Mechanisms
	Deep Reinforcement Learning Implementation

	Experimental Results
	Experimental Setup
	Policy Performance
	Ablation Study
	Managerial Insights

	Conclusion

	Conclusion and Future Directions
	Conclusion
	Discussion
	Ethical Considerations
	Future Directions

	Bibliography
	Appendices of Literature Review
	Experimental Results of Multi-Port Planning
	Network-Flow Model

	Appendices of DRL under Uncertainty
	MDP of Master Planning Problem
	Sets and Parameters
	Formal MDP
	Feasible Region

	Decomposed MDP
	Transitions
	Feasible Region
	Substituting Load Operations for Actions
	Feasible Region for Actions

	MPP Constraints
	Demand Constraints
	Capacity Constraints
	Stability Constraints

	Auxiliary Variables

	Feasibility Mechanisms
	Log Probability Adjustments
	Weighted Scaling Projection Layer.
	Violation Projection Layer.
	Policy Clipping

	Violation Projection Layer

	Instance Generator
	Multi-Stage Stochastic MIP
	Multi-Stage Scenario Tree
	MIP Formulation

	Deep RL Implementation Details
	PPO Algorithm
	SAC Algorithm
	Hyperparameters
	Additional Experiments

	Appendices of DRL under Uncertainty at Scale
	MPP Parameters
	Instance Generator
	Implementation Details of AI2STOW
	SAC Algorithm
	Projection Layers
	Violation Projection
	Policy Clipping
	Convex Program Layer

	Hyperparameters

	Additional Experiments

