o

IT UNIVERSITY OF COPENHAGEN

Ph.D. Dissertation

Variability Bugs:
Program and Programmer Perspective

Jean Carlos de Carvalho Melo

Supervisors:

Claus Brabrand
Andrzej Wasowski

June 15, 2017

Abstract

Many modern software systems are highly configurable. They
embrace variability to increase adaptability and to lower cost. To
implement configurable software, developers often use the C prepro-
cessor (CPP), which is a well-known technique, mainly in industry,
to deal with variability in code. Although many researchers suggest
that preprocessor-based variability amplifies maintenance problems,
there is little to no hard evidence on how actually variability affects
programs and programmers. Specifically, how does variability affect
programmers during maintenance tasks (bug finding in particular)?
How much harder is it to debug a program as variability increases?
How do developers debug programs with variability? In what ways
does variability affect bugs?

In this Ph.D. thesis, I set off to address such issues through
different perspectives using empirical research (based on controlled
experiments) in order to understand quantitatively and qualitatively
the impact of variability on programmers at bug finding and on
buggy programs.

From the program (and bug) perspective, the results show that
variability is ubiquitous. There appears to be no specific nature
of variability bugs that could be exploited. Variability bugs are
not confined to any particular type of bug, error-prone feature,
or location. In addition to introducing an exponential number of
program variants, variability increases the complexity of bugs due
to unintended feature interactions, hidden features, combinations
of layers (code, mapping, model), many function calls, etc.

From the programmer (and bug-finding) perspective, I find that
the time needed for finding bugs increases linearly with variability,
while finding bugs in the first place is relatively independent of
variability. In fact, most developers correctly identify bugs, yet
many fail to identify the exact set of erroneous configurations. I also
observe that developers navigate much more between definitions
and uses of program objects when interleaved with variability.

Overall, this Ph.D. thesis shows that variability complicates the
complexity of bugs and bug finding, but not terribly so. This is
positive and consistent with the existence of highly-configurable
software systems with hundreds, even thousands, of features, testi-
fying that developers in the trenches are able to deal with variability.

To my mother and grandmother

Acknowledgments

I am grateful to God for this great achievement in my professional career.

I would like to warmly thank my family and especially my wife, Edinez,
for their love, support, and encouragement through all these years.

I would like to thank my supervisors, Claus Brabrand and Andrzej
Wasowski, for their time and guidance during the past three years. I have
learned so much observing, talking, and writing papers with them.

I would like to thank all my ITU colleagues, especially the members of
the ITU SQUARE group for the great discussions on diverse SE topics
and for the feedback on my research. Thanks Ahmad Salim Al-Sibahi,
Aleksandar Dimovski, Alexandru F. Iosif-Lazdr, lago Abal, and Stefan
Stanciulescu! Also, I would like to thank Christian Késtner and my
colleagues from my stay abroad at Carnegie Mellon University.

Finally, I would like to thank the Brazilian National Council for Scientific
and Technological Development (CNPq), for funding this work under
the Science without Borders programme.

Contents

Introduction

11 Context e
1.2 Contributions
1.3 Listof Publications
14 Outline e

Problem Definition

2.1 Research QuestionsandGoals
22 Theses e e e

Variability Challenges for Programmers

3.1 How Does the Degree of Variability Affect Bug Finding? (Paper 1A)
3.2 Variability through the Eyes of the Programmer (Paper 1B)

Variability Challenges for Programs

4.1 Variability Bugs in Highly-Configurable Systems (Paper 2A)
4.2 A Quantitative Analysis of Variability Warnings in Linux (Paper 2B)

Variability-Aware Solution for Lifting Single-Program Analysis

5.1 Effective Analysis of C Programs by Rewriting Variability (Paper 3A)

Related Work

6.1 Empirical Studies of Programmers Debugging Programs
6.2 Empirical Studies of SoftwareBugs
6.3 Techniques for Finding Variability Bugs

Discussion: Variability Skeleton for Understanding the Impact of Changes

15
16
26

37
38
57

67
68

85
86
89
93

97

X Contents

71 MotivatingScenario
7.2 Variability-Aware Program Slicing L

8 Conclusion and Future Work

Bibliography

How Does the Degree of Variability Affect Bug Finding? (Paper 1A)

Variability through the Eyes of the Programmer (Paper 1B)

Variability Bugs in Highly-Configurable Systems: A Qualitative Analysis (Paper 2A)
A Quantitative Analysis of Variability Warnings in Linux (Paper 2B)

Effective Analysis of C Programs by Rewriting Variability (Paper 3A)

105

113

125

139

151

173

181

Chapter 1

Introduction

2 Chapter 1. Introduction

1.1 Context

Nowadays, many software systems are highly configurable. They em-
brace variability as a need to adapt their products to meet requirements
of various market segments and to extend portability across different
hardware platforms, for example. Highly-configurable systems include both
large industrial product lines [25, 76, 9] and open-source systems. In
some cases, such as the LiNnux kernel, thousands of configuration options
(features) are used to control the compilation process [11].

Software variability supports the development of such configurable
systems, which can be used to build many related software systems
(program variants), from a common piece of code, by fixing configuration
options as either enabled or disabled. A configuration option controls
whether to include or exclude a certain functionality in a program variant.
Software variability is a cost-effective way to develop and maintain a
variety of related software systems, increasing adaptability and lowering
the cost.

To implement configurable systems, a multitude of technologies can
be used: object-oriented patterns, aspects, domain-specific languages
and code generation, plug-in mechanisms, and so on. Among these, the
conditional compilation directives of the C preprocessor (crp) are one of
the oldest, the simplest, and the most popular [36, 60, 50] mechanisms in use,
especially in the systems domain. Preprocessor directives, like #ifdef
and #endif, enclose the variable code that can be included or excluded for
different selections of features (configurations).

Although bringing important benefits, (preprocessor-based) variabil-
ity also comes at a cost. In fact, multiple research indicate that variability
amplifies maintenance problems [84, 59, 80, 64]. For instance, it obfus-
cates the source code and reduces comprehensibility, making mainte-
nance error-prone and costly. As a consequence, configuration-dependent
bugs (a.k.a., variability bugs) appear [2]. (They will play a predominant
role in this dissertation.) Figure 1.1 illustrates a configurable program
with a bug involving one optional feature. One feature gives rise to
two possible configurations: a program with the assignment statement
(err = -1) in line 6, and a program without it. In general, n features
will give rise to 2" configurations; i.e., 2" program variants (assuming
there are no so-called feature constraints that invalidate certain features
combinations). Programming errors now depend conditionally on the
configurations selected. Importantly, variability errors thus occur only in

1.1. Context 3

int netpoll_setup(void) {
int err;
int ipv4 = 1;

#ifdef CONFIG_IPV6 // DISABLED
err = -1; // NOT compiled
#endif
if (ipv4)
return err; // BUG: Uninitialized Variable
return 0;

Figure 1.1: Example of a variability bug in a configurable program.

particular configurations and not in others. For instance, in our example,
if the feature CONFIG_IPV6 is disabled, the function returns the value of
an uninitialized variable, err, intended originally to hold an error value
in case of unexpected situations. If CONFIG_IPV6 is enabled, then err is
initialized in line 6 and, consequently, there is no uninitialized variable
error. A bug like this one is known as variability bug, since it occurs in
some program variants but not in others [2]. In fact, the error in Fig.1.1
occurs only whenever we disable CONFIG_IPV6 (which means that the
statement in line 6 is not executed; hence, the variable err, which was
declared and uninitialized in line 2, is never assigned a value. Since the
value of the variable ipv4 is 1 (true) in line 3, the return statement in
line 10 is executed returning the value of the uninitialized variable err).

Despite the widespread adoption of preprocessor-based variability,
there is little to no hard evidence on how variability affects programs and
programmers. We lack empirical studies and tools to better understand
the effect of variability and to efficient analyze all program variants,
respectively. Specifically, how does variability affect programmers during
maintenance tasks (bug finding in particular)? How much harder is it
to debug a program as variability increases? How do developers debug
programs with variability? In what ways does variability affect bugs?
Are variability bugs limited to specific type of bugs, features, or locations
in the code base?

In this Ph.D. thesis, I set off to address such issues through different
perspectives using empirical research (based on controlled experiments)

4 Chapter 1. Introduction

in order to understand quantitatively and qualitatively the impact of
variability on buggy programs and on programmers at bug finding.

From the program (and bug) perspective, I observe that variability is
ubiquitous. There appears to be no specific nature of variability bugs that
could be exploited. Variability bugs are not confined to any particular
type of bug, error-prone feature, or location. In addition to introducing
an exponential number of variants, variability increases the complexity
of bugs due to unintended feature interactions, hidden features, combi-
nations of layers (code, mapping, model) involving different languages
(e.g., C, cpp, Kconfig for Linux), many function calls, etc.

From the programmer (and bug-finding) perspective, I find that the
time needed for finding bugs increases linearly with the number of fea-
tures, while finding bugs in the first place is relatively independent of
variability. In fact, most developers correctly identify bugs in programs
with variability, yet many fail to identify the exact set of erroneous con-
figurations. This is consistent with earlier hypotheses that programmers
introduce errors because it is difficult to reason about all configurations.
I also observe that developers navigate much more between definitions
and uses of program objects when interleaved with variability.

Finally, I discuss a variability-aware solution, called rewriting vari-
ability, that enables single-program analysis tools, which do not handle
variability by design, to detect successfully and efficiently (variability)
bugs in configurable programs.

Overall, this Ph.D. thesis shows that variability complicates the com-
plexity of bugs and bug finding, but not dramatically so. This is positive
and consistent with the existence of highly-configurable software systems
with hundreds, even thousands, of features, testifying that developers in
the trenches are able to deal with variability.

1.2 Contributions

This dissertation makes the following main contributions:

* Understanding the impact of variability in terms of the time and accuracy
of bug finding in highly-configurable systems (Section 3.1). This study
consists of a controlled experiment with N=69 participants to quan-
tify the impact of variability on debugging of preprocessor-based
programs. I measure speed and precision for bug finding tasks

1.3. List of Publications 5

defined at three different degrees of variability on several subject
programs derived from real systems.

* Providing the first study of variability debugging using eye tracking
(Section 3.2). This study describes an eye-tracking experiment with
follow-up interviews to investigate more precisely how developers
approach and debug programs in presence of variability. I ask
developers to debug programs with and without variability, while
recording their eye movements using an eye tracker.

e Identification and in-depth analysis of 98 bugs from four highly-
configurable software systems: Linux, Apache, BusyBox, and Marlin
(Section 4.1). These bugs consist of a wide variety of actual variabil-
ity errors in configurable software. This study includes an in-depth
analysis and presentation for non-experts, resulting in the Variability
Bug Database (VBDb).!

* Automated analysis and classification of 400,000 configuration-dependent
warnings in the Linux kernel (Section 4.2). This study analyzes more
than 20 thousand valid and distinct random configurations, result-
ing in a total of 400,000 configuration-dependent warnings. Based
on this corpus, I provide insights in the distribution of warning
types and the location of the warnings.

* A variability-aware technique, rewriting variability, that enables off-the-
shelf single-program analysis tools to effective and efficient find a wide
class of variability bugs in configurable software (Section 5.1). This
technique relies on a series of variability-related transformation
rules that translate configurable programs into single programs by
replacing compile-time variability with run-time variability (non-
determinism).

1.5 List of Publications

Here is the list of the research papers that this Ph.D. dissertation is based
upon. Notice that all published research papers were peer-reviewed.

Paper 1A How Does the Degree of Variability Affect Bug Finding?
Jean Melo, Claus Brabrand, and Andrzej Wasowski.

Ihttp://VBDb.itu.dk

http://VBDb.itu.dk

Paper 1B

Paper 2A

Paper 2B

Paper 3A

Chapter 1. Introduction

In Proceedings of the 38th International Conference on Soft-
ware Engineering (ICSE), pages 679-690, 2016.

Variability through the Eyes of the Programmer.

Jean Melo, Fabricio Batista Narcizo, Dan Witzner Hansen,
Claus Brabrand, and Andrzej Wasowski.

In Proceedings of the 25th International Conference on Pro-
gram Comprehension (ICPC), pages 34—44, 2017.

Variability Bugs in Highly-Configurable Systems: A Qualitative
Analysis.

Iago Abal, Jean Melo, Stefan Stanciulescu, Claus Brabrand,
Marcio Ribeiro, and Andrzej Wasowski.

Accepted for publication in the ACM Transactions on Software
Engineering and Methodology (TOSEM).

A Quantitative Analysis of Variability Warnings in Linux.

Jean Melo, Elvis Flesborg, Claus Brabrand and Andrzej Wa-
sowski.

In Proceedings of the 10th International Workshop on Variabil-
ity Modelling of Software-intensive Systems (VaMoS), pages
3-8, 2016.

Effective Analysis of C Programs by Rewriting Variability.
Alexandru F. losif-Lazar, Jean Melo, Aleksandar S. Dimovski,
Claus Brabrand and Andrzej Wasowski.

In The Art, Science, and Engineering of Programming Journal
(Programming), Vol. 1(1): 1-25, 2017.

1.4 OQutline

The dissertation is organized as follows:

¢ Chapter 2 states the three problems, including research questions,
that are addressed in this PhD dissertation.

* Chapter 3 describes two controlled experiments in order to under-
stand the impact of variability on bug finding, and how program-
mers debug with preprocessor annotations.

1.4, QOutline 7

* Chapter 4 presents a qualitative study of 98 variability bugs in
four highly-configurable systems: Linux, Apache, BusyBox, and
Marlin; as well as a quantitative analysis of configuration-dependent
warnings in Linux.

* Chapter 5 describes the proposed rewriting variability technique for
lifting conventional single-program analysis tools to find variability
bugs, followed by an evaluation.

* Chapter 6 reviews state-of-the-art related work.

* Chapter 7 provides a sketch of one possible solution for helping
developers reason about multiple configurations.

¢ Chapter 8 draws my final conclusions, summarizes the contribu-
tions of this PhD thesis, and provides directions for future work.

Chapter 2

Problem Definition

10

Chapter 2. Problem Definition

PROBLEM SoruTION
SPACE SPACE
— QUADRANT 1 — — QUADRANT 4 —
R P1: No hard evidence on how variabil- || P4: Programmers fail to reason about
25 3
S . ity affects programmers. configurations.
= E Q1. How does variability affect pro- || Q4: How to support programmers to
<Y grammers on bug finding? reason about configurations?
5 Z T1: Variability increases linearly the || T4: Beyond the scope of this disser-
oL bug-finding time and makes it dif- tation. (Chapter 7 provides a
& ficult to identify the erroneous con- sketch of one possible solution.)
(ol figurations.
— QUADRANT 2 — — QUADRANT 3 —
P2: Lack of evidence on how variability || P3: Infeasible to lift all program analy-
5 i affects bugs. ses to deal with variability.
El Q2. How does variability affect bugs? Q3. How to lift conventional analysis
M O| Q2 Y 8 25 Y
8 ? T2: Variability increases the complexity tools to find variability bugs?
= of bugs; and these (variability) bugs || T3: Rewriting variability enables single-
[l are not confined to any type of bug, program analysis tools to find bugs
feature, or location. in highly-configurable systems.

Table 2.1: Overview of the research Problems, Questions, and Theses.

This chapter scopes the research problems on variability challenges and
solutions for programs and programmers that I focus on this dissertation.

Table 2.1 presents an overview of the research problems, questions,
and theses that I am interested in. I investigate variability from the
problem and solution space (columns) in combination with the program-
mer and program perspective (rows). Each quadrant consists of a triple
(P, Q, T) where P stands for Problem, Q for research Question, and T for
Thesis. Notice that QUADRANT 4 is beyond the scope of this Ph.D. thesis.
However, I enumerate its (deliberately open) research problem like for
the others and, in Chapter 7, I provide a sketch of one possible solution
that might help developers reason about configurations by providing a
simplified program with a variability skeleton for a given program point.

In the following, I detail each quadrant element (P, Q, T), beginning
with the problems:

P1 [problem space, programmer perspective] — No hard evidence on
how variability affects programmers on bug finding. Recent litera-
ture is riddled with unsubstantiated claims indicating that variability
increases complexity and makes reasoning about programs more
difficult. I list a few examples: “bug-finding is a time-consuming and
tedious task in the presence of variability” [80]; “managing variability can
become complex” [91]; “variability specifications and realizations tend to

P2

P3

11

erode in the sense that they become overly complex” [98]; “understandability
and maintainability may be negatively affected” [40]. However, there is
little to no hard evidence for these claims. Specifically, how does
variability affect programmers during maintenance tasks (bug find-
ing in particular)? To what extent does variability affect quality of
debugging? How much harder is it to debug a program as variability
increases? How do developers debug programs with variability?
Do developers consider all execution paths (configurations) when
debugging programs with variability?

[problem space, program perspective] — Lack of studies for under-
standing the complexity and nature of variability bugs. Little effort
has been put into understanding what kind of bugs appear in highly-
configurable systems, and what are their variability characteristics.
Variability is an essential aspect of highly-configurable systems, from
which understanding it would help to ground research on variability-
sensitive analyses. It would also inspire the creation of programmer
support and bug finding tools, contributing to more effective de-
bugging and, ultimately, fewer bugs in highly-configurable systems.
Specifically, in what ways does variability affect bugs? Are variability
bugs limited to specific type of bugs, features, or locations in the code
base?

[solution space, program perspective] — It is infeasible to lift ev-
ery single conventional program analysis and bug finding tools
to deal with variability. Analyzing highly-configurable systems is
challenging, since the number of configurations is exponential in
the amount of features. This mean that to brute force all variants
individually using conventional single-program analysis tools is im-
practical. However, most of the modern analysis tools are built to
analyze one program and thus cannot cope with variability. Recently,
a handful of variability-aware analysis tools have been developed
such as syntax checking [1, 39], type checking [51, 20], and static
analysis [14, 13], to find bugs directly in configurable systems. But,
often, these variability-aware tools are rare, experimental, and not
fast enough to extensively scan the long history of real software
systems like Linux. In general, it is very difficult and infeasible to
re-implement all sorts of analyses, which already exist for decades
in single-program analysis tools, in a variability-aware manner. In
other words, the question is: how to make conventional analysis tools

12 Chapter 2. Problem Definition

detect bugs in highly-configurable systems, without reinventing the
wheel?

P4 [solution space, programmer perspective] — Difficulty of reason-
ing about the configuration space (all variants) when debugging.
Highly-configurable systems include both large industrial product
lines and open-source systems, such as the Linux kernel with thou-
sands of features. Debugging such systems requires understanding
the combinations of features, which indeed becomes difficult fast
(cf. Paper 1A). For instance, as little as 33 independent features yield
more possible program variants than there are people on the planet.
Thus, debugging in this context is notoriously hard for programmers.
In fact, I observe that the time to find a bug increases linearly with the
number of features and that most developers fail to correctly identify
the exact set of erroneous configurations (cf. Paper 1A). But, how to
support programmers to correctly reason about all configurations?
How to make programmers aware of the variability context when
they are modifying or understanding a variable program? These are
open research questions which are beyond the scope of this disser-
tation. I refer to Chapter 7 where I sketch one possible solution to
these questions.

2.1 Research Questions and Goals

This thesis aims to tackle the following (deliberately broad) research
question:

How does variability affect software maintainability?

In this context, software maintainability refers to corrective maintenance,
according to Lientz’s and Swanson’s terminology [61]. Corrective main-
tenance is the activity of diagnosing and fixing errors in a software
system.

In the following, I define detailed questions based on three high-
level goals to address this overall research question. The research goals
comprise two distinct perspectives on software variability: one of which
focuses on bug finding from the programmer standpoint, and the other
two goals are concerned with bugs (program artifacts). Note that the
three goals correspond to the three questions (Q’s) in Table 2.1.

2.2. Theses 13

Goal 1 Understand how variability affects programmers on bug finding.
(Programmer Perspective)

Q1 How does variability affect programmers on bug finding?

Goal 2 Investigate characteristics and identify bugs caused by variability
of real highly-configurable systems. (Program Perspective)

Q2 How does variability affect bugs?

Goal 3 Explore conventional program analysis tools and propose a tech-
nique to make them find bugs in presence of variability. (Program
Perspective)

Q3 How to [ift single-program analysis tools to find variability
bugs?

The ultimate goal is to understand how variability impacts programmers
on bug-finding and programs on bugs. In addition, based on the detailed
findings, the objective is also to inspire the creation of programmer sup-
port tools addressing the challenges faced by developers when reasoning
about configurations, and to lift single-program analysis tools to find
variability bugs, contributing to more effective debugging and, ultimately,
tewer bugs in highly-configurable systems.

2.2 Theses

Corresponding to the research questions, I elaborate the following theses:

T1 The time needed for finding bugs appears to increase linearly with the
number of features, while effectiveness of finding bugs is relatively
independent of variability. However, identifying the exact set of
erroneous configurations is difficult, already for a low number of
features. Variability also increases the number of gaze transitions (eye
movements) between definition-usages for variables and call-returns
for methods.

T2 Variability is ubiquitous. There appears to be no specific nature
of variability bugs that could be exploited. Variability bugs are not
confined to any particular type of bug, error-prone feature, or location.
Variability also increases the complexity of bugs due to unintended

14 Chapter 2. Problem Definition

feature interactions, hidden features, combinations of layers (code,
mapping, model) involving different languages (e.g., C, cpp, Kconfig
for Linux), many function calls, etc.

T3 Conventional program analysis tools, which do not handle variabil-
ity, are able to effectively and efficiently find bugs in configurable
programs by rewriting variability. Rewriting variability appears to be
a cost-efficient solution to lifting program analyses.

In summary, this Ph.D. thesis shows that:

Variability complicates bug finding and bug complexity, but not
terribly so. Also, by rewriting the variability in the source code,
off-the-shelf single-program analysis tools are able to detect suc-
cessfully and efficiently variability bugs.

Chapter 3

Variability Challenges for Programmers

16 Chapter 3. Variability Challenges for Programmers

This chapter gives an overview of the results from the two publications
dedicated to my first research question (Q1), as described in Chapter 2.
Here, I provide evidence related to the problem-programmer quadrant,
as highlighted in Table 3.1, by summarizing the publication contributions
to Goal 1 and Q1. The first quadrant is about the intersection between
problem space and programmer perspective. That is, it regards the
problems of variability on bug finding from the programmer point of
view. In the following, I describe Paper 1A and Paper 1B, which gather
evidence on this matter.

PROBLEM SOLUTION
SPACE

— QUADRANT 1 — — QUADRANT 4 —
g P1: No hard evidence on how variabil-
S . ity affects programmers.
S E Q1. How does variability affect pro-
< 3 grammers on bug finding?
5’) Z T1: Variability increases the bug-

A finding time and makes it difficult 7

o) 8
4 to identify the erroneous configura-
ol tions.

— QUADRANT 2 — — QUADRANT 3 —
=
<
[
O
O
&

Table 3.1: Research problem, question, and thesis of the QUADRANT 1.

5.1 How Does the Degree of Variability Affect Bug Finding?
(Paper 1A)

Summary

This paper investigates the impact of variability on bug finding from
the developer standpoint. Although software projects embrace variabil-
ity to increase adaptability and to lower cost, many researchers and
practitioners blame variability for increasing complexity and making
reasoning about programs more difficult. However, there is little to no
hard evidence on how exactly variability affects maintenance tasks, bug

3.1. How Does the Degree of Variability Affect Bug Finding? (Paper 1A) 17

int netpollSetup() {
int err;
boolean ipvd = true;
boolean flag true;

int netpollBSetup() { 1 int netpollSetup() {
int err; 2 int err;
boeclean ipvd - true; 3 boolean ipvi true;
boolean flag - true; 4 boolean flag = true;

AT -
koW ks =

flag = false; flag = false; flag = false;

&
7
8

o =

if (flag) err = -1;

:'Ii.éh(flag} err = -1; i‘.ékfflaq) err = =1;
9 .. 9 ... 9 V.
10 if (ipv4) return err; 1 if (ipvi) return err; 10 if (ipv4) return err;
11 - 11 - 11 -
12 return 1; 12 return 1; 12 return 1;
13 1 13 } 13 }
(a) Zero features (NO). (b) One feature (LO). (c) Three features (HI).

Figure 3.1: A program with an uninitiliazed variable error with progres-
sively increasing degrees of variability.

finding in particular. I therefore carry out a controlled experiment with
N=69 participants to quantify the impact of variability on debugging of
preprocessor-based programs. I measure speed and precision for bug
finding tasks defined at three different degrees of variability on several
subject programs derived from real systems.

The results indicate that the speed of bug finding appears to decrease
linearly with the degree of variability, while effectiveness of finding
bugs is relatively independent of the degree of variability. Additionally,
identifying the set of configurations in which the bug manifests itself is
difficult already for a low degree of variability. Surprisingly, identifying
the exact set of affected configurations appears to be harder than finding
the bug in the first place. The difficulty in reasoning about several
configurations is a likely reason why the variability bugs are actually
introduced in configurable programs in the first place.

Context & Motivation

The C preprocessor (cprp) is one of the oldest, the simplest, and the most
popular [36, 60, 50] mechanisms in use to handle variability at the code
level. For this reason, I consider preprocessor-based variability (a.k.a.
#ifdefs) in this study.

Figure 3.1 illustrates how the task of debugging becomes more com-
plex as the number of features increase. This code example is extracted
from the Netpoll module of the LiNnux kernel, slightly adapted to Java
syntax using coloured lines instead of preprocessor [50]. The original
function, called netpoll_setup in C, contains variability and is used to
initialize the module. It is about 100 lines long and involves one optional

18 Chapter 3. Variability Challenges for Programmers

feature. Historic versions of the function, contained an error.! If the fea-
ture is disabled, the function returns the value of an uninitialized variable,
err, intended to hold an error value in case of unexpected situations.

Figure 3.1a shows a version of the bug as a conventional program
without variability. It is fairly easy to establish that the function returns
the value of an uninitialized variable in line 10. (In line 6, the variable
flag is assigned false which means that the conditional statement in
line 8 is not executed; hence, the variable err which was declared and
uninitialized in line 2, is never assigned a value. Now, since the value
of the variable ipv4 is true (line 3), the conditional statement in line 10
returns the value of the uninitialized variable err.)

Figure 3.1b contains the same program, but now involving one feature
shown in light gray background color (line 6). A feature, such as light
gray in this example, can be configured either as enabled or disabled. Fea-
tures are used in compile-time conditional directives (#ifdefs) to control
whether to include or exclude code fragments in a program. Obviously,
a feature thus gives rise to two possible configurations: a program with
the light gray statement, and a program without it. In general, n features
will give rise to 2" configurations; i.e., 2" program variants. Now, bugs
conditionally depend on configurations. That is, they become variability
bugs (i.e., bugs that occur in some configurations and not in others). In
fact, the error in Figure 3.1b occurs only whenever the light gray feature
is enabled.

Figure 3.1c shows the same programs as before, but now with three
features: light gray, gray, and dark gray. The three features yield eight
configurations. (Here, I assume that there is no feature constraints for
simplicity.) In debugging the program, the developer must somehow
consider all configurations. Combinatorial problems are difficult for
humans. Indeed, for our program in Figure 3.1c, the error now occurs in
exactly three (out of eight) configurations.

But, how are maintenance tasks (bug finding in particular) affected
by variability? How much harder is it to debug a program as variability
increases? Does variability affect speed or also quality of debugging?
In this paper, I set off to understand such issues using a controlled
experiment designed to quantify the impact of the degree of variability
on program code on bug finding.

1http ://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/
?id=e39363a9def53dd4086bel07dc8b3ebca09f045d

http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=e39363a9def53dd4086be107dc8b3ebca09f045d
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=e39363a9def53dd4086be107dc8b3ebca09f045d

3.1. How Does the Degree of Variability Affect Bug Finding? (Paper 1A) 19

Method

In the experiment I use simplifications of real bugs extracted from Linux,
BusyBox, and BestLap. Given a program and a degree of variability, I
ask the participants to debug the programs. In other words, I perform a
range of classic “find the bug” experiments [72] and measure the time and
accuracy of the bug-finding task. I settled on using three distinct degrees
of variability. Let IF denote the set of features (conditional compilation
symbols used in a program). First, to establish a baseline, I consider
programs with no variability (degree NO, F =). Then, I consider
programs that use one feature (degree LO, |F| = 1) and programs with
three features (degree HI, |F| = 3). The number of configurations grows
from one for degree NO programs, two for LO programs, to eight for
HI. This should make any performance differences manifest themselves
clearly. Even though it would be interesting to study higher degrees, the
limitation to three features has one important advantage: it leaves us with
programs sufficiently small to be used in a time-delimited controlled
experiment. Lastly, I measure the time for them to find the bug, the
number of correct vs incorrect identifications of bugs, and whether they
can pinpoint the exact set of erroneous configurations.

I derive programs of lower degrees by taking an erroneous program
with three features and appropriately fix features as either enabled or
disabled retaining the original error (cf. Paper 1A). I thus obtain three
versions of each program: “N0”, “L0”, and “HI” (much like in Fig.3.1).

I ran the experiment with N=69 participants: 31 M.Sc. students,
32 Ph.D. students and 6 post-docs from three Danish universities: IT
University of Copenhagen (ITU), University of Copenhagen (KU), and
Technical University of Denmark (DTU).

Results

In this paper, I make eight observations addressing two research
questions—the impact of variability on the time and accuracy of bug
tinding. Here, I detail five main observations. I refer to Paper 1A for
more details (including a few more observations).

OBSERVATION 1: Mean bug-finding time appears to increase lin-
early with the degree of variability.

20 Chapter 3. Variability Challenges for Programmers

Time (Minutes)

0 -

T T T T
NO (|F|=0) LO (|F|=1) HI (|F|=3)

Degree (|F|)

Figure 3.2: Mean bug-finding time (along the y-axis in minutes) as a
function of the degree of variability (x-axis).

Figure 3.2 plots the mean bug-finding times (in minutes, along the y-axis)
for each of our three benchmark programs. Each dot depicts the mean
time to find the bug, for a particular program (P1, P2 and P3), for a
particular degree of variability, i.e., NO (|[F| = 0), LO (|F| = 1), and HI
(/F| = 3). For instance, the fastest mean bug-finding time is about 3%
minutes (for program P1 with NO variability), whereas the slowest mean
bug-finding time is a bit less than 10 minutes (for program P3 with a HI
variability degree of |[F| = 3). For each program, I fit a regression line to
its respective points. The lines suggests that the mean bug-finding time
increases linearly with the degree of variability. According to an ANOVA
test, the difference between bug-finding times for distinct degrees of
variability is statistically significant, with p-value = 2.0 x 1078. Also
bug-finding time is a linear function of programs and degrees, with
p-value = 3.6 x 1077, by F-test for regression.

Recall that the number of variant programs to be considered by a
participant grows exponentially with the degree of variability (i.e., | K| =
2/Fly. Clearly, a developer has to somehow consider each of the 2/F
variants in order to make an accurate diagnosis of the bug. After all,
each of the variants may or may not harbour a bug. One might then, in
fact, suspect that bug-finding time ought to increase exponentially with
the degree of variability.

3.1. How Does the Degree of Variability Affect Bug Finding? (Paper 1A) 21

The post-treatment interviews provide qualitative insights into how
the participants approached the problem and what difficulties they faced
in understanding programs with a HI variability degree. The participants
agree that finding bugs in the NO programs, so without variability, re-
quired less effort than in programs with HI degree of variability. One
participant explains:

“I tried to keep all different paths in mind, but it was especially
difficult with multiple colors [HI].”

Along the same lines, another participant says:

“With more variability [HI] you need to build up exponentially more
traces in your head.”

The participants analyze programs as one unit despite variability. They
do not split the task into analysis of exponentially many independent
programs, one variant at a time. An unconscious use of brute force would
yield a 2/¥l factor slow down in overall bug-finding time.

Hick’s Law [44] from psychology, based on so-called choice-reaction-
time experiments, explains that the amount of time for a human response
increases logarithmically with the number of possible choices. Compared
to a baseline program with NO variability, programs with higher degrees
of variability involve exponentially more choices to be made. Obviously,
composing an exponential function with a logarithmic one yields a linear
function. We thus hypothesize that the seemingly linear increase in
bug-finding time, in spite of the exponential blow up, can be attributed
to Hick’s Law.

In summary, the first observation indicates that an increase in vari-
ability (e.g., by adding features) complicates bug finding, but not dra-
matically and not prohibitively so. This is a very positive finding, that
is consistent with existence of software products with hundreds, even
thousands, of features, testifying that developers in the trenches are able
to deal with variability.

OBSERVATION 2: The variance of bug-finding time appears to be
amplified by the degree of variability.

Figure 3.3 shows the distribution of bug-finding times for each program
and variability degree. Each box encapsulates the middle 50% data
points. The lower and upper limit of the box respectively represent the
lower and upper quartiles (the 25% and 75% percentiles). The upper and
lower whiskers represent the data above and below the middle half of

22 Chapter 3. Variability Challenges for Programmers

Program
O P

= P2
= P3

25
20

15

J—

10 o : o
. . .

B E : I : . :
TgHT - el
, o A
T T T T T T T
NO LO H NO LO H NO LO HI

(F=0) (F=1) (F=3) (F=0) (F=1) (F=3) (F=0) (F=1) (F=3)
Degree (|F|)

Time (Minutes)
]

Figure 3.3: The distribution of bug-finding time.

the data. The horizontal line within the box draws up the median of the
data points. Finally, the circles above the boxes visualize outliers. For
instance, for program P3 (the three rightmost boxes), the middle half of
the participants spent between 3% and 5 minutes to find the bug with NO
variability, whereas, for HI variability, the middle half spent from about 7
to 101 minutes. Again, considering only participants that found the bug
yields a similar diagram, consistent with the above.

Amplification of variance is a predictable consequence of our first
tinding. For the variance of a stochastic variable, X, multiplied by a
constant factor, ¢ (depending on the degree of variability), we have that:
Var(c X) = c? Var(X).

In popular terms, this observation means that differences in bug-
finding competences are amplified when working with variability. Ulti-
mately, this may mean that getting talented developers on such projects
is important.

OBSERVATION 3: Most developers correctly identify bugs in pro-
grams regardless of the degree of variability.

Figure 3.4 shows what percentage of developers were able to find the
bugs correctly. The incorrect answers are black, and the correct ones are
gray. The data is presented for each degree of variability separately. The

3.1. How Does the Degree of Variability Affect Bug Finding? (Paper 1A) 23

Hi .

10—] Wincorrect

No I | Sorrect
0% 20% 40% 60% 80% 100%

Figure 3.4: Ratio of incorrectly vs. correctly identifying a bug.

frequency of incorrect answers is consistently low, with around a fifth
being the incorrect answers. For programs with NO variability, 16% of
subjects (11 out of 69) did not find the bug. Even for the HI variability
programs, only 22% of the subjects (15 out of 69) answered incorrectly.
Generally, developers seem to be good at finding bugs in programs—
and in programs with variability (at least, up to three features). Interest-
ingly, more than half (38 out of 69) of the participants correctly identified
the bug in all three tasks. On average, disregarding the variability de-
grees, 79% of the participants were able to correctly find the bug. All in
all, I conclude that the ability to find bugs in programs seems not to be
significantly affected by the degree of variability (at least for |F| < 3).

OBSERVATION 4: Many developers fail to exactly identify the set of
erroneous configurations, already for a low degree of variability.

Let us now look a little closer at accuracy and split the correct answers in
two categories. If the participant got the set of erroneous configurations
exactly right, I classify her answer as fully correct. Similarly, I classify
answers as partially correct, if the developer has correctly identified the
bug, but failed to correctly specify the set of configurations in which
the error occurred (missing some configurations or listing too many). I
ignore incorrectly identified bugs for this part of the analysis, as it is hard
to interpret the identification of configurations for them. For instance,
program P3 with HI variability, contains an assertion error that occurs
in two (out of eight) configurations. For this task, some participants
found only one of the erroneous configurations and others listed extra
configurations for which the error does not occur. Figure 3.5 presents
the numbers of fully and partially correct answers at different degrees of
variability.

Obviously, partial correctness does not make sense for programs
without variability (for NO we have only one possible configuration).

24 Chapter 3. Variability Challenges for Programmers

HI iz |

BPpartially correct
OFully correct

L0 gzrzzA

NO | |

0% 20% 40% 60% 80% 100%

Figure 3.5: Ratio of partially correctly vs. fully correctly identifying a bug.

Already for LO variability (one feature), notice that the number of partially
correct answers quickly rises to 17% (9 out of 52). For HI variability, this
number escalates to almost 40% (20 out of 54).

Identifying the exact set of erroneous configurations seems to be-
come difficult already for |[F| = 3 (HI variability). Doing this requires
understanding the combinations of features that enable the incriminated
execution paths—a form combinatorial reasoning, which apparently be-
comes difficult fast. Such problems are notoriously hard for humans. For
realistic systems, where a feature model additionally shapes the set of
legal configurations, this task would presumably be even harder (as one
needs to reason about feature model constraints, in addition).

From prior qualitative studies [2, 64], it is known that programming
errors related to variability appear due to inability of programmers to
correctly reason about all variations of the program that they are modi-
fying. Those findings are consistent with the above: it is plausible that
developers mis-identify the sets of configurations during programming
tasks and during debugging tasks for the same reasons. To the best of
my knowledge, this study presents the first quantitative confirmation
that indeed reasoning about multiple configurations is a challenge, even
for relatively small sets.

OBSERVATION 5: For higher degrees of variability, it appears to be
more difficult to correctly identify the set of erroneous configurations
than to find the bug in the first place.

For HI variability, 22% (15 out of 69) participants did not find the bug
(see Figure 3.4). Among the ones that did, a staggering 37% (20 out of
54) erred on set of erroneous configurations (cf. Figure 3.5).

Although the participants were only asked to find the bugs, not (also)
fix them, I find that these results are consistent with studies of creating
and fixing bugs. Yin and coauthors report that in general bug fixers “may

3.1. How Does the Degree of Variability Affect Bug Finding? (Paper 1A) 25

forget to fix all the buggy regions with the same root cause.” [97]. Another
study also reports that bugs are introduced because the programmers
do not realize the complexity of all the configurations in which their
code will run [2]. This is also confirmed by another interview study that
many developers only check a few configurations of the source code in
practice [64].

Contributions

This paper contributes to Goal 1, which aims to understand how vari-
ability affects programmers on bug finding. Research question Q1 asks
for the impact of variability on debugging. Responding to this question,
the results of this paper show that bug-finding time appears to increase
linearly with the degree of variability. This conclusion is both positive
and negative. An increase in variability complicates bug finding (nega-
tive), but not dramatically so (positive) — if developers reasoned about
each of the variants separately I would have observed an exponential,
not linear, growth. The practical implication is that it is beneficial to
introduce variation points into programs from the debugging perspective:
It is beneficial to pay a linear price for bug finding, if the alternative is to
maintain a super-linear set of variants (at least up to three variations in a
file). However, there might be benefits in selecting designs (architectures
and algorithms) that require less variability, if possible.

Somewhat expectedly, the variance in bug-finding time is amplified
by variability. In other words, differences in bug-finding competences of
developers appear to be amplified when working on software projects
with variability. Getting talented developers for such projects might be
important.

I also find that most participants correctly identify bugs in programs
with accuracy regardless of the degree of variability. However, developers
often fail to exactly identify the set of erroneous configurations (in which
the bug manifests itself), and this happens already for a rather low
number of features, and gets worse when variability increases. Clearly,
reasoning about multiple configurations is a challenge. This is consistent
with earlier qualitative indications that variability bugs appear, when
developers unintentionally ignore an execution that is enabled by an
unexpected (for them) configuration of features [2, 64].

26 Chapter 3. Variability Challenges for Programmers

1 [import java.util.Random; 1 [import java.util.Random;
2 2

3 |public class Http { 3 |public class Http {

4 String subject = null; 4 String subject = null;

5 int totalLength = 600; 5 int totallLength = 600;

6 final int HTTP_UNAUTHORIZED = 401; 6 final int HTTP_UNAUTHORIZED = 401;

7 final int HTTP_NOT_IMPLEMENTED - 501; 7 final int HTTP_NOT IMPLEMENTED - 501;

8 boolean LARGE_FORMAT = false; 8 #ifdef CONFIG_FEATURE_HTTPD_CGI

9 String REQUEST GET = "GET"; 9 String REQUEST GET - "GET";

10 - 10 #endif -

11 11

12 public void sendHeaders (int responseNum) (12 public void sendHeaders(int responseNum) {
13 if (LARGE FORMAT) { 13 #ifdef CONFIG_LFS

14 int buf = 0; 14 int buf = 0;

15 buf = totalLength - responseNum; 15 buf = totallength - responseNum;

16 subject = "response header"; 16 subject = "response header";

17) 17 #endif

18 if (subject.isEmpty()) 18 if (subject.isEmpty())

19 subject = "Void response"; 19 subject = "Void response”;

20 System.out.println("done"); 20 System.out.println("done");

21 1 21 }

2 2

2 private void handleIncoming (String requestType) { 23 private void handleIncoming (String requestType) {
24 2 #ifdef CONFIG_FEATURE_HTTPD_BASIC_ AUTH
25 boolean http_unauthorized = new Random().nextBoolean(); 25 boolean http_unauthorized — new Random().nextBoolean () ;
26 if (http_unauthorized) 26 if (http_unauthorized)

27 sendﬁeaders (HTTP_UNAUTHORIZED) ; 27 sendﬁeaders (HTTP_UNAUTHORIZED) ;

28 28 #endif

29 2 #ifdef CONFIG_FEATURE_HTTPD_CGI

30 if (IrequestType.equals (REQUEST GET)) 30 if (IrequestType.equals (REQUEST_GET))
31 sendHeaders (HTTP_NOT_IMPLEMENTED) ; 31 sendHeaders (HTTP_NOT_IMPLEMENTED) ;
32 32 #endif

3 ¥ 33)

34 34

33 public static void main(String[] args) { 35 public static void main(String[] args) {
36 Http http — new Http(); 36 Http http — new Http();

37 http.handleIncoming ("POST") ; 37 http.handleIncoming ("POST") ;

38 } 38)

39 [39 |}

(a) Without variability. (b) With variability.

Figure 3.6: Program P without and with variability.

5.2 Variability through the Eyes of the Programmer (Paper 1B)

Summary

In my previous paper (Paper 1A), I investigate the impact of variability
on bug finding in terms of time and accuracy. However, I focus only
on quantitative aspects of debugging, and not on how developers debug
programs with variability. Additionally, little is known about the cog-
nitive process of debugging programs with variability. Thus, to better
account for the effect of variability on debugging, I carry out a follow-up
eye-tracking experiment to understand how developers debug programs
with variability. I ask developers to debug programs with and without
variability, while recording their eye movements using an eye tracker.

The results indicate, not surprisingly, that debugging time increases
for code fragments containing variability. Interestingly, debugging time
also seems to increase for code fragments without variability in the
proximity of fragments that do contain variability. The presence of
variability correlates with an increase in the number of gaze transitions
between definitions and usages for fields and call-returns for methods.
Variability also appears to prolong the “initial scan” of the entire program
that most developers initiate debugging with.

3.2. Variability through the Eyes of the Programmer (Paper 1B) 27

Context & Motivation

Configurable software systems are challenging for developers because
code fragments may be conditionally included or excluded depending
on whether particular features are enabled or disabled. This means that
developers need to reason about several different configurations (versions
of the program), each with different data- and control-flow in order to
understand a program with variability. This impacts debugging. In
programs with variability, some errors occur conditionally, only in certain
erroneous configurations (i.e., when certain combinations of features are
enabled /disabled).

Previous studies have demonstrated that debugging is overall difficult
and time consuming in the presence of variability (e.g., Paper 1A and
[80]). In this paper, I use eye tracking to study more precisely how devel-
opers debug programs with variability. I compare how the developers
look at a program with variability against a version of it without variability
(as a baseline).

Figure 3.6 presents a code scenario extracted from BusyBox which is
an open-source highly-configurable system with about 600 features that
provides several essential Unix tools in a single executable file. We have
adapted the extracted example from C to Java to widen the audience of
potential participants for the experiment.

Figure 3.6a shows the version of this program without variability
derived from the original version with variability shown in Fig. 3.6b.
The program in Figure 3.6a contains an error in line 18 where evalu-
ation of the expression subject.isEmpty() causes a null-pointer excep-
tion because subject has the value null. The entry point main calls
handleIncoming in line 37 which, in turn, calls sendHeaders in line 27.
This method then skips past the statements in lines 14-16 because the
variable LARGE_FORMAT has the value false (line 8). Hence, when we
reach line 18, the variable subject has never been assigned a proper
value aside from its initialization to null in line 4.

Figure 3.6b depicts the original version of the program with variabil-
ity. Notice that the program now contains three so-called features: LFS,
AUTH, and CGI (names abbreviated). Each of these three features can be
designated as either enabled or disabled. Features are used in conditional
compilation directives (#ifdefs), which control whether to include or
exclude code before compilation, depending on whether features are en-
abled or disabled. For instance, the fragment in lines 14-16 (wrapped in
an #ifdef and #endif in lines 13 and 17) is to be included in the code

28 Chapter 3. Variability Challenges for Programmers

if LFS is enabled; and excluded if LFS is disabled. Since n features yield
2" distinct configurations, our variability program with three features
then comes in eight (23) distinct configurations, each corresponding to a
different version of the program.

The null-pointer exception from before now only appears in specific
configurations: whenever we disable the feature LFS as well as enable
either AUTH or CGI. The exception thus occurs in exactly three (out of
eight) configurations. The error no longer occurs if we, for instance,
enable LFS; then subject is indeed assigned a non-null value in line 16.
Also, if we do not enable either AUTH or CGI, sendHeaders is no longer
invoked in line 27 or 31. The developer must thus somehow consider
all configurations when debugging a variability program. Further, for
a program with variability it is not enough to simply find an error
in some configuration. In order to fix a bug, a developer must thus
not only identify the error, but also correctly identify the exact set of
erroneous configurations (combinations of feature enablings/disablings).
If the developer gets the configurations wrong, the bug may only be
partially fixed. Clearly, this is a difficult task due to its combinatorial
characteristics.

For these reasons, a developer has to be highly alert and conscious of
the features and #ifdefs in the code. In Paper 1A I have demonstrated to
what extent variability complicates debugging. In this paper, I consider
how variability impacts debugging.

Method

In the experiment, I use the Tobii EyeX Controller integrated into the
Eyelnfo Framework and an open-source tool called Ocama? to record
all of the eye movements. I performed this eye-tracking experiment with
N=20 participants: seven undergraduate students, one M.Sc. student,
seven Ph.D. students, and five post-docs at the IT University of Copen-
hagen (ITU). I expose each participant to programs with and without
variability, while controlling for noise factors such as learning effect,
developer competence, and program complexity. Technically, the exper-
iment is a within-group design in which all participants are exposed to
every treatment.

thtp ://www.ogama.net/

http://www.ogama.net/

3.2. Variability through the Eyes of the Programmer (Paper 1B) 29

Program P Program Q

without variability || 532 min 5 min

with variability | 103 min | 103 min

Figure 3.7: Average total debugging times.

Results

Figure 3.7 shows the average total debugging time for each of the two
programs P and Q, without variability (zero features) vs. with variability
(three features). For both programs, the average total debugging time
goes up from roughly five to ten minutes when the programs involve
variability; i.e., the debugging time is doubled. Using the eye tracking
data we can investigate deeper where developers are spending all this
extra debugging time. In the following, based on this eye-tracking study,
I present four main observations on how developers debug programs
with variability. (The paper contains more findings. I refer the reader to
Paper 1B for more details/information.)

OBSERVATION 1: Variability appears to increase debugging time of
the areas of the program that contain variability.

Figure 3.8 shows the aggregated heat maps for the program P without
variability (to the left) versus with variability (to the right). Aggregated
heat maps are produced by first normalizing (with respect to time) and
then superimposing all individual heat maps such that contributions
from each developer will be accounted for equally. (Since we have N=20
participants, each aggregated heat map is derived from ten individual
heat maps.) Aggregated heat maps give an overall picture of the focus
of the developers; i.e., how much they were looking at each part of
the program, on average. Importantly, in contrast to Figure 3.7 that
considers absolute time, Figure 3.8 considers relative time: how attention
is distributed among the program parts.

The hot spots (red regions) indicate areas where most of the atten-
tion was directed. Not surprisingly, most attention was awarded to the
method containing the bug, sendHeaders (specifically, lines 12 to 18).
Recall that the bug is in line 18 where the condition subject.isEmpty()

30 Chapter 3. Variability Challenges for Programmers

(a) Without variability. (b) With variability.
Figure 3.8: Aggregated heat maps for the program P.

produces a null-pointer exception since the variable subject has the
value null. (In the case with variability, this happens in certain con-
figurations.?) Overall, the red regions appear quite similar. Without
variability, developers dedicate 12% of all fixations to this area (752 out
of 6,355). With variability, the dedication to this area is comparable
in relative terms with 15% fixations (although using more fixations in
absolute terms: 1,249 out of 8,339). The Kullback-Leibler Divergence
test confirms that the similarity between the two hot spots is highly
significant (divergence value =0.05, in a scale [0,1]—0 meaning that there
is no divergence, i.e., they are similar; and 1 means that they are totally
different). I observe the same phenomenon for the hot spots in the other
program Q (divergence value = 0.07).

Table 3.2 details the total time spent looking at each of the four
designated areas of interest of the program: the field declarations (lines
4-9); the method sendHeaders (lines 12-21); handleIncoming (lines 23—
33); and main (lines 35-38). For instance, the attention devoted to the
method sendHeaders goes up from about a minute (63 seconds) to two
minutes (120 seconds) in the presence of variability; i.e., an increase
factor of 1.9 (almost twice as much attention). Overall, it appears that
the extra (roughly double) debugging time is spent on all areas of the

3The bug occurs when LFS is disabled and either AUTH or CGI is enabled; i.e., ~LFS A
(AUTH V CGI).

3.2. Variability through the Eyes of the Programmer (Paper 1B) 31

area of interest variability increase
lines L area without L with factor
4-9 | fields 26s 58 s 2.2x
12-21 | sendHeaders 63 s 120 s 1.9 x
23-33 | handleIncoming 56 s 98 s 1.8 x
35-38 | main 82s 53s 0.7 x
¥ all four areas 153 s 281s 1.8 x

Table 3.2: Average debugging time for four areas of interest of the program
P without vs. with variability.

sub-area of interest variability increase

lines | sub-area without | with factor
P:12-17 | - with variability 38s 77s 2.0 x
P:18-21 | - without variability 25s 43 s 1.7 x
Xz, sendHeaders 63 s 120 s 1.9 x
Q:18-20 | - without variability 24's 45 s 1.9 x
Q:21-33 | - with variability 48 s 130 s 2.7 x
X, gc_computeLevelScore 72 s 175 s 2.4 x

Table 3.3: Average debugging time for fragments without variability in
proximity of fragments with variability.

program that involve variability: the field declarations and the two
methods sendHeaders and handleIncoming all double debugging time.
In contrast, no extra time is spent on main that does not involve variability.
In fact, attention to this area appears to drop slightly in the presence of
variability.

Please note that the attention awarded to the four areas of interest
(last line in Table 3.2) does not add up to the total debugging time of
Figure 3.7. This is because the four elements do not cover everything
(e.g., imports, blank lines, class definitions, and even areas beyond the
screen), gaze transitions (rapid eye movements) are not accounted for in
Table 3.2, and the total debugging time also involves answering questions
about the bugs on a sheet of paper (i.e., not looking at the screen).

OBSERVATION 2: Debugging time also increases for code fragments
without variability in proximity of code fragments that do contain
variability.

32 Chapter 3. Variability Challenges for Programmers

Consider the body of the sendHeaders method in program P with vari-
ability (cf. Fig.3.8b). It consists of a code fragment with variability (lines
13-17) followed by a fragment without variability (lines 18-20). A similar
phenomenon occurs in program Q in the function gc_computeLevelScore,
where the top part (lines 18-20) does not contain variability followed by
a fragment (lines 21-33) with variability.

Designating these as our sub-areas of interest, we can thus zoom in and
study the impact of code fragments with variability on code fragments
without variability within the same method.

Table 3.3 splits these two methods into their sub-areas of interest
with versus without variability. The sub-areas without variability “in
proximity” of variability are shown in bold face. Variability appears to
be “contagious” along the flow of control, within a method. Even though
lines (18-21) in P do not have variability, they go from 25 seconds to 43
seconds to debug in the presence of variability (i.e., debugging takes 1.7
times longer). Similarly, for lines 18-20 in Q; they go from 24 seconds to
45 seconds (i.e., debugging takes 1.9 times longer).

I therefore hypothesize that this is because the developers are considering
different configurations while debugging (more on this in OBSERVATION
4 later).

OBSERVATION 3: Variability appears to increase the number of gaze
transitions between definition-usages for fields and call-returns for
methods.

Figure 3.9 depicts the average number of gaze transitions between the
four previously introduced areas of interest. Without variability there
are, for instance, on average 8.6 navigations from handleIncoming to
sendHeaders and 9.1 back again (see Fig. 3.9a). Navigations between two
methods are annotated with call and return according to invocations in
the program (e.g., sendHeaders is called from handleIncoming in line 27
and 31). The gaze transition diagrams confirm that the eye movements
proceed along method invocations. Similarly, method-to-field navigations
are annotated with def and use as developers navigate from a field
variable usage to its definition and back again to the use. For instance,
we see on average 8.6 navigations from sendHeaders to the fields area of
interest (def) and exactly the same number going back again to the usage
within the method (use).

With variability, all gaze transitions out of methods containing vari-
ability increase significantly (cf. Figure 3.9b compared to Figure 3.9a).

3.2. Variability through the Eyes of the Programmer (Paper 1B) 33

fields
U§E6 / ” \ 35"
8,6, CSMBL 07 \
sendHeaders 0.59°705 ’ handleIncoming
main

(a) Without variability.

fields
~ \ D&F

USIEB//x

I//]'I%F

%L

LN

sendHeaders ’handleIncomlng
v RE:!'gRN o
Lo, I Hs”mﬁl"
ey L
main

(b) With variability.

Figure 3.9: Average number of gaze transitions (eye switches) between
the differents elements of program P.

The method-to-method navigation along call-return from handleIncoming
to sendHeaders goes up to 15 and 13 (from 8.6 and 9.1). For method-to-
field, the (def-use) navigations out of sendHeaders, for instance, goes up
to 13 and 14 (from 8.6 and 8.6). For navigations out of the method main
that does not contain any variability (shown as dotted gray edges), there
is little change.

Thus, the participants make significantly more gaze transitions in
the presence of variability. Again, I hypothesize that developers are
exploring and re-exploring different configurations while debugging, as
we shall see next.

OBSERVATION 4: Developers appear to debug programs with vari-
ability by considering either one configuration at a time (consecu-
tively) or all configurations at the same time (simultaneously).

34 Chapter 3. Variability Challenges for Programmers

Lol

T T T T T T T T T
25min 3.0min 3.5min 40min 45min 50min 55min 6.0min 6.5 min 7.0 min 7.5 min

Figure 3.10: Gaze transition diagram for a developer using a consecutive
strategy and repeatedly considering a method (highlighted in black).

The interviews give some qualitative insights into how the subjects debug
programs with variability. Most participants complained that they had
trouble finding the bug in the presence of variability. One subject explains
that he is using a consecutive strategy by considering one configuration at
a time:

“I began with all features enabled, then I removed one-by-one.”
Along the same lines, another explains:

“After I get a good understanding of the code, I started to enable/dis-
able features one at a time to see if the bug appears.”

This approach manifests itself on his gaze transition diagram which
contains repetitions corresponding to the method sendHeaders with
variability (cf. Figure 3.10).

Another subject claims to adopt a simultaneous strategy by considering
all configurations at the same time:

“I tried to keep track of everything by compiling every combination

in mind.”
The two strategies are also well-known in automated program analysis of
programs with variability [14].

Independent of strategies, all developers agreed that debugging pro-
grams without variability required much less effort. This finding aligns
with the study of Medeiros et al. [64] in which they observed that bugs
involving variability are easier to introduce and harder to debug and fix
than ordinary bugs.

Contributions

This paper addresses primarily the research question Q1— which asks for
how variability affects programmers on bug finding— and, as a result, it

3.2. Variability through the Eyes of the Programmer (Paper 1B) 35

contributes to Goal 1. In fact, besides the above-mentioned observations,
this paper also confirms previous hypotheses (from Paper 1A), regarding
the accuracy of debugging programs with variability:

CONFIRMATION: Most developers correctly identify bugs in pro-
grams with variability; however, many developers fail to identify
exactly the set of erroneous configurations (already for three fea-
tures).

This is also consistent with previous research reporting that developers
admit that when fixing programs with variability, they “check only a few
configurations of the source code” [64].

It is worth noting that my previous study (Paper 1A) uses colored
annotations, whereas in this study I use actual preprocessor directives
(#ifdefs). Therefore, I think that the stability of the results across mul-
tiple annotative mechanisms is a good indication that I am, in fact,
studying an underlying phenomenon, which is variability.

Observation 3 (above) stated that developers perform more navigation
in the presence of variability. Knowing that, I encourage the programmers
using variability to structure the code in a way that minimize the distance
between uses and definitions of field variable declarations or between
methods calling each other, especially for those declarations and uses
that involve #ifdefs. At the same time, the builders of development
environments shall consider providing convenient ways to navigate from
uses to definitions and back again and along call-returns for method
invocations. An IDE equipped with continual eye tracking could even
automatically “pop up” relevant definitions next to uses as they are
being considered by the developer. Clearly, as shown in our data, these
pop-ups might be more useful, in areas of code that involve variability
(so intensive variability could activate them). Emergent interfaces [78]
and emergent feature interfaces [67] are examples of tooling that attempt
to simplify reasoning about variability. This study confirms the need for
more research on such tools.

Observations 1-3 indicate that it is worth to contain variability in as
few methods as possible to keep other methods variability free. Obser-
vation 2 hints that it is advantageous to hoist code fragments without
variability “in proximity” of variability out of the method. For instance,
in program P with variability, lines 18-20 could be moved into a fresh
method.

All observations 1-4 may indicate that there are potential gains from
projectional editing of program with variability. Developers could work

36 Chapter 3. Variability Challenges for Programmers

separately on particular configurations (programs without variability)
which would then be automatically synchonized with the entire vari-
ability program (spanning all configurations) [93]. This could be acti-
vated /suggested automatically for programmers who work following
the consecutive (brute-force) process, as this process can be presumably
detected automatically as multiple scans in the eye-tracking data. Of
course, I do not know to what extent, or whether at all, these suggestions
improve debugging programs with variability. However, the findings of
this study do provide indications that these are the directions that might
be worth exploring.

Chapter 4

Variability Challenges for Programs

38 Chapter 4. Variability Challenges for Programs

In this chapter, I give an overview of two research papers that address the
research question Q2, which asks for the characteristics of bugs caused
by variability. In the following, I summarize Paper 2A and Paper 2B
which belong to the second quadrant (problem-program), as shown in
Table 4.1. This quadrant focuses on the problem space from the program
(and bug) perspective.

PROBLEM SOLUTION

SPACE

— QUADRANT 1 - — QUADRANT 4 —

— QUADRANT 2 — — QUADRANT 3 —
P2: Lack of evidence on how variability
affects bugs.

Q2 How does variability affect bugs?

T2: Variability increases the complexity
of bugs; and these (variability) bugs
are not confined to any type of bug,
feature, or location.

PROGRAM PROGRAMMER

PERSPECTIVE

Table 4.1: Research problem, question, and thesis of the QUADRANT 2.

4.1 Variability Bugs in Highly-Configurable Systems (Paper 2A)

Summary

This paper extends a prior exploratory study on 42 variability bugs in
Linux published previously by Abal et al.[2]. That study produced a
method design and a list of nine initial hypotheses based on analyzing
the Linux kernel. I then join Abal and co-authors along with Marcio
Ribeiro and Stefan Stanciulescu to execute three independent confirmatory
case studies validating the previous hypotheses. We replicated the same
data collection process and analysis for the three new subject systems
(Apache, Marlin, and BusyBox), which significantly differ from Linux. In
the end, we confirm all previous hypotheses from the original Linux-only
study. This attests to the stability and generalizability of our findings.

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 39

In this paper, we present a qualitative study of 98 diverse variability
bugs (i.e., bugs that occur in some variants but not in others) collected
from bug-fixing commits in the Linux, Apache, BusyBox, and Marlin
repositories; 55 of these bugs have been added using the confirmatory
part of the study. We analyze each of the bugs, and record the results
in the Variability Bugs Database ! (VBDb). For each bug, we create a
self-contained simplified version and a simplified patch, in order to help
researchers who are not experts on these subject studies to understand
them, so that they can use these bugs for evaluation of their tools. In ad-
dition, we provide single-function versions of the bugs, which are useful
for evaluating intra-procedural analyses. A web-based user interface for
the database allows to conveniently browse and visualize the collection
of bugs. Our study provides insights into the nature and occurrence
of variability bugs in four highly-configurable systems implemented in
C/C++, and shows in what ways variability hinders comprehension and
the uncovering of software bugs.

Context & Motivation

Many software projects adopt variability to tailor development of indi-
vidual software products to particular market niches [4]. Other software
projects, such as the Linux kernel, embrace variability and use configura-
tion options known as features [46] to tailor functional and non-functional
properties to the needs of a particular user. Such systems are often
referred to as highly-configurable systems and can get very large and en-
compass large sets of features. There exist reports of industrial systems
with thousands of features [10], and extensive open-source examples are
documented in detail [11].

Features in a configurable system interact in non-trivial ways, in order
to influence the functionality of each other. Interestingly, bugs in config-
urable systems do not always occur unconditionally, in all configurations.
Bugs involving one or more feature that have to be either enabled or
disabled in order for the bug to occur are known as variability bugs. Im-
portantly, variability bugs therefore occur only in certain configurations
and not in others. A bug in an individual configuration may be found
by analyzers based on standard program analysis techniques. However,
since the number of possible configurations is exponential in the number
of features, it is infeasible to analyze each configuration separately.

Ihttp://vbdb.itu.dk/

http://vbdb.itu.dk/

40 Chapter 4. Variability Challenges for Programs

Family-based analyses [88] tackle this problem by considering all
configurable program variants as a single unit of analysis, instead of
analyzing the individual variants separately. To avoid duplication of
effort, common parts are analyzed once and the analysis forks only at
differences between variants. Recently, various family-based extensions
of both classic static analysis [5, 13, 14, 27, 49, 55] and model checking [6,
23,24, 58, 42, 77] based techniques have been developed.

Although several variability-aware techniques have been proposed
to analyze exponentially many configurations of highly-configurable
systems, little effort has been put into understanding the characteristics
of bugs in these large software systems. In fact, researchers still lack
examples of concrete bugs induced by variability, occurring in real large-
scale systems. Gaining such understanding is needed to ground research
in actual problems and to evaluate tool implementations of variability-
sensitive analyses.

The understanding of the complexity of variability bugs is not com-
mon among practitioners and in available artifacts. While bug reports
abound, there is little knowledge on how those bugs are caused by fea-
ture interactions. Very often, due to the complexities of a large project
like Linux, and the lack of variability-aware tool support, developers are
not entirely conscious of the features that affect the software they work
on. As a result, bugs appear and get fixed with little or no indication of
their variational program origins.

Method

The objective of this work is to understand the complexity and nature
of variability bugs occurring in four highly configurable systems: Linux,
Apache, BusyBox, and Marlin. We address this objective via a qualitative
in-depth analysis and documentation of 98 cases of such bugs.

For each of the four subject systems, we follow a three part method
developed during the Linux study: first, we identify the variability bugs
in the history of our subject systems. Second, we analyze and explain
them. Finally, we reflect on the aggregated material to organize our
findings.

To do so, we take the Linux?, Apache3, BusyBox4 and Marlin® reposi-

2http ://git.kernel.org/

3http ://git.apache.org/httpd.git

4http ://git.busybox.net/busybox/

5ht‘cp ://github.com/MarlinFirmware/MarlinDev

http://git.kernel.org/
http://git.apache.org/httpd.git
http://git.busybox.net/busybox/
http://github.com/MarlinFirmware/MarlinDev

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 41

tories as the units of analysis. In all cases we analyze the master branch
of the repository. We focus on bugs already corrected in commits to
the repositories. These bugs have been publicly discussed (usually on
the project’s mailing list or issue tracker) and confirmed as actual bugs
by the developers, so the information about the nature of the bug fix is
reliable, and we minimize the chance of including fictitious problems.

Results

We begin by investigating the diversity of the 98 variability bugs in
terms of bug type, location, and configuration options involved. The
numbers are used solely to describe the collected sample—no statistical
conclusions about the broader bug population should be drawn from
them. That is, the figures presented here serve exclusively to characterize
population of bugs we found, not to hint at any representative bug
distribution.

Diversity of bugs in VBDb

OBSERVATION 1: Variability bugs are not be limited to any particu-

lar type of bug.
Figure 4.1 lists the type of variability bugs found in the exploratory
study of 43 variability bugs in Linux, along with occurrence frequencies
in Linux (leftmost column, labeled L for LiNnux) and associated CWE?®
number whenever applicable (third column). We return to the four
rightmost columns shortly. For now, observe that all bug types have
been grouped into eight broad error categories, ranging from declaration
errors to arithmetic errors (and one category, validation errors, not occurring
in the Linux bugs). The groups are shown in gray background with
accumulated sub-totals corresponding to each category. For instance,
we can see that four of the Linux bugs involved null-pointer dereferences
(CWE 476) in the broad category memory errors, harboring 11 of the Linux
bugs.
The prior study hypothesized that variability bugs—in general—span a
wide range of qualitatively different types of bugs[2]. In Figure 4.1, we

Common Weakness Enumeration (CWE) — a catalog of numbered software weaknesses
and vulnerabilities.

42 Chapter 4. Variability Challenges for Programs

L bug type CWE|M B A| X
7 declaration errors: 4 5 9 | 25
4 undefined function - 2 2 8
2 undeclared identifier - 4 2 7115
1 multiple function definitions - 1
undefined label - 1 1

10 resource mgmt. errors: 4 5|19
5 uninitialized variable 457 2 1 8
1 memory leak 401 1 2 4
1 use after free 416 1 1 3
2 duplicate operation 675 0| 2
1 double lock 764 1
file descriptor leak 403 1 1

11 memory errors: 1 2 4 | 18
4 null pointer dereference 476 2 2] 8
3 buffer overflow 120 1 2 6
3 read out of bounds 125 3
| write on read only - 1
8 logic errors: 2 3 1] 14
5 fatal assertion violation 617 5
2 non-fatal assertion violation 617 2
1 behavioral violation 440 2 1 7
4 type errors: 4 1 1] 10
2 incompatible types 843 2 1 1 6
1 wrong number of func. args. 685 2 0 3
1 void pointer dereference - 1
2 dead code: 3 21 7
1 unused variable 563 3 4
1 unused function 561 2 3
1 arithmetic errors: 3 4
1 numeric truncation 197 1
integer overflow 190 3 3
validation errors: 1 1

OS command injection 078 1 1

13 TOTAL — [14 18 23 [98

Figure 4.1: Types of variability bugs in Linux and all of VBDb. (L is for
LiNnux, M is for MARLIN, B is for BusyBox and A is for APACHE.)

see that the variability bugs in Linux span 21 different kinds of bugs,
falling into seven categories of the CWE taxonomy.

We now test the hypothesis by considering the results of our confir-
matory case study of three independent systems with variability. The
right columns testify how many times a given bug type occurs in each
of the systems: M for MARLIN, B for BusyBox, and A for ApacHE. We
confirm that, in general: variability bugs are not limited to any particular type
of bugs. Just like for Linux, the variability bugs encountered in these
systems, also fall into qualitatively different categories.

Considering all bugs in the four systems (the £ column), we see that a
staggering 42 of all the variability bugs are caught by the compiler at
build time, if compiled in the appropriate configuration: 25 declaration

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 43

L #occurrences of a feature | M B Al X

71 #features present in one bug: | 17 27 24 | 139
71 once (1x) 17 27 24| 139
12 #features present in 2+ bugs: 2 1 1 16
8 twice (2x) 1 9
4 thrice (3x) 2 6
five times (5x) 1 1

83 TOTAL 719 28 25] 155

Figure 4.2: Features involved in variability bugs in all of VBDb.

errors, 10 type errors, and seven cases of dead code. Despite the compiler
checks, the bugs had been admitted to the code repositories. Since
build errors cannot easily be ignored, we take this as evidence that the
authors of the commits, and the maintainers that accepted them, were
unaware of the bugs, presumably because they did not compile the
code in configurations that exhibit the bugs (compiler checks are not
family-based).

It appears that conventional automatic code analyzers targeting in-
dividual program configurations are insufficient. In order to find the
variability bugs in VBDDb, analyzers that are able to cope with variability
seem to be needed.

OBSERVATION 2: Variability bugs are not restricted to any specific
error prone feature.

Figure 4.2 summarizes the distribution of features in presence conditions
of bugs in our collection. We see that the Linux bugs of our collection
involve a total of 83 different features, ranging from debugging options
(e.g., QUOTA_DEBUG and LOCKDEP), through device drivers (TWL4030_CORE
and ANDROID), and network protocols (VLAN_8021Q and IPV6), to computer
architectures (PARISC and 64BIT). As many as 71 of these features are
involved only in a single bug; eight are involved in two bugs; and only
four features occur in three of the Linux bugs. The collection is not biased
for a particular feature, and no particular feature seems to be responsible
for majority of bugs. Thus, there are no obvious particularly error-prone
features in Linux.

We validate this hypothesis with the other three subject systems (the
columns: M, B, and A). For example, for BusyBox, we see only one feature,
CLEAN_UP that is involved in two bugs. In total, the vast majority of
features are involved only in a single bug in our collection (139 out of

44 Chapter 4. Variability Challenges for Programs

155, see the ¥ column). Only nine features are involved in two bugs
and six features in three bugs. The consequence of variability bugs not
being concentrated around certain error-prone features, is that variability
analyzers and sampling strategies for testing and analysis should target
system features broadly, not selectively.

OBSERVATION 3: Variability bugs are not confined to any specific
location (file or subsystem).

Figure 4.3 shows a visualization of the organization and relative size of
each subsystem in Linux along with the locations of the bugs in our
collection. The size of each subsystem is measured in lines of code
(LOC); a square (regardless of color) represents 25 KLOC. For instance,
the kernel subsystem with six squares, has approximately 150 KLOC
constituting about 1% of the Linux code. Superimposed onto the size
visualization, the figure also shows in which directories the bugs occur. A
bug is visualized as a red (darker) square. With five red (dark) squares,
the aforementioned directory kernel/ thus houses five of our VBDb
variability bugs. Note carefully that there are two units used in the
diagram: LOC represented by the number of squares, and the number of
bugs represented by the number of red squares. This is a discrete variant
of a visualization using two curves of different units in a single graph,
where correlation of their dynamics is relevant. It allows us to show
the number of bugs with respect to the size of the subsystem in LOC.
Normalizing to a single unit would make the amount of red squares
invisible.

We approximate subsystems by existing directory structure. The
tigure abstracts away smaller subsystems accounting for less than 0.1%
such as virt (8.1k), as well as infrastructure’ subsystems such as tools
(133.1k) and scripts (48.1k). None of these directories contained any of
our bugs.

We found bugs in ten of the main subsystems in Linux (cf. Fig. 4.3(d)),
suggesting that variability bugs do not appear to be confined to any
specific subsystem. The bugs occur in qualitatively different subsystems
of Linux ranging from networking (net/), to device drivers (drivers/,
block/), to filesystems (fs/) or encryption (crypto/). Note that Linux
subsystems are often maintained and developed by different people,
which adds to diversity of our collection.

’E.g., examples, scripts, documentation, and build infrastructure.

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 45

e2fsprogs networking shell

FHE
Izzmaaas E:-u-u 18k (9%)
30k (15%) 29k (14%)

archival coreutils
]

6k (14%) 5k (12%)

10k (24%)

movement cardreader pins temperature
mmEnns
=

HH
5k (3%)

S
11k (6%)
main sysklogd init

- =
HH 1k (.6%) 1k (.5%)

H
3k (6%)

ak (9%) 3k (8%) 3k (7%)

(a) Marlin: M (possibly red) = 100 LOC; M = 1 bug. (b) BusyBox: M (possibly red) = 500 LOC; B = 1 bug.

modules server support include drivers
. T

net

5% 5k (3%)] H mmmm
...... 5%) : 817k (6%) 639k (5%) 609k (5%)
46k (23%) H . .
main os test 2.0M (16%) :Egli“de l:s:‘nel }:b
HE B 1k (6%) CHEE 181k (1%) 73k (.6%)
4k (2%) 2k (1%) 404k (3%)
crypto mm security block
e = . u N
69k (.5%) 67k (5%) 5Ok (4%) 24k (:2%)
(c) Apache: M (possibly red) = 500 LOC; M = 1 bug. (d) Linux: M (possibly red) = 25 KLOC; B = 1 bug.

Figure 4.3: Project structure and relative size of subsystems vs location
of bugs in VBDb.

For testing the hypothesis, we collected the corresponding data for the
other cases (cf. Figures 4.3(a), 4.3(b) and 4.3(c)). For Marlin, a square visu-
alizes 100 LOC whereas for BusyBox and Apache a square denotes 500
LOC. For Marlin which does not have an appropriate directory structure,
we use a logical organization into subsystems (details in Paper 2A). As
for Linux, smaller subsystems accounting for less than 0.1% are abstracted
away (e.g., serial with 0.3k in Marlin) and infrastructure subsystems
(e.g., testsuite (4k) in BusyBox); none of which harbored any of our
bugs.

As for Linux, variability bugs in the other systems appear to not be
confined to any particular subsystems. In fact, only two out of eight
subsystems of Marlin do not house any of our bugs. Also in BusyBox,
the bugs are spread out over many distinct directories; from low-level
networking (networking/) to user-oriented core utilities (coreutils/).
Only three out of 14 subsystems are not represented in VBDb. Similarly,
for Apache, the bugs appear to not be confined to any specific location;
only two out of seven subsystems do not harbor bugs. The consequence
for variability bug hunters, is that there are no short-cuts with respect to
subsystems; the analysis needs to target the entire code-base broadly.

To summarize the above three observations, we conclude that:

46 Chapter 4. Variability Challenges for Programs

SUuMMARY: Variability bugs are not confined to any particular type
of bug, error-prone feature, or location.

In total, we have found 98 variability bugs falling in 25 different types
of error categories, involving 155 distinct features, and spread out in
over 30 different subsystems in the four systems investigated. In other
words, variability is ubiquitous. There appears to be no specific nature of
variability bugs that could be exploited. If analysis tools were to focus
on particular kinds of variability bug during family-based analysis, they
would thus fail to detect large classes of errors (the kinds not focused
on). Consequently, the analysis of variability bugs in highly-configurable
systems needs to be targeted widely at all types of bugs, all kinds of
features, and all subsystems. This conclusion is also interesting from
the point of view of understanding the reasons for which bugs appear.
Appearing everywhere, variability bugs hint that it is the variability itself
that enables or amplifies their introduction (possibly standalone, or in
concert with other aspects of system complexity). Even though all of this
is not so surprising, we can now confirm these folkloric hypotheses with
evidence in terms of hard data.

Variability characteristics of bugs in VBDb

OBSERVATION 4: Variability bugs may involve non-locally de-
fined features (i.e., features defined in another subsystem than
where the bug occurred).

In Linux, we have identified 30 bugs that involve non-locally defined fea-
tures. Understanding such bugs involves functionality and features from
different subsystems, while most Linux developers are dedicated to a
single subsystem. For example, bug 6252547b8a7 occurs in the drivers/
subsystem, but one of the interacting features, IRQ_DOMAIN, is defined in
kernel/. Bug 0dc77b6dabe, which occurs in the loading function of the
extcon-class module (drivers/), is caused by an improper use of the sysfs
virtual filesystem APl—feature SYSFS in fs/. We confirmed with a Linux
developer that cross-cutting features constitute a frequent source of bugs.

We now use our three replication systems to fest the hypothesis that
variability bugs may involve features defined in “remote” subsystems.
However, among the three systems considered, only BusyBox permits
local feature models where KCONFIG files may be nested to define features

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 47

that are local to subsystems. We thus note that not all highly-configurable
systems have a concept of local features.

In BusyBox, we have identified seven cases of non-locally defined
features that testify that bugs may involve variability cross-cutting remote
locations in the code. For instance, bug 5cd6461b6fb occurs due to a
wrong format parameter to printf() whenever the feature LFS (large
tile support) is enabled. The error occurs in networking/ whereas the
LFS feature is defined in the util-linux/ directory.

For developers of highly-configurable systems, this observation means
that when modifying one subsystem, they cannot simply ignore features
in other subsystems. Feature definitions may be scattered across sub-
systems. For tools, this means that they should not simply zoom in
on one subsystem (or file) without taking the features defined in other
subsystems into consideration.

OBSERVATION 5: The use of a function, variable, macro, or type
may involve implicit variability caused by configuration-dependent
definitions.

We investigate configuration-dependent definitions (functions, variables,
macros, and types) which are defined differently in different config-
urations, or conditionally defined in only some configurations whose
use in other configurations provokes an error. Configuration-dependent
definitions complicate the identification of variability-related problems
as the variability is implicit, most often hidden in a header file, or even in
another translation unit. Even if variability is explicit in the definition, it
is not visible at the usage location.

In Linux, for instance, bug 242f1a34377 involves a conditionally depen-
dent definition; the function crypto_alloc_ablkcipher() is only defined
whenever CRYPTO_BLKCIPHER is enabled. The bug occurs due to a func-
tion call to crypto_alloc_ablkcipher() in another file, leading to an
undefined function error when CRYPTO_BLKCIPHER is disabled.

For an example of different definitions in different configurations,
consider Linux bug 0988c4c7£b5. Figure 4.4 shows an excerpt of this bug.
Here, the function vlan_hwaccel_do_receive() is called if a VLAN-
tagged network packed is received. This function, however, has two
different definitions depending on whether feature VLAN_8021Q is present
or not. (In reality, the two alternative functions are defined in different
files.) Variants without VLAN_8021Q support are compiled with a mockup-
implementation of this function that unconditionally enters an error state.

48 Chapter 4. Variability Challenges for Programs

// DISABLED |
|
|
|
5| #else // ENABLED J
6| void vlan_hwaccel_do_receive() { —(3)
o7 BUGQ) ; // ERROR (4) x
8| }
9| #endif
10
el1| void __netif_receive_skb() =(1)
12 vlan_hwaccel_do_receive(); // USAGE 2)—
13| }

Figure 4.4: Excerpt from bug 0988c4c7£b5 illustrating a configuration-
dependent definition of a function. In line 12, the function vlan_hwaccel-
_do_receive is invoked. The actual code run, however, will depend on
the configuration. If the feature VLAN_8021Q is enabled, the function is
defined in lines 2—4 will run; otherwise, the function is defined in lines
6-8 will run (which provokes an assertion violation in line 7).

(When the code reaches BUG(), the kernel prints out the contents of
the registers and a stack trace, and then the current process dies.) The
definition clearly involves variability. Its use, however, shows no apparent
involvement of variability. Deceptively, the definition of the function
itself (in lines 6-8), appears to involve no variability. However, since the
function definition is wrapped inside a conditional #ifdef annotation,
the error will only occur whenever the feature VLAN_8021Q is disabled.

Another example is bug 0£8£8094d28, where a variability-dependent
macro definition is involved. It can be regarded as a simple out
of bounds access to an array, except that the length of the array
(KMALLOC_SHIFT_HIGH+1) is architecture-dependent, and only the Pow-
erPC architectures, and only for a particular virtual page size, are affected.
Macro KMALLOC_SHIFT_HIGH has alternative definitions at different source
locations.

Perhaps an even more subtle example of implicitly variable code is
a conditional if statement with guard on the size of a type: for instance
(sizeof(type) !=0), which introduces dependency of code execution
on a type being defined as non-empty under some feature condition.
Type declarations are typically made in header files, and they are not
immediately visible in the use place. Such cases are rather difficult to
handle by simple extensions to single-program analyzers, as variability
in the imperative code is mixed with the variability in the type language
of the program (and even worse so via size properties of types). An

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 49

example of such implicit variability can be found in bug 218ad12f42e,
involving a selected field in the structure type rwlock_t.

It turns out that implicit variability likely appears in Linux’s source
code due to internal coding conventions. The following coding guidelines
on #ifdef usage from How to Get Your Change Into the Linux Kernel®
advises:

“Code cluttered with ifdefs is difficult to read and maintain. Don't
do it. Instead, put your ifdefs in a header, and conditionally define
‘static inline” functions, or macros, which are used in the code.”

We now consider configuration-dependent definitions involved in vari-
ability bugs in our three independent systems.

In Marlin, bug 831016b involves the function, 1cd_setstatus, which
is defined to take two arguments when the feature ULTRA_LCD is en-
abled and only one argument whenever ULTRA_LCD is disabled. However,
whenever SDSUPPORT is enabled and ULTRA_LCD is diabled (2-degree bug),
lcd_setstatus is erroneously invoked with two arguments (instead of
one).

In BusyBox, bug bc0ffc0e971 involves a function called delete_eth-
_table() that has two different definitions depending on whether feature
CLEAN_UP is enabled or not. Variants without CLEAN_UP are compiled
with a mockup implementation of this function (which, like in Linux,
appears to be common practice). Bug 5cd6461, still in BusyBox, involves
the use of a variable total which, depending on whether the feature LFS
is enabled or not, is defined either as a long long or a long. However,
in configurations where LFS is disabled, when attempting to print the
value of the total, printf is erroneously invoked with the format %1d
(Long) which ought to have been %11d (long long).

For developers, configuration-dependent definitions means that pro-
grams may deceptively involve variability even though they appear not
to. For analyzers, this means that variability tools should make sure
to associate definitions with presence conditions (i.e., keep associations
between definitions and configurations).

OBSERVATION 6: Variability bugs are fixed not only in the code;
some are fixed in the mapping, some are fixed in the model, and
some are even fixed in a combination of these layers.

8https ://www.kernel.org/doc/Documentation/SubmittingPatches

https://www.kernel.org/doc/Documentation/SubmittingPatches

50 Chapter 4. Variability Challenges for Programs

L layer | M B A| X
39 single layer: 14 17 23 | 93
28 code 11 7 14 | 60

5 mapping 3 9 9| 26

6 model — 1 - 7

4 multiple layers: 1 5

2 code & mapping 1 3

1 mapping & model - - 1

1 code & mapping & model - - 1
15 TOTAL [14 18 23] 98

Figure 4.5: Bug-fixing layers.

A bug can be fixed in the code, mapping (feature expression-#ifdef), and
(feature) model. Since bug fixes often involve multiple locations, variability
bugs can occur in multiple layers. Figure4.5 shows whether the bugs
in our sample were fixed in the code, mapping, model, or combinations
thereof. For our replication studies, please note that Marlin and Apache
have no notion of feature model (at least, not in the classical sense). We
therefore include a dash in the figure for layers involving the model.

In Linux, commits 472a474c663 and 7c6048b7c83, fix variability bugs
in the mapping and model, respectively. The former adds a new #ifndef to
prevent a double call to APIC_init_uniprocessor—which is not idempo-
tent, while the latter modifies STUB_POULSBO’s KCONFIG entry to prevent
a build error. An example of multiple fix in mapping-and-code is commit
63878acfafb, which removes the mapping of some initialization code
to feature PM (power management), and adds a function stub. We also
found one Linux bug, e68bb91baa0, that was fixed in all the three layers.

Figure 4.5 shows that the variability bugs in Marlin, BusyBox, and
Apache are also not only fixed in the code, but in several layers. Although,
like for Linux, the variability bugs appear to be fixed predominantly in
the code and mapping layers. In BusyBox, commit 199501£2a00 fixes a
null pointer dereference error in the code. Commit 5cd6461b6fb fixes
an incompatible type bug, caused by a wrong format parameter in a
printf() method, in multiple layers, by changing the code and mapping
layers.

The realization that bugs in highly-configurable software might need
to be fixed outside the main code, is congruent with the work of Passos
and co-authors [75], who observe that evolution of features in the Linux
kernel involves all the three layers. This should inform research on bug
finding and bug fixing. For instance, it is not sufficient to look at the
feature model in isolation in order to find complex bugs, yet most of the

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 51

L degree | M B A| X
8 single-feature bugs: 7 9 17 | 41
8 1-degree 7 9 17 | 41
35 feature-interaction bugs: 7 6 | 57
22 2-degree 3 6 41 35
9 3-degree 4 3 1] 17
1 4-degree 1
3 5-degree 1 4
15 TOTAL [14_18 23] 98

Figure 4.6: Variability degrees.

research on analysis of feature models does exactly that [8]. Similarly, for
bug fixing techniques [41], it is not sufficient to synthesize patches for
C programs—changes to the preprocessor directives and build scripts
(that specify the mapping), as well as to the feature model should be
considered, too.

OBSERVATION 7: Many variability bugs involve multiple features
and are hence feature-interaction bugs.

We define the variability degree of a bug (or just the degree of a bug), as
the number of individual features occurring in its presence condition.
Intuitively, the degree of a bug indicates the number of features that
have to interact so that the bug occurs. A bug present in any valid
configuration is a bug independent of features, or a 0-degree bug. Bugs
with a degree greater than zero are known as variability bugs, involving
one or more features, thus occur in a non-empty strict subset of valid
configurations. In particular, if the degree of a bug is greater than one,
the bug is caused by the interaction of two or more features. A software
bug that arises as a result of feature interactions is referred to as a
feature-interaction bug.

Figure 4.6 summarizes the variability degrees of the bugs studied;
there are 57 of those in our bug collection and 22 of those involve three
features or more. For instance, Linux bug 6252547b8a7 is a feature inter-
action bug. The code slice containing the bug involves three different fea-
tures, and represents four variants (corrected for the feature model), but
only one of the variants presents a bug. The ops pointer is dereferenced
in variants with TWL4030_CORE enabled, but it is not properly initialized
unless OF_IRQ is enabled. A developer searching for this bug needs to
either think of each variant individually, or consider the combined effect
of each feature on the value of the ops pointer. None of these are easy

52 Chapter 4. Variability Challenges for Programs

to execute systematically even in a simplified scenario (cf. Paper 1A and
Paper 1B), and outright infeasible in practice, as confirmed to us by a
professional Linux developer, whom we interviewed.

Looking at the data for our three replication studies, we see 22 feature
interaction bugs; seven in Marlin, nine in BusyBox, and six in Apache.
The Linux study revealed 13 bugs with a degree of at least three; our
study uncovered another nine such high-degree bugs. For instance,
in BusyBox, bug 95755181b82 is a logic error involving three features
interacting with each other: BB_MMU, HTTPD_GZIP, and HTTPD_BASIC_AUTH.
With HTTPD_GZIP enabled, if a request contained “Accept-Encoding:
gzip”, then the HTTP error response would be incorrectly marked as
being gzip encoded (“Content-Encoding: gzip”) even though it is
not. Another example of a 3-degree bug in BusyBox is b62bd7b261b,
which contains an unused pointer variable whenever MDEV_CONF and
MDEV_RENAME are enabled and MDEV_RENAME_REGEXP is disabled. Marlin
bug b8e79dc is a 3-degree bug; it occurs only whenever ULTRA_LCD is
enabled and ENCODER_RATE_MULTIPLIER as well as TEMP_SENSOR_O are
disabled. In Apache, the bug c76df14 is also a 3-degree bug that occurs
whenever CROSS_COMPILE is enabled and either WIN32 or 0S2 are enabled.

It is worth noting that more than half of the bugs in our VBDb
corpus are, in fact, feature-interaction bugs (cf. the ¥ column in Figure 4.6).
While most feature-interaction bugs have been identified, documented,
and published in telecommunication domain [19], this study provides
a documented collection of feature-interaction bugs in the context of a
wider collection of highly-configurable systems (involving 3D printer
firmware, UNIX utilities, web servers, and operating systems).

Feature-interaction bugs are inherently more complex to find and
reason about (cf. Paper 1A and Paper 1B) because the number of vari-
ants, that a developer needs to consider, is exponential in the degree of
the bug (number of features involved). This impacts both variability
program developers and analyzers that consequently have to cope with
this combinatorial blow up.

OBSERVATION 8: Presence conditions for variability bugs may also
involve disabled features.

Figure 4.7 lists and groups the structure of the presence conditions. Two
main classes of bug presence conditions emerged: some-enabled, where
one or more features have to be enabled for the bug to occur; and some-
enabled-one-disabled, where the bug is present when enabling zero or

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 53

L precondition |M B A| X
21 some enabled: 9 7 14 | 49
5 a 6 3 7 | 21
10 aAb 3 3 51 21
5 aAbAhc 1 6
1 aANnbAcANdNe 1
20 some-enabled-one-disabled: 4 11 10 | 45
3 -a 1 6 10 | 20
13 an-b 3 4 20
3 aANbA-c 1 4
1 aAbAcNdAN—e 1
2 other configurations: 1 1 4
1 —an-b 1
alN—-bA-c 1 1

1 aAN-bA-cAN-dA—e 1 2
43 TOTAL 714 18 23 [98

Figure 4.7: Presence conditions under which the bugs occur.

more features and disabling exactly one feature. Please note that a few
of the presence conditions have the form, (a Vv a’) A\ —b, but, since it is
implied by either a A =b or a’ A —b, we include it in the some-enabled-one-
disabled class. Similarly, for presence conditions of the form (aV a’) A b,
we classified as some-enabled. (For this reason, Fig. 4.6 and Fig.4.7 may
appear inconsistent.)

A total of 25 bugs in the replication studies fall into the some-enabled-
one-disabled category, involving disabled features: four in Marlin, eleven
in BusyBox, and ten in Apache. Similarly to Linux, only two bugs fall
outside the two categories (one in Marlin and one in Apache). In total
(the X column), the contents of VBDb amounts to 49 bugs in some-enabled
configurations, and another 45 bugs in some-enabled-one-disabled. Only
four configurations fall outside the two main categories identified.

Testing of highly-configurable systems is often approached by testing
one or more maximal configurations, in which as many features as possible
are enabled—in Linux this is done using the predefined configuration
allyesconfig. This strategy allows to find many bugs with some-enabled
presence conditions simply by testing one single maximal configuration.
But, if negated features occur in practice as often as in our collection,
then testing maximal configurations only, will miss a significant amount

of bugs.

OBSERVATION 9: A one-disabled testing strategy, with a sample
size bounded by the number of features, would find 96% of bugs in
our collection.

54 Chapter 4. Variability Challenges for Programs

configuration test strategy sample size benefit

all enabled (maximal) O(1) in practice 50% (49/98)
one disabled maximum |F| 96% (94/98)
exhaustive (all configs.) maximum 2/¥l 100% (98/98)

Figure 4.8: Effectiveness (cost/benefit) of various testing strategies if
applied to our collection of bugs.

We propose a one-disabled configuration testing strategy, where we test
configurations in which at least one feature is disabled (and preferably
exactly one, if the feature model permits it).

Figure 4.8 compares the two strategies, all-enabled (maximal) config-
uration testing and one-disabled configuration testing. The sample size is
the number of configurations generated by the given formula (an upper-
bound). For the all-enabled strategy, this number is approximate since
feature models are underconstrained in practice [68], a small number of
configurations will suffice for real systems (thus constant in practice). For
one-disabled, the size of the sample is always at most |[F|, the maximum is
obtained if all features are disabled independently.

The benefit is measured as bug coverage for our sample: for each
strategy we check what percentage of bugs in our database would be
detected by them. We also add an entry for exhaustive testing of all con-
figurations, serving as a baseline. For exhaustive testing, the sample size
is exponential in |F|. This is in practice reduced by feature constraints,
but not below the exponential growth due to sparsity of the constraints,
at least not in highly configurable systems (some software product lines,
in contrast, have very small configuration spaces).

All-enabled (maximal) appears to be a fairly good heuristic intercepting
half of the bugs in our sample; 49 out of 98 the bugs could be found this
way. One-disabled configuration testing has a linear cost in F and thus
can scale reasonably well. Remarkably, 96% of the bugs in VBDb (94 out
of 98) could be found by testing the |IF| one-disabled configurations. Note
that these configurations also find the bugs with a some-enabled presence
condition (except for the hypothetical configuration requiring all features
to be enabled).

In practice, we must consider the effect of the feature model in the
testing strategy. Because some features depend on others to be present,
we often cannot disable features individually. A [Max]SAT solver is
required in order to enumerate the configurations to test, while selecting
valid configurations only. We expect that enumerating valid one-disabled

4.1. Variability Bugs in Highly-Configurable Systems (Paper 2A) 55

configurations would be tractable, given the scalability of modern SAT
solvers (hundreds of thousands of variables and clauses), the size of
real-world program families (more often only hundreds of features) and
sparsity of their constraint systems [68].

The proposed one-disabled sampling strategy is related to other well
established strategies discussed in literature, including the most popu-
lar t-wise (also known as combinatorial interaction testing[26, 28, 16]),
as well as other heuristic strategies such as all-enabled, all-disabled, code-
coverage [86, 87, 85] and random sampling strategies. Medeiros et al. [63]
executed a comparative quantitative study of effectiveness of various
sampling strategies for testing and analysis of configurable systems,
including all the above, one-disabled and its dual version, one-enabled,
added for symmetry. Like suggested above, they use a solver to enu-
merate (almost perfectly) one-disabled and one-enabled configurations that
satisfy feature constraints.

For large sampling problems, and in the present of feature constraints,
Medeiros et al. report that one-disabled tinds more bugs than pair-wise
testing, and it scales better [63]. In fact, one-disabled is the only non-trivial
method that is able to scale to all of the Linux kernel among those that
they studied. None of the t-wise methods do. Besides one-disabled, only
the simple sampling strategies scale, but with worse fault detection rate
(one-enabled, all-enabled, all-disabled, and random sampling). It appears
though that classic combinatorial interaction testing techniques are a
better choice for small configuration spaces. We refer the reader to
the original work of Medeiros et al. for a much more comprehensive
discussion, including the delimitation of conclusion threats.

It is a well known fact that an exponential number of variants makes
it difficult for developers to understand and validate the code, but:

SuMMARY: In addition to introducing an exponential number of
program variants, variability increases the complexity of bugs along
several dimensions:

— Bugs occur because the implementation of features is intermixed,
leading to undesired interactions, for instance, through program
variables;

— Interactions occur between features from different subsystems, de-
manding cross-subsystem knowledge from the developers;

56 Chapter 4. Variability Challenges for Programs

— Variability may be implicit and even hidden in alternative or con-
ditionally defined function, macro, variable, and type definitions
specified at remote locations;

— Variability bugs are the result of errors in the code, in the mapping,
in the feature model, or any combination thereof;

— Further, each of these layers involves different languages (e.g., C,
Crpr, GNU MAKE and KCcONFIG for Linux);

— Not all these bugs will be detected by maximal configuration testing
due to interactions with disabled features;

— The existence of compiler errors in committed code trees shows
that conventional feature-insensitive tools are not enough to find
variability bugs.

Contributions

This paper is the main contribution to Goal 2 (Program Perspective) as we
set off to gain understanding on the complexity and nature of variability
bugs of four highly-configurable systems. Research question Q2 asks for
how variability affects bugs. Based on the aforementioned observations,
this paper shows that variability bugs are not confined to any particular
type of bugs, error-prone features, or specific locations. Hence, analysis
tools aiming to find variability bugs in highly-configurable systems need
to be targeted widely at all types of bugs, all kinds of features, and all
subsystems. Indeed, perhaps we should work on methods to lift any
analysis tools to configurable systems. We look into one method in this
direction in Chapter 5. Another study attempt is the work of Dimovski
et al. on automatic variability abstraction [34].

The paper also characterizes in what ways variability affects bugs.
In addition to introducing an exponential number of program variants,
variability increases the complexity of bugs along several dimensions:
unintended feature interactions, hidden features, different layers and
languages, many function calls, etc.

Furthermore, the tremendous variation among the bug in the VBDb
collection itself (each with simplified and single-function versions and
patches) provides a useful resource for further research on variability
bugs and bug finders. In fact, this work has already influenced a quanti-
tative study on the effectiveness of sampling strategies for configurable

4.2. A Quantitative Analysis of Variability Warnings in Linux (Paper 2B) 57

systems [63]. Al-Hajjaji et al. [3] also used our database to derive a set of
mutation operators for software with preprocessor-based variability. We
thus hope that our variability bugs database will continue being useful
to the variability research community, especially to designers of program
analysis and bug finding tools.

4.2 A Quantitative Analysis of Variability Warnings in Linux
(Paper 2B)

Summary

This paper’ analyzes one of the largest open source projects, the Linux
kernel, in order to quantify basic properties of configuration-related
warnings. I use warnings as a proxy for unintended quality issues. Warn-
ings are undesirable in mature code; it is a common practice to disallow
code with compilation errors from being committed. Additionally, it
is difficult to collect errors automatically, since classifying the cause of
error cannot be done automatically, while it is entirely feasible for warn-
ings. This work automatically analyzes more than 20 thousand valid and
distinct random configurations, in a computation that lasted more than
a month. Then, I count and classify a total of 400,000 warnings to get
an insight in the distribution of warning types, and the location of the
warnings. I run both on a stable and unstable version of the Linux kernel.

The results reveal that the most common warnings involve dead code
(warnings: unused-function and unused-variable) and uninitializations.
Interestingly, it appears that no warnings are configuration independent
in Linux. All warnings that survive the development process, and are
committed to the repositories, even in stable releases, are configuration
dependent. I also find that the drivers/ and include/ subsystems
contain most warnings, whereas there is much less warnings in core
subsystems kernel/ and security/ of Linux. Additionally, the unstable
version contains more warnings than the stable version, indicating that
the Linux process for preparing stable releases does help to reduce
configuration-dependent warnings.

9This is a joint work with Elvis Flesborg, who concluded his M.Sc. project under
the supervision of Claus Brabrand and mine.

58 Chapter 4. Variability Challenges for Programs

Context & Motivation

It is commonly assumed that developing highly-configurable systems is
more difficult than developing single-variant software. A clear challenge
is that highly-configurable software can only be handled one variant
at a time by conventional software development tools (static analyzers,
compilers, testing tools, etc). Using preprocessor (variability) just adds to
this difficulty (cf. Paper 1A). Despite widespread adoption, preprocessors
obfuscate the source code, reduce comprehensibility and increase error-
proneness [84, 57].

In this paper, I report on a simple, but extensive experiment that
investigates main properties of compilation warnings appearing in differ-
ent configurations (and two different trees) of the Linux kernel project. I
use sampling [88] across many configurations to investigate what kind of
compilation warnings are most common, and configuration-dependent,
to see in which subsystems they appear, and whether they are more
likely to appear in unstable source trees, than in stable releases.

I use warnings as a proxy for unintended quality issues. Warnings
are undesirable in mature code; it is a common practice to disallow code
with compilation errors from being committed. Maintainers see warnings
as a heuristic indication of low-quality code. Unfortunately, eliminating
warnings from highly-configurable code is difficult, because compilers
only report them for one configuration at a time. Also, warnings are
often produced using the same, or very similar, static analysis techniques
as used for detecting errors. Quantitative characteristics of warnings
are thus interesting for tool builders, who work on family-based static
analysis tools. First, they show that evaluating analysis tools on systems
of the size of the Linux kernel using sampling is feasible. Second,
they show what kind of warnings appear frequently, which allows to
scope and prioritize work on lifted analyses for these warnings (so that
sampling is not necessary, and warnings can be produced with higher
reliability).

Warning statistics can be efficiently collected for a large number of
configurations. The very small number of compilation errors, especially
in stable releases, makes designing quantitative studies difficult. Fre-
quency of warnings is higher than of errors. Moreover, compilation
errors are often caused not by mistakes, but by deficiencies of the build
environment (for instance absence of configuration-dependent dependen-
cies). Since classifying the cause of error cannot be done automatically,

4.2. A Quantitative Analysis of Variability Warnings in Linux (Paper 2B) 59

collecting error distribution data automatically is difficult, while it is
entirely feasible for warnings.

Therefore, the objective of this study is to quantitatively analyze
configuration-dependent warnings in the Linux kernel by checking a
large number of randomly generated configurations.

Method

This paper follows a three-step method: First, generation of random
configurations. Second, collecting the warning messages returned by
a compilation. Third, reflecting on the aggregated data to gather the
findings. I discuss details of these steps below.

Generation of Random Configurations. 1 generate random configurations
using randconfig, a built-in facility of the Linux kernel build system. It
produces a file with configuration (so called .config file), with values
for all features decided. This file is an input for the build system.

As a rule, generating uniformly distributed solutions to a constraint
system over 15 thousand variables is not feasible with state of the art
PSAT tools, which leaves randconfig as a viable approximation. While
(possibly) not uniformly distributed, randconfig is a reproducible mech-
anism. The randconfig mechanism guarantees generating valid configu-
rations, and thus so very efficiently (within seconds).

Compiling and Data Collection. 1 compile each generated configuration
using the make all command with the Gcc compiler, activating all warn-
ings (the -Wall option), which is a common and recommended practice
in open source development in C. Then, I collect the warning messages.
A warning output contains a bug type, a filename, line number, and a
message describing the warning.

The experiment is repeated for two different versions of the Linux
kernel: a latest stable, v4.1.1, and a two months old in-development
from the linux-next tree.!® The random configurations are selected from
the x86 architecture of the Linux kernel, which decreases the amount of
technical problems with building them on a single machine.

Data Analysis. After collecting all the data, I analyze the warning mes-
sages, classifying them by type and location (sub-system).

10next-20150402-22
https://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git

https://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git

60 Chapter 4. Variability Challenges for Programs

| Warning | Percent
unused-function 59 %
2 | maybe-uninitialized 45 %
3 | unused-variable 29 %
4 | uninitialized 19 %
5 | pointer-to-int-cast 17 %
6 | frame-larger-than= 14 %
7 | array-bounds 11 %
8 | return-type 8 %
9 | int-to-pointer-cast 8 %
10 | overflow 7 %
11 | implicit-function-decl 6 %
12 | unused-label 5 %
13 | deprecated-declarations 5 %

Figure 4.9: Most common warnings in the stable Linux Kernel (according
to how many percent of configurations produce the given kinds of
warnings, when compiled).

Operation. The experiment has been carried out for a month on two ma-
chines, a 32 core, 2.8MHz, 128GB RAM server (average time to generate
and compile one configuration of around 1 minute and 35 seconds) and
a conventional laptop with a 4 core, 2.5 MHz CPU and 4 GB of RAM.

Results

I now present the results of compiling 42,060 kernels (21K in a stable
version and 21K in an wunstable version) of Linux using ccc with all
warnings enabled. All compilations produced a total of 400,000 warnings
(i.e., an average of about ten warnings per compilation). The highest
number of warnings produced by a single compilation was 111 (warnings)
and 226 configurations compiled without warnings. Obviously, many of
the same warnings are found over and over because the same code base
in which they occur is included in many different configurations. The
experiment materials are available online!! (including scripts, notes, and
reports).

Most Common Warnings

OBSERVATION 1A: The most common warnings in the stable
Linux kernel involve dead code (warnings: unused-function

11https ://github.com/models-team/quantify_linux_errors

https://github.com/models-team/quantify_linux_errors

4.2. A Quantitative Analysis of Variability Warnings in Linux (Paper 2B) 61

and unused-variable) and uninitializations (warnings:
uninitialized and maybe uninitialized).

Figure 4.9 shows the most common warnings occuring in the stable ver-
sion of Linux. A warning is said to occur in a configuration of Linux, if a
corresponding warning message appears as a result of compiling the con-
figuration of Linux. The most abundant warning is unused-functions;
functions that are declared, but not used. Such functions are technically
dead code, but do occupy memory. In fact, Gce does not remove dead code
such as unused functions and unused variables.'> To remove dead code, the
Gee compiler needs to be invoked with options -fdata-sections and
-ffunction-sections in order to keep data and functions in separate
sections; subsequently, the linker needs the -gc-sections flag to be able
to finally remove unused sections. Interestingly, the removal of such dead
code is not available among the optimizations commonly employed in the
Linux kernel; it is included in neither -00 (optimization level zero), -01
(one), nor -02 (two). Note that Linux ubiquitously runs on many small em-
bedded devices such as TiVo and similar DVR devices, network routers,
and smartwatches —even credit-card sized single-computer boards such
as Raspberry Pi—where memory is a limited resource.

The second most common warning, maybe-uninitialized, occurs in
45% of configurations; it occurs whenever gcc determines the existence
of an execution path from a variable declaration to a usage without prior
initialization. If the uninitialization occurs along all paths, the warning
is strengthened to a (definitely) uninitialized which happens in 19%
of configurations. Such warnings are quite serious. The third most com-
mon warning is unused-variable (occurring in 29% of configurations);
variables that are declared, but not used. Such variables constitute dead
code and will take up space on the heap or stack and may thus translate
to wasted memory. In total, Figure 4.9 details the frequencies of 13 types
of warnings commonly occurring in Linux.

In terms of variability, it is interesting to note that none of the warn-
ings are at 100% which would be the case for configuration-independent
warnings. This means that all warnings in the stable Linux seem de-
pendent on configurations (choice of enabled/disabled features). Hence:

OBSERVATION 1B: All warnings in Linux appear to be
configuration-dependent (i.e., warnings that occur in some con-
figurations and not in others).

12https ://gcc.gnu.org/ml/gcc-help/2003-08/msg00128.html

https://gcc.gnu.org/ml/gcc-help/2003-08/msg00128.html

62 Chapter 4. Variability Challenges for Programs

| Subsystem | Absolute | Relative Warning
Directory Size Size | Percentage

1 | drivers/ 7,713 59 % 64 %
2 | include/ 423 3% 40 %
3 | crypto/ 69 1% 17 %
4 | fs/ 831 6 % 14 %
5 | net/ 631 5% 10 %
6 | arch/x86/ 235 2% 9 %
7 | lib/ 74 1% 9 %
8 mm / 68 1% 8 %
9 | kernel/ 155 1% 6 %
10 | sound/ 659 5% 4 %
11 | block/ 24 0 % 1%
12 | security/ 50 0 % 0 %

Figure 4.10: Rank of subsystems in the stable Linux Kernel (according to
how many percent of configurations produce warnings, when compiled).
Size is given in KLOC.

Finally, I observe that:

OBSERVATION 1c: Most configurations appear to contain warnings.

In fact, among our 21,030 configurations compiled in the stable version,
only 226 did not produce warnings. Even though the Linux kernel
developers try to improve code quality!® —making sure that the code
follows the coding style, and eliminating the static code checker errors
and warnings—, it seems that dealing with variability (i.e., maintaining
thousands of features and their interactions) is complicated. This is
consistent with the results in Paper 1A and Paper 1B discussed before,
which also show that variability makes reasoning about programs more
difficult.

Subsystems with Most Warnings

OBSERVATION 2: The drivers/ subsystem and include/ header
files produce warnings in around half of all configurations;
whereas core subsystems such as kernel/ and security/ rarely
produce warnings.

Figure 4.10 shows the frequency of warnings in the stable version of
Linux, according to the subsystems in which they occur. (Note that I
use directories as proxies for subsystems.) It presents both absolute and

13https ://www.kernel.org/doc/Documentation/SubmittingPatches

https://www.kernel.org/doc/Documentation/SubmittingPatches

4.2. A Quantitative Analysis of Variability Warnings in Linux (Paper 2B) 63

Warning | Stable | In-Dev.
unused-variable 29 % 51 %
int-to-pointer-cast 8 % 25 %
implicit-function-decl 6 % 23 %
frame-larger-than= 14 % 8 %

(a) Kinds of warnings.
Subsystem | Size [Stable | In-Dev.

arch/x86/ 235 9 % 14 %
mm/ 68 8 % 13 %
kernel/ 155 6 % 3%
sound/ 659 4 % 2%

(b) Subsystems with most warnings.

Figure 4.11: Significant differences of configuration-dependent warnings
(in percentage) between the stable and in-development version of Linux.

relative size for each subsystem, in which I normalize the subsystem size
by dividing it by the total size (= 13 MLOC). A warning is said to occur in
a subsystem, if a corresponding warning message appears designating a
location within the given subsystem. In the following, I disregard smaller
subsystems below ten thousand lines of code: virt/ (6.8 KLOC), ipc/
(6.4k), init/ (2.0k), and usr/ (0.6k). I also disregard Linux infrastructure
such as tools/ (102k), scripts/ (44k), and samples/ (2.1k).

The subsystem most frequently producing warnings is also the largest
subsystem of Linux with 7 MLOC: drivers/. This subsystem produces
warnings in more than half (64%) of configurations. The subsystem
include/ (a directory with header files) causes warnings in almost half
(40%) of configurations.

In particular, this means that sampling using randconfig is likely to
hit warnings in drivers/ and include/, but unlikely to hit warnings in
core subsystems such as kernel/ and security/. This is important as
sampling is often proposed as a viable method for analysis of config-
urable systems. In case of using another sampling technique, the result
is still unclear (as the probability distribution of randconfig is hard to
describe).

Stable vs. In-Development Version

Figure 4.11 shows a comparison of differences in warnings in the stable
versus the in-development version of Linux. Figure 4.11a charters sig-
nificant differences in frequencies of warning kinds in the two version.

64 Chapter 4. Variability Challenges for Programs

Variables declared, but not used (unused-variables) proliferate in the
in-development version, occurring in twice as many configurations as that
of the stable version. Presumably, the lack of rigorous testing that the sta-
ble version undergoes before “release” does not reveal such superfluous
declarations. Also, (integer to pointer) type casts and implicit function decla-
rations seems to occur more frequently in configurations in the (un-stable)
development version. Only one kind of warning, frame-larger-than=N,
occurs less frequently in the in-development version. This kind of warning
is reported when a function seems to require allocation of more memory
on the stack than a compile-time given constant, N. The remaining
kinds of warnings do not spawn significant differences between the two
versions.

Figure 4.11b shows differences in the locations of warning among
the two versions of Linux. The subsystems that has a percentage point
difference lower than 2% are not shown. As we can see, warnings
occur more frequently in the arch/x86/ and mm/ (memory management)
subsystems. Also, I observe, not surprisingly, that:

OBSERVATION 3: There appear to be more warnings in the in-
development version than the stable version of Linux (especially,
unused variables, type casts, and implicit function declara-
tions).

This is interesting for two reasons. First, it shows that developers do fix
many problems before the code becomes stable, and if they had the right
tools, this process could possibly be speeded up. In fact, official Linux
kernel patch submission guidelines encourage removing warnings to
avoid clutter of messages from the compiler.!* The Linux foundation also
urges the developers to heed the warnings produced by the compiler:!

“Contemporary versions of GCC can detect (and warn about) a
large number of potential errors. Quite often, these warnings point
to real problems. Code submitted for review should, as a rule, not
produce any compiler warnings. When silencing warnings, take
care to understand the real cause and try to avoid “fixes” which
make the warning go away without addressing its cause.”

Second, it also shows that the errors survive all the way to the stable
version, so the variability-aware tools that would be more precise or more

14ht‘cps ://www.kernel.org/doc/Documentation/SubmittingPatches
15https ://www.linuxfoundation.org/content/how-participate-1linux-community-0

https://www.kernel.org/doc/Documentation/SubmittingPatches
https://www.linuxfoundation.org/content/how-participate-linux-community-0

4.2. A Quantitative Analysis of Variability Warnings in Linux (Paper 2B) 65

accurate than the developers, could help to substantially decrease the
bug density in Linux.

Overall, it seems that Linux developers are good at fixing issues in
in-development versions for stable version releases.

Contributions

Similarly to Paper 2A, this paper contributes to Goal 2 since it inves-
tigates characteristics of configuration-dependent warnings in Linux,
which are proxies for bugs.

The results show 13 different types of warnings appearing in the
Linux kernel. The majority of these are regarding dead code (e.g., unused
variable) and uninitializations. This finding aligns with the study of
Medeiros et al. [66] in which they found 39 configuration-related issues,
including 14 (36%) undeclared functions, 2 (5%) undeclared variables, 7
(18%) unused functions, and 23 (41%) unused variables. In other words,
they noticed that 59% of the issues are related to unused functions and
variables. Here, I complement this finding by generating randomly
thousands of configurations from the Linux kernel, in which I observe
that the most abundant warning is unused function and the third most
is unused variable.

I also find that most configurations (and subsystems) appear to con-
tain warnings. Specifically, the drivers/ and include/ subsystems con-
tain warnings in about half of all configurations, whereas much fewer
warnings originate from the core subsystems kernel/ and security/.
This result harmonizes with Paper 2A and with the study of Abal et
al. [2] by confirming and complementing with quantitative data that vari-
ability bugs are not confined to any particular type of bug, (error-prone)
feature, or source code location. Additionally, I observe that there are
generally more warnings in the in-development version of Linux than in
the stable version.

Finally, I hope that indication of which areas are hot in warnings can
be useful for further research on bug finding in Linux, showing which
subsystems are good candidates as analysis subjects. Also, this study
seems to confirm the, commonly held but rarely followed, recommenda-
tion to focus bug-finding studies on unstable trees of Linux, as opposed
to stable. Moreover, this study shows that the errors survive all the
way to the stable version, so the variability-aware tools could help to
substantially decrease the bug density in Linux.

Chapter 5

Variability-Aware Solution for Lifting
Single-Program Analysis

68 Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

This chapter summarizes Paper 3A which contributes to Goal 3 and,
consequently, to Q3. In the following, I address the solution-program
quadrant (see Table 5.1), where I provide evidence on how to lift con-
ventional single-analysis tools to handle program families implemented
using preprocessor directives.

PROBLEM SOLUTION

SPACE

— QUADRANT 1 — — QUADRANT 4 —

— QUADRANT 2 — — QUADRANT 3 —
P3: Infeasible to lift all program analy-
ses to deal with variability.

Q3. How to lift conventional analysis
tools to find variability bugs?

T3: Rewriting variability enables single-
program analysis tools to find bugs
in highly-configurable systems.

PROGRAM PROGRAMMER

PERSPECTIVE

Table 5.1: Research problem, question, and thesis of the QUADRANT 3.

5.1 Effective Analysis of C Programs by Rewriting Variability
(Paper 3A)

Summary

This paper proposes a series of variability transformations for translat-
ing program families into single programs by replacing compile-time
variability with run-time variability (non-determinism). The obtained
transformed programs can be subsequently analyzed using the conven-
tional off-the-shelf single-program analysis tools such as type checkers,
symbolic executors, model checkers, and static analyzers. In particular,
our! variability transformations are outcome-preserving, which means that
the relation between the outcomes in the transformed single program and

IThis is a joint work with Alexandru F. losif-Lazar and Aleksandar S. Dimovski.

5.1. Effective Analysis of C Programs by Rewriting Variability (Paper 3A) 69

the union of outcomes of all variants derived from the original program
family is equality in general.

As a proof of concept, the paper presents C RECONFIGURATOR, a
prototype tool that implements variability transformations for the C
language. All transformations are implemented using Xtend.?> The C Re-
CONFIGURATOR tool is available online at https://github.com/models-
team/c-reconfigurator. It calls SUPERC [39], a variability-aware parser,
to parse code with preprocessor annotations, which uses Binary Decision
Diagrams (BDD's) for encoding feature expressions and for decisions
during the parsing process. SUPERC returns an Abstract Syntax Tree
(AST) with variability, in which variability is reflected with choice nodes
over feature expressions [37]. A choice node is a node with two children,
such that the left child of the choice node is included in the result of those
configurations for which the given feature expression is satisfied; the
right child of the choice node is included otherwise. We apply variability
transformation rules to the AST with variability obtaining an ordinary
AST, which is subsequently translated into a single C program (pretty
printed).

We show the transformation rules and discuss their correctness with
respect to a minimal core imperative language IMP. We also discuss our
experience of implementing and using the transformations for efficient
and effective analysis and verification of real-world C program families.
We report on some interesting variability bugs that we were able to
detect using various state-of-the-art single-program analysis tools, such
as FRamA-C [56], CLANG [21] and LLBMC [69].

Context & Motivation

Due to the increasing popularity of program families, formal verification
techniques for proving their correctness are widely studied [88]. An-
alyzing program families is challenging (cf. Paper 1A). With very few
compile-time configuration options, exponentially many variants of a
system can be derived. Thus, for large variability-intensive software
systems, a brute-force approach that derives and analyzes all variants
individually one by one using existing single-program analysis tools is
infeasible.

Recently, many dedicated family-based (variability-aware) analysis tools
have been developed, which operate directly on program families. They

2http ://www.eclipse.org/xtend/

https://github.com/models-team/c-reconfigurator
https://github.com/models-team/c-reconfigurator
http://www.eclipse.org/xtend/

70 Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

Variability program _trangform_, Single program

ariability-awar
analyzer

single-program
analyzer

~

2 ;. .
Variability-aware interpret results Gingle-program
restilts results

Figure 5.1: The overview of our transformation-based approach for
verification of program families. The single-program analyzer can be any
verification oracle for single programs, such as: symbolic executor, type
checker, static analyzer, model checker.

produce results for all variants at once in a single run by exploiting
the similarities between the variants. Examples of successful family-
based analysis tools are applied to syntax checking [1, 39], type checking
[51, 20], static analysis [14, 13], model checking [22, 30], etc. Although
they are more efficient than the brute-force approach, still their design
and implementation for each particular analysis and language is tedious
and error prone. Often, these family-based tools are research prototypes
implemented from scratch. So, it is very difficult to re-implement all op-
timization algorithms in them that already exist for their single-program
industrial-strength counterparts, which have been under development
for several decades.

Another approach for efficient variability-aware verification would
be to replace compile-time variability with run-time variability (or non-
determinism), a method also known as “variability simulation” [92]. In
particular, in this work we consider a class of variability transformations
that transform a program family into a single program, whose outcomes
are equal to the union of all outcomes of individual variants. We call
the corresponding transformations outcome-preserving. Subsequently,
existing single-program analysis tools (verification oracles) that can han-
dle non-determinism (run-time variability) can be used to analyze the
generated single program. Finally, the obtained results are interpreted
back on the individual variants. The overview of this approach is given in
Figure 5.1. Instead of using specialized variability-aware tools to analyze
program families (which would be tedious and labor intensive), we use
the standard off-the-shelf single-program analysis tools to achieve the
same goal by employing our variability transformations.

5.1. Effective Analysis of C Programs by Rewriting Variability (Paper 3A) 71

1 1 int A = rand () % 2;
2 2 int B = rand () % 2;
3 int foo () 3 int foo ()

4 { 4 {

5 int x = 1; 5 int x = 1;

6 6

7 #ifdef A 7 if (A)

8 X =x + 1; 8 X =x + 1;

9 #endif 9

10 #ifdef B 10 if (B)

11 x =x— 1; 11 x =x—1;

12 #endif 12

13 13

14 return 2/x; 14 return 2/x;

15 } 15 }

Figure 5.2: Before (left) and after (right) our transformations.

In the following, I illustrate how our variability transformations work on
C program families. Consider a preprocessor-based family of C programs
shown in Figure 5.2 (left column), which uses two (Boolean) features A
and B. Only two features give rise to a family of four program variants
defined by the set of configurations K = {AAB,AA—=B,-AAB,-AA
—B} (assuming none are deemed invalid). For example, the variant for
A A B, which has both features A and B enabled (set to true), and the
variant for =A A —B are, respectively:

1 int foo () 1 int foo ()

2 2 |

3 int x = 1; 3 int x = 1;
4 X = x + 1; 4

5 x =x — 1; 5

6 return 2/x; 6 return 2/x;
7} 7}

Figure 5.3: Variants: A A B (left) and —A A =B (right).

In such program families, errors (also known as variability bugs [2]) can
occur in some variants (configurations) but not in others. In our example,
the variant -A A B will crash at the return statement when we attempt
to divide by zero. At the same time, the other variants avoid the division-
by-zero. The value of x at the return statement is 1 for variants A A B
and -A A =B, and 2 for A A —B.

72 Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

To detect the variability bugs, we would either have to analyze each
variant individually, or to use a family-based analysis tool that can parse
and process the #ifdef and #endif directives accordingly. We instead
transform the code in such a way that it can be analyzed by tools that
cannot handle C Preprocessor directives. Figure 5.2 (right column) shows
a single program obtained by applying our transformation on the family
shown in the left part of the figure. All features are first declared as
ordinary global variables and non-deterministically initialized to 0 or
1, then all #ifdef statements are transformed into ordinary conditional
statements (if-s) with the same guard conditions. The division-by-zero
is still present in this single program and happens when A is initialized
to 0 (disabled) and B to 1 (enabled). The set of outcomes of the transformed
program (Figure 5.2, right column) is equal to the union of outcomes of
all individual variants from the family (Figure 5.2, left column).

In general, the transformed program that we obtain from the original
program family can be analyzed by various single-program verification
tools, in order to find variability errors or to confirm the absence of errors
in the given program family.

Method

To demonstrate correctness of our transformations, we define them for-
mally using IMP, a small imperative language. To model compile-time
variability, we extend IMP with an “#ifdef” construct for encoding multi-
ple variants, which we call IMP language. To encode run-time variability,
we extend IMP with an “or” construct for encoding non-determinism,
which we call IMPor language. We define transformations that translate
any given IMP program into a corresponding IMPor program. In the
paper, we show the relation between the semantics of the input and
output programs for each transformation. In the following, I give an
overview of the formal model for our transformations. (I refer the reader
to the paper for a more detailed description on this.)

A Formal Model for Transformations

IMP is an imperative language with two syntactic categories: expressions
and statements. Expressions include integer constants, variables, and
binary operations. Statements include a “do-nothing” statement skip,
assignments, statement sequences, conditional statements, while loops,

5.1. Effective Analysis of C Programs by Rewriting Variability (Paper 3A) 73

and local variable declarations. Its abstract syntax is summarized using
the following grammar:

e n= n | x| ede
s == skip|x :=e]|sg ; s1|if e then sy else sq|while e do s|var x:=¢

In the above, n stands for an integer constant, x stands for a variable
name, and @ stands for any binary arithmetic operator.

The language IMPor is obtained by extending IMP with a non-
deterministic choice operator ‘or” which can non-deterministically choose
to evaluate either of its arguments.

e n= .. | eore

With this non-deterministic construct ‘or’, it is possible for an expression
to evaluate to a set of different values in a given store.

The programming language IMP also extends IMP (thus, IMP
does not contain the ‘or” construct). Its abstract syntax includes the
same expression and statement productions as IMP, but we add the
new compile-time conditional statements for encoding multiple vari-
ants of a program. The new statements “#if (¢) s #endif” and
“#if (¢) var x:=n in #endif s” contain a feature expression ¢ € FeatExp
as a presence condition, such that only if ¢ is satisfied by a configuration
k € K then the code between #if and #endif will be included in the
variant for k.

su=..|#if (¢) s #endif | #if (¢) var x:=n in #endif s

A finite set of Boolean variables F = {Ay,..., A,} describes the set of
available features in the program family. Each feature may be enabled or
disabled in a particular variant. A configuration k is a truth assignment or
a valuation which gives a truth value to each feature, i.e. k is a mapping
from FF to {true, false}. If a feature A € F is enabled for the configuration
k then k(A) = true, otherwise k(A) = false. We write K for the set of
all valid configurations defined over IF for a family. The set of valid
configurations is typically described by a feature model [47], but in this
work we disregard syntactic representations of the set K. Note that
K| < 2|]F|, since, in general, not every combination of features yields a
valid configuration. We define feature expressions, denoted FeatExp, as the
set of well-formed propositional logic formulas over [F generated using
the grammar: ¢ == true| A € F| ¢ |p1 A P2 | p1 V ¢o.

ins

74 Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

The semantics of IMP has two stages: first, given a configuration
k compute a single IMP program without #if-s; second, evaluate the
obtained variant using the standard IMP semantics. The first stage is a
simple preprocessor specified by the projection function 77 mapping an
IMP program family into a single IMP program corresponding to the
configuration k. The projection 7t copies all basic statements of IMP
that are also in IMP, and recursively pre-processes all sub-statements
of compound statements. For example, 7ty (skip) = skip and 7t (s¢;51) =
7k (50);7tk (51). The second step is standard for IMP.

Results

First, I summarize our variability transformations. Then, I present the
evaluation results.

Variability Transformations

The aim of our transformation-based approach is to rewrite an input
IMP program family s into an output IMPor program s’. In a pre-
transformation phase, we first convert each feature A € TF into the
variable A, which is non-deterministically initialized to 0 or 1 (i.e., false or
true). Let F = {A1,..., A, } be the set of available features in the family
5, then we have the following initialization fragment in the resulting
pre-transformed program pre-t(5):

pre-t(s)=var A;:=0orlin...var A,:=0orlins

After translating features into variables, a series of rewrite rules are
applied on the program. The rules have the following form: ¢ F s ~ ¢/,
which means that if the current program family being transformed
matches any abstract syntax tree (AST) node of the shape s nested under
#1f-s with the resulting presence condition that implies ¢ € FeatExp (i.e.,
in context) then replace s by s'. Formally, applying the rule ¢ - s~-s’
to a family:

. #1f (¢p1) ... #if (¢pn) ...;s;... #endif ... #endif. ..
where g1 A.. AP, = 1, then results in the transformed program:

o HAE (@) .. #AF (@) ...;8;... #endif... #endif...

5.1. Effective Analysis of C Programs by Rewriting Variability (Paper 3A) 75

The function Rewrite(s,p + s~-s') represents the final transformed
program s’ obtained by repeatedly applying the rule ¥ I s~s’ ons and
its transformed versions until a point where this rule can not be applied
is reached (a fixed point of the rule).

In the following, I present two transformation rules which handle
conditional variable declarations and uses. They involve duplicating
code and variable renaming. The most straightforward way to handle
renaming of variables in different contexts is by adding an environment
0 as a parameter to the statements being transformed. We define an
environment J : Var x FeatExp — Var as a function mapping a given
pair of a variable and a feature expression to a variable name. We write
5%¢(x) C FeatExp for the set of all feature expressions ¢ such that 6(x, ¢)
is defined, i.e. 6¥¢(x) = {¢ € FeatExp | (x,¢) € dom(s)}. We write
s, 0 to denote the result of simultaneously substituting é(x, ¢) for each
occurrence of any variable x in s in the context (presence condition) that
implies ¢.

Conditional variable declaration. Figure 5.4 (left) shows a variable de-
clared with different types depending on the features A and B, and how
it is rewritten to include both versions in a single program (right side).

1 #if (A) int x; #endif 1 int x_A;
2 #if (B) long x; #endif 2 long x_B;

Figure 5.4: Rewriting conditional variable declarations.

This rule transforms a local variable that is declared conditionally within
a given context { € FeatExp:

Y F #if (¢) var x:=n in #endifs,d ~» var Xnep:=n ins,d[(x, ¢) — Xnew)
(5.1)
where x;,0; 1S a fresh variable name that does not occur as a free variable
in s. The square brackets in ¢ (cf. J[(x,¢) +— Xpew]) means that the
environment is update if the variable already exists in the mapping,
otherwise a new entry is created in the environment.

Conditional variable use. Figure 5.5 contains variable x that is declared
conditionally when A and !A, two mutually exclusive presence conditions.
At its usage, we rewrite it by introducing a ternary conditional operator
in order to split the execution and retain the original paths.

76 Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

1 #if (A) int x; #endif 1 int x_A;
2 #if ('A) long x; #endif 2 long x_notA;
3y =x+1; 3y =(A? x A : x_notA) + 1;

Figure 5.5: Rewriting conditional variable use.

This rule handles the case when a local variable is used within a
context ¢ € FeatExp. In other words, it transforms expressions whose
variables depend on features. There are three cases to consider here.

Y F oyi=e[x],d ~ yi=e[d(x,)], 0 (2.1)

if there exists an unique ¢ € 6%¢(x), such that ¢ |= ¢. Here e[x] means
that the variable x occurs free in the expression e.
The second case is when there are several ¢1,...¢, € 5te(x), such

that sat(¢1AY),...,sat(P,Ap):

P Fyi=e[x],0 ~ #if (¢p1) vi=e[d(x, ¢1)] #endif;.. #if (¢p,) vi=e[6(x, ¢n)] #endif, o
(2.2)
Otherwise, meaning that for all ¢ € 6%¢(x) it follows that unsat(pAy),
we have:
Y F oyi=e[x],d ~ yi=e[x],0 (2.3)

I refer to the paper for the other rules, including a few normalization
rules, as well as the proof of the theorem of outcome preservation for
IMP programs. The theorem also holds for C programs in the subset of
C corresponding to IMP.

Evaluation

We evaluate our reconfiguration technique based on variability transfor-
mations and single-program verification oracles on several real-world C
case studies.? The evaluation aims to show that we can use state-of-the-
art single-program verification tools to verify realistic C program families
using variability transformations. To do so, we ask the following research
questions:

RQ1: How precise is our technique?

3All experiment materials are available online at https://github.com/models-team/c-
reconfigurator-test.

https://github.com/models-team/c-reconfigurator-test
https://github.com/models-team/c-reconfigurator-test

5.1. Effective Analysis of C Programs by Rewriting Variability (Paper 3A) 77

RQ2: How efficient is the verification oracle to identify variability bugs
after transforming the code using our technique?

In particular, we want to show that single-program verification tools
able to find bugs in variant code (erroneous configurations), are also
able to find the same bugs in reconfigured code, which are obtained
using our tool. We use FRAMA-C [56], CLANG [21] and LLBMC [69] as
our verification oracles. FrRama-C is a framework for modular static
(dataflow) analysis of C programs. The CLANG project includes the Clang
compiler front-end and the Clang static analyzer for several programming
languages, including C. LLBMC (the low-level bounded model checker)
is a software model checking tool for finding bugs in C programs. We
study only known variability bugs that are detectable by the three tools.

Subject Files and Experimental Setup. All transformations are applied
using the C RECONFIGURATOR tool. We investigate precision and perfor-
mance in finding real variability bugs extracted from three benchmarks:
Linux, BusyBox and Libssh. In particular, we use simplified bugs from
the VDBDb database that are found in the Linux kernel files and in Busy-
Box (cf. Paper 2A). Simplified bugs are independent of the kernel code
and the corresponding programs were derived systematically from the
error trace. Additionally, we use real variability bugs from Libssh.

Table 5.2 presents the characteristics of the subject files we analyzed
in our empirical study. We list: the file id, bug type, number of features
(|F|), number of valid configurations (|K|), lines of code, the size in
KB of the files before (with #ifdef-s) and after (without #ifdef-s) our
transformations, and commit hash (clickable) for each project. This
collection consists of a diverse set of bug types such as null pointer
dereferences, buffer overflow, and uninitialized variable. In total, we
have 11 distinct kinds of bugs. The number of features per file varies
from one to seven. In addition, the number of lines of code ranges from
12 to 165 for the simplified files (from VBDDb), and from 1404 to 2959 for
real files (from Libssh). After the transformation, the biggest increase in
size of almost 8 times can be observed for FILE ID 7. This is due to the fact
that this file has seven different features and several variability patterns
that depend on them. In most of the other cases the size increase is not
very big.

All experiments were executed on a Kubuntu VM (64bit, 4 CPUs),
Intel®Core™ i7-3720QM CPU running at 2.6GHz with 12GB RAM
memory. The performance numbers reported constitute the median
runtime of 50 independent executions.

Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

FiLE BuG TYPE [F| | K| | LOC Size KB Hasu
1D before L after

VBDB LINUX FILES

N
1N

1 null pointer deref. 165 29 4.3 | 76baeeb

null pointer deref. 112 1.9 2.5 | f7ab9b4

null pointer deref. 55 0.9 1.0 | ee3f34e

null pointer deref. 34 0.5 0.6 | 6252547

58 1.0 1.2 | 8c82962

N| N| O\ o &

buffer overflow 33 0.6 0.7 | 60e233a

2
3
4
5 buffer overflow
6
7
8

5

3

4

3

1

1
read out of bounds 7 63 69 1.1 8.4 0f8f809
uninitialized var. 2 4 54 0.8 1.0 | Zacfécd
9 uninitialized var. 1 2 54 1.0 1.1 | bc8cecO
10 uninitialized var. 1 2 53 0.8 1.0 | 30e0532
11 uninitialized var. 2 4 38 0.9 1.2 | 1cl17e4d
12 uninitialized var. 2 4 26 0.3 0.5 | e39363a
13 undefined symbol 4 | 14 25 0.4 0.6 | 7c6048b
14 undefined symbol 2 4 20 0.3 0.5 2f02¢15
15 undefined symbol 2 4 20 0.3 0.5 | 6515e48
16 undefined symbol 2 4 19 0.3 0.5 | 242fla3
17 | undeclared identifier | 3 8 37 0.6 1.0 | 6651791
18 | undeclared identifier | 2 4 20 0.3 04 | f48ecld
19 wrong # of args 1 2 12 0.2 04 | e67bc51
20 | multiple funct. defs | 2 4 21 0.3 0.8 | e68bb91l
21 dead code 1 2 19 0.2 0.3 | 809e660
22 incompatible type 2 4 27 0.4 0.7 | déc7ell
23 assertion violation 2 4 79 1.5 1.8 | 63878ac
24 assertion violation 2 4 75 1.1 1.2 | 657e964
25 assertion violation 2 4 41 0.6 0.7 | 0988c4c

VBDB BusyBox FILES

26 null pointer deref. 28 0.4 0.7 199501f

27 null pointer deref. 24 0.4 0.6 | 1b487ea

28 uninitialized var. 28 04 0.7 | b273d66

29 undefined symbol 42 0.8 0.9 | cflf2ac

30 undefined symbol 27 0.4 0.6 | ebee301

31 undeclared identifier 35 0.5 0.8 | 5275ble

32 | undeclared identifier 19 0.3 0.4 | b7ebc61

W= =N =N N =
O N H=| N = =[N

33 incompatible type 46 0.9 1.5 | 5cd6461

REAL LIBSSH FILES

34 null pointer deref. 1404 | 34.8 | 32.6 | Oadeal9

o)}
'S
o

35 null pointer deref. 4 4 1428 44.1 31.9 | fadbe80

36 uninitialized var. 3 4 2959 | 724 | 77.6 | 2a10019

Table 5.2: Characteristics of the benchmark files.

http://vbdb.itu.dk/?#bug/linux/76baeeb
http://vbdb.itu.dk/?#bug/linux/f7ab9b4
http://vbdb.itu.dk/?#bug/linux/ee3f34e
http://vbdb.itu.dk/?#bug/linux/6252547
http://vbdb.itu.dk/?#bug/linux/8c82962
http://vbdb.itu.dk/?#bug/linux/60e233a
http://vbdb.itu.dk/?#bug/linux/0f8f809
http://vbdb.itu.dk/?#bug/linux/7acf6cd
http://vbdb.itu.dk/?#bug/linux/bc8cec0
http://vbdb.itu.dk/?#bug/linux/30e0532
http://vbdb.itu.dk/?#bug/linux/1c17e4d
http://vbdb.itu.dk/?#bug/linux/e39363a
http://vbdb.itu.dk/?#bug/linux/7c6048b
http://vbdb.itu.dk/?#bug/linux/2f02c15
http://vbdb.itu.dk/?#bug/linux/6515e48
http://vbdb.itu.dk/?#bug/linux/242f1a3
http://vbdb.itu.dk/?#bug/linux/6651791
http://vbdb.itu.dk/?#bug/linux/f48ec1d
http://vbdb.itu.dk/?#bug/linux/e67bc51
http://vbdb.itu.dk/?#bug/linux/e68bb91
http://vbdb.itu.dk/?#bug/linux/809e660
http://vbdb.itu.dk/?#bug/linux/d6c7e11
http://vbdb.itu.dk/?#bug/linux/63878ac
http://vbdb.itu.dk/?#bug/linux/657e964
http://vbdb.itu.dk/?#bug/linux/0988c4c
http://vbdb.itu.dk/?#bug/busybox/199501f
http://vbdb.itu.dk/?#bug/busybox/1b487ea
http://vbdb.itu.dk/?#bug/busybox/b273d66
http://vbdb.itu.dk/?#bug/busybox/cf1f2ac
http://vbdb.itu.dk/?#bug/busybox/ebee301
http://vbdb.itu.dk/?#bug/busybox/5275b1e
http://vbdb.itu.dk/?#bug/busybox/b7ebc61
http://vbdb.itu.dk/?#bug/busybox/5cd6461
https://git.libssh.org/projects/libssh.git/commit/?id=0a4ea19982900db1a7942c956c8c2f3ba80aedae
https://git.libssh.org/projects/libssh.git/commit/?id=fadbe80c4389185f80b3d5a8814510f957a6ca8a
https://git.libssh.org/projects/libssh.git/commit/?id=2a10019f82b9db58d7821ef93febc42b54042c92

5.1. Effective Analysis of C Programs by Rewriting Variability (Paper 3A)

[] Frama-C
ID|BUGGY VARIANTIRECONFIGURED| ALL
| |ly/n time |y/n time |time
B/BDB LINUX FILES ‘
(1l v 218 [v 235 [5602
21 v 220 v 225 (1394 1 CLANG/LLBMC
3l v 215 | X 236 |1918

ID|[BUGGY VARIANTRECONFIGURED| ALL
41 v 218 v 224 11379 .) .

yes/no time yes/notimeftime

5| v 218 v’ 227 | 488 —
6| v 213 | v 227 |463| [VBDELINUXFILES |
7\ v 218 | v 225 [4381 [RZ4] v 21| v 23|91
8| v 241 | v 250 |918 23 v 4 v 10|10
9l v 224 | v 230 |462 24 v 3 v o711
100 v 216 |inc 224 | 460 25 v 3| v 518
11| vv 234 | v 224 |917 E]BDB BusyBox FILES \
13| v 239 v 248 (3194
14| v 237 | v 244 | 905 || (b) VBDs FILES using CLANG (files
15| v 224 | v 248 | 906 || 22 and 33) and LLBMC (files 23, 24,
16| v 213 | v 222 |910| and 25).
17| v 216 v 230 (3823 —
18 v 210 | v 224 | 901 CranG/LLBMC
19 / 210 / 224 452 ID|[BUGGY VARIANTIRECONFIGURED| ALL
0l v 213 X 228 | 907 | |ves /no time [yes/notime| time
21| v 239 X 240 | 458 B4[v 1526] v 1702017029
[VBDB BusvBox FiLEs s v v 18045917
28 v 230 | v 234 |4sa| ALY 12| v 144] 448
27| v 224 | v 234 | 959 || (c) LisssH files using CLANG (file 36)
28| v© 237 |inc 237 | 957 || and LLBMC (files 34 and 35).
29| v 230 v 236 | 481
30| v 231 v 228 | 968
31| v 220 v 228 | 486
Q v 216 v 224 | 477

(a) VBDB FILES using FrRama-C.

79

Table 5.3: Verification results for the benchmark files. Times in millisec-

onds (ms).

Simplified files. Table 5.3a shows the results of verifying our benchmark

tiles which contain known bugs by using FRaMA-C. The table has three
main columns: BUGGY VARIANT, RECONFIGURED, and ALL that depict the
tool results on the buggy variant code, on the reconfigured program

80 Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

family code, and on all valid variants from K analyzed one by one (in
a brute force fashion). Each column contains two results. The first is a
checkmark (v'), which means that the same bug was found in both the
buggy variant and reconfigured program by the verification tool. The
checkmark is replaced by X if the bug was not found, or inc—inconclusive
which means that FRama-C was able to detect a bug in the reconfigured
program, but a different one from the bug found in the buggy variant.
The second result in each column is the analyzer time. In the case of
brute force approach (ALL), we include the analysis time of all valid
variants regardless of whether they contain a bug or not.

We observe that C RECONFIGURATOR tool transforms the family code
by preserving the erroneous traces from the buggy variant in most cases.
For instance, FRAMA-C could detect 22 (78%) bugs from the simplified
benchmark files (28 in total) after reconfiguring the files using our tool.
Besides that, the C RECONFIGURATOR preserves a variety of bug types
such as buffer overflow and uninitialized variable. It is worth noting
that there is a trade-off between BUGGY VARIANT, which requires luck
to hit the exact erroneous configuration among the entire set of valid
configurations, and ALL, which is slow and thus infeasible to analyze the
entire program family. This way, the main benefit of our technique is that
we are able to speed-up the analysis of all variants (versus brute-force),
but also the analysis tools are more likely to find a bug in reconfigured
code (versus generating random configurations).

However, the success rate of our transformation depends on the tool
which may or may not detect different types of bugs. For example,
our technique is able to transform a file containing a memory leak
error, but FRAMA-C does not have any analysis to identify it. In three
specific cases (cf. FILE 1Ds 10, 12 and 28), FrRama-C did not report the
original bug as an error, but it did detect that some variable might
be uninitialized in some conditions. This happens because Frama-C
performs a may value analysis for finding uninitialized variables. A may
analysis describes information that may possibly be true along one path
to the given program point and, thus in our case, computes a superset of
all uninitialized variables in all variants. So the reported variable may
not match with the one in the buggy variant. We marked these three
cases as inc—inconclusive in the table. Still the verification oracle reports
that there might be an error in the reconfigured code.

In addition, the verification tool could not identify the required bug in
the reconfigured file in three occasions (cf. FILE 1Ds 3, 20 and 21). For ex-

5.1. Effective Analysis of C Programs by Rewriting Variability (Paper 3A) 81

1 int do_sect_fault() 1 int do_sect_fault()
2 2 4

3 return 0; 3 return O;

4 } 4 }

5 5

6 int main() 6 int main()

7 { 7 |

8 #ifndef ARM 8 if (!ARM)

9 do_sect_fault(); 9 do_sect_fault();
10 #endif 10

11 return 0; 11 return O;

12 } 12 }

Figure 5.6: File 21 - Before (left) and after (right) our transformations

ample, file 21 contains dead code, which is a function (do_sect_fault())
that is never called when feature ARM is enabled (see the code snippet
in Fig. 5.6, left column). The C RECONFIGURATOR transforms the code
by changing the #ifdef into ordinary if condition, making the function
available for the transformed single program (i.e., the function is not
dead any more), as shown in the code snippet in Fig. 5.6 (right col-
umn). The other two cases are similar to this one in the sense that the
C RECONFIGURATOR makes feature code explicit to the entire program
family.

Generally speaking, if one variant does not use a variable/function,
but another does, then the reconfigured code will use the variable/-
function and the error will be hidden (like in the example above). This
happens due to the limitations of variability encoding, especially because
we cannot preprocess the reconfigured code to filter out the irrelevant
features for a particular variant. In a reconfigured code, all variants are
encoded as a single program (see Paper 3A for more discussion).

Let us now consider the remaining simplified files. We use CLANG
and LLBMC to analyze only the other types of bugs (incompatible type
and assertion violation) that FRamA-C cannot handle. We treat CLANG
and LLBMC as one verification oracle, since we first need to compile
and emit llvm code with CLANG in order to analyze it using LLBMC. So,
we do not make difference in reporting whether the bug was found by
CLANG during the compilation or afterwards by LLBMC.

Table 5.3b, similarly to Table 5.3a, shows the results of verifying both
the buggy variant and the reconfigured code using CLANG and LLBMC.
We also report the analysis time of the brute force approach in the column

82 Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

ALL. As we can see, all bugs were found by CLaANG/LLBMC in the
reconfigured version. We can thus confirm that our C RECONFIGURATOR
tool transforms the family code by preserving the erroneous traces from
the buggy variant. Based on analyzing 33 simplified variability bugs
from Linux and BusyBox, we find that:

ANSWER RQ1 (PRECISION)

The C RECONFIGURATOR enables single-program verification tools
such as FRaMA-C, CLANG, and LLBMC to successfully detect most
of the simplified variability bugs on the reconfigured code, obtained
from the Linux and BusyBox benchmark files.

We also evaluate performance of the verification tools to identify the
given variability bugs. Tables 5.3a and 5.3b show time needed for the
verification tools to analyze the buggy variant code (BUGGY VARIANT col-
umn) and the reconfigured program family code (RECONFIGURED column).
We can see that the analysis times in both cases are similar although
reconfigured code is bigger in size (not terribly so). In fact, FrRama-C
takes less than half a second to analyze each file regardless of whether it
is a variant or a reconfigured file. For instance, FRaAMA-C analyzes file 1
in 218 and 235 milliseconds on the variant code and on the reconfigured
program family code, respectively. File 1 contains a null pointer deref-
erence and gives rise to 24 different configurations. Applying the brute
force approach (ALL column), which analyzes all variants individually
one by one, on this file using FRAMA-C takes 5,602 ms. In this way,
we obtain significant speed-up to verify the program family using our
technique. We also obtain similar results in terms of performance using
CLANG/LLBMC (see Tables 5.3b and 5.3c). In general, the performance
of analyzing a reconfigured code is similar to analyzing only one variant,
which gives us a speed-up proportional to the number of valid variants
of a program family. Overall, we observe that:

ANSWER RQ2 (PERFORMANCE)

The C RECONFIGURATOR speeds-up the family-based analysis via
single-program verification tools, so that we can efficiently detect
simplified variability bugs on the reconfigured code, obtained from
the VBDb benchmark.

5.1. Effective Analysis of C Programs by Rewriting Variability (Paper 3A) 83

Real files. Lastly, we consider real files to confirm our previous obser-
vations with respect to precision and performance. Table 5.3c presents
the results of analyzing three real files from the Libssh project using
CraNG and LLBMC.# These files contain two types of bugs: null pointer
dereference and uninitialized variable. Each file has at least three distinct
features.

Table 5.3c shows that our C RECONFIGURATOR transforms the family
code by preserving the erroneous traces from the buggy variant even for
complex and large files. In fact, the verification tool (CLanG/LLBMC)
found the same bug (from the buggy variant code) on the reconfigured
code in all three cases. From this preliminary evidence, we thus con-
tirm that our technique enables single-program verification oracles to
successfully detect variability bugs on the reconfigured code, obtained
from complex and real files.

Regarding performance, we can still see the similarity in verifying
a variant code and a reconfigured one. For example, CLANG/LLBMC
took 1,5 sec to analyze file 34 in the single variant version, whereas in the
reconfigured version, the tool analyzed it in 1,7 sec. We can also observe
a speed-up of the family-based analysis using the C RECONFIGURATOR
and single-program verification tools by a factor of the number of valid
variants compared to the brute force approach. Therefore, we conclude
that:

CONCLUSION

The C RECONFIGURATOR enables analyses of programs at the cov-
erage close to a brute force analysis, but with the efficiency of
a single program analysis. It is also much easier to implement
comparing the cost of reimplementing specialized tools such as
FramMma-C, CLANG, and LLBMC in a variability-aware fashion.

Contributions

This paper contributes mainly to Goal 3 as propose variability transfor-
mations to translate program families into single programs without vari-
ability. Research question Q3 asks for how we could [ift single-analysis

“We do not report results from Frama-C on the real files because Frama-C could
not handle them.

84 Chapter 5. Variability-Aware Solution for Lifting Single-Program Analysis

tools to find variability bugs. We define a series of variability transfor-
mations rules and prove their correctness with respect to a minimal core
imperative language IMP.

The evaluation shows that the transformed programs can then be
effectively and efficiently analyzed using various single-program analyz-
ers, and that some interesting variability bugs can be found in realistic C
programs by rewriting variability. Finally, I hope that our technique will
be useful for future builders of analysis tools.

Chapter 6

Related Work

86 Chapter 6. Related Work

In this chapter, I present work related to the main chapters of this
dissertation (Chapters 3, 4, and 5). First, I discuss previous work on
studying programmers debugging programs (Section 6.1), and the need
for understanding the impact of variability on bug finding. Second,
I describe previous studies of programs (Section 6.2), software bugs in
particular, but I also motivate the study of the nature of variability bugs
occurring in highly-configurable software systems. Third, and finally, I
present related work on tooling support to deal with variability on the
code analysis level (Section 6.3), specifically, to find bugs that occur in
only certain program variants.

6.1 Empirical Studies of Programmers Debugging Programs

This section discusses work on bug finding and program comprehension
related to Paper 1A, and then relates eye-tracking studies on debugging
to Paper 1B.

6.1.1 Bug Finding & Program Comprehension

In the late 1980es, Oman et al.[72] compared debugging abilities of
novice, intermediate, versus skilled student programmers using two Pascal
programs. Not surprisingly, they found, among other things, that the
ability of programmers to find errors increases with general program-
ming experience. Experienced programmers found errors faster than
less experienced programmers. In fact, they concluded that experienced
programmers become faster and make fewer mistakes. Comparing to
Paper 1A, I did not notice any difference in terms of bug-finding time
between Ph.D. and M.Sc. students. But, the former appeared to be more
careful and meticulous when debugging than the latter. This can be
explained by the educational level of subjects in that study. They con-
sidered only undergraduate students, separating them according to the
amount of computer science courses taken, whereas I ran the experiment
with graduate students, who would likely be considered as skilled pro-
grammers in their setup. Furthermore, I studied a different phenomenon,
which is variability, that might be challenging independently of edu-
cational level. However, I stress that I did not design my experiment
to directly compare novices versus experts even though I discuss some
indications.

6.1. Empirical Studies of Programmers Debugging Programs 87

Feigenspan et al. [38] in a series of controlled experiments showed
that use of distinct background colors (in place of #ifdefs) improves
comprehension of programs with preprocessor directives, independently
of size and programming language of the underlying product. Addition-
ally, they found that programmers generally favor background colors.
This is one important reason why I used background colors in my exper-
iment (cf. Paper 1A), instead of preprocessor directives. In other words,
I assigned colors to features by showing conditional statements using
background colors rather than #ifdefs. I observed that the speed of
bug finding decreases linearly with the number of features. For instance,
developers spent a bit less than 10 minutes to find a bug in a program
with three features, on average.

Ribeiro et al.[78] conducted a controlled experiment to evaluate
whether emergent interfaces (EI's) reduce effort and number of errors dur-
ing code-change tasks involving feature code dependencies. Emergent
interfaces are an example of tooling that attempts to simplify reasoning
about variability. In general, they found a decrease in code-change effort
and number of errors when using their EI tool support. Based on my
two controlled experiments, I can confirm the need for more research on
such tools. I observed that developers perform more code navigation in
the presence of variability. Knowing that, the builders of debugging and
developer support tools should consider providing convenient ways to
navigate from uses to definitions and back again and along call-returns
for method invocations. This kind of information might be more useful
in areas of code that involve variability (i.e., #ifdefs), as suggested in
Paper 1B.

Schulze et al. [80] studied the influence of the discipline of prepro-
cessor annotations on program comprehension. They considered pre-
processor annotations to be disciplined only those which align with the
syntactic structure of the programming language; otherwise, they are
not. Thus, disciplined annotations encompass only code fragments that
belong to entire subtrees in the corresponding abstract syntax tree. For
instance, preprocessor directives wrapping an entire function definition is
a disciplined annotation. In the paper, they suggest that finding bugs in
the presence of variability is time-consuming and difficult. The results of
my experiments are consistent with this finding and complement it with
hard evidence. In fact, I was able to quantify the increase of difficulties
as the number of features grows. They also found that the discipline
of preprocessor annotations has no influence at all on program compre-

88 Chapter 6. Related Work

hension. However, another study by Malaquias and co-authors [62], on
the very same subject, indicates the contrary, i.e., that the discipline of
preprocessor annotations does matter. In my studies I did not focus on
this particular issue, which would require another design and setup.

Another controlled experiment with 17 programmers applied func-
tional magnetic resonance imaging (fMRI) to measure program compre-
hension [81]. The participants were asked to understand simple code
snippets. They found that five different brain regions associated with
working memory, attention, and language processing become activated
for comprehending source code. However, variability was not in their
focus. I, in turn, designed and ran two controlled experiments to quantify
the effect of variability on debugging, as well as understand qualitatively
how programmers approach and debug programs with preprocessor
directives.

Recently, Medeiros and co-authors interviewed 40 developers to study
their perceptions of the C preprocessor [64]. The developers assess that
preprocessor-related bugs are easier to introduce, harder to fix, and more
critical than other bugs. Many admit that they check only a few configu-
rations of the source code in practice when testing their implementations.
My experiments confirm these qualitative insights and complement them
with quantitative data.

6.1.2 Eye-Tracking Studies

A few studies have used eye tracking to study debugging and program
comprehension in ordinary programs (i.e., without variability).

Hansen et al. [43] used eye tracking to investigate factors that impact
code comprehension. They exposed ten small Python programs to the
participants to predict the exact output. They found that even subtle
notation changes can have impact on performance, and that notation can
also make a simple program more difficult to read. Relating to my work,
“subtle notations" (preprocessor directives in my case) might have impact
on how programmers approach and perceive programs with variability
in comparison with ordinary programs. However, I cannot separate the
effect of notation (#ifdef, #endif) from the underlying complexity of
variability.

Busjahn et al. [18] conducted eye-tracking studies on small programs
to investigate how programmers read code compared to natural lan-
guage text. They found that the fixation durations increased when

6.2. Empirical Studies of Software Bugs 89

reading source code in comparison with natural language text. Busjahn
et al.[17] also studied linearity (sequential reading) and whether or not
the linearity effect in reading natural languages transfers to reading of
source code. They asked programmers to read and comprehend snippets
of natural language text versus Java programs. They observed that ex-
pert programmers read code less linearly than novices which, in turn,
read code less linearly than natural language text. They also suggested
that non-linear reading skills increase with expertise. While I conduct
my study in a similar fashion, I have focused on how developers debug
programs with variability. In terms of linearity, I found that variability
appears to prolongs the “initial scan" of the program (first line to last
line) that most developers initiate debugging with. Interestingly, I also
identified that developers seem to debug programs with variability by
considering either one configuration at a time (consecutively, a sort of
linearity) or all configurations at the same time (simultaneously, a sort of
non-linearity).

Rodeghero et al.[79] conducted an eye-tracking study of ten Java
programmers. They asked the programmers to read Java methods and
to write English summaries of those methods. They noticed that the
programmers looked more at a method’s signature than its body in order
to summarize it in plain English. In my study setup, I designed an
eye-tracking experiment to “see” how developers approach programs
with variability during debugging tasks. Among other things, I observed
that the presence of variability correlates with increase in the number of
gaze transitions between definitions and usages for fields and methods.

None of the above eye-tracking studies investigated debugging in the
presence of variability. In other words, variability was not in their focus.
I, in turn, focused on the interplay between variability and debugging
from the programmers’ perspective. To the best of my knowledge, this
is the first study of variability debugging using eye tracking. I could
draw a number of observations (cf. Paper 1B). However, I believe that
further research (either confirmatory or exploratory) using eye tracking on
variability debugging is important and required to confront my findings,
and to draw new ones.

6.2 Empirical Studies of Software Bugs

This section discusses work related to the study of 98 variability bugs
in four highly-configurable systems (Paper 2A), and to the quantitative

90 Chapter 6. Related Work

analysis of configuration-dependent warnings in Linux (Paper 2B); both
studies are described in Chapter 4.

ClabureDB [83] is a database of classified bug-reports to accommodate
various kinds of errors from diverse projects and project versions, e.g., the
Linux kernel. The database is automatically populated using existing bug
finders, e.g., Clang and Stanse. The objective is to support research and
development in the area of bug-finding techniques and tools by providing
data for their automatic evaluation. In terms of size, the VBDb database is
comparatively small, since we populated it manually, as no suitable bug
finders handling variability that scale to large projects exist (which also
means that none of the VBDb bugs are covered in ClabureDB adequately).
As of May 2017, ClabureDB contains 221 confirmed Linux bugs and 850
false positives, whereas VBDb has only 98 confirmed variability bugs and
zero false positives (by design) from Apache, BusyBox, Linux and Marlin.
VBDb is unlikely to contain false positives as we studied bug already
found and fixed by developers. Although ClabureDB has a similar
purpose to that of VBDDb, it does not consider variability. Also, unlike
ClabureDB, VBDb offers a record with information enabling non experts
to rapidly understand the bugs and benchmark their analyses. This
includes a simplified C99 version of each bug where irrelevant details
are abstracted away, along with explanations and references intended for
researchers with limited kernel experience.

Palix et al.[74] reproduced an old empirical study (from 2001) on
Linux to reevaluate and investigate the evolution of bugs in Linux over
the last decade. The results are available in a public archive.! This study
has identified a series of bugs and rule violations such as “do not use
floating point in the Linux kernel”. They hunted for Linux-specific kinds
of bugs in the code base. Additionally, the bugs were not corroborated
by Linux developers, so it is unclear how many of these bugs are, in
fact, real bugs. I, along with my co-authors, focused on qualitatively
understanding the complexity and nature of variability bugs based on
four different open-source software systems.

Hyunsook Do et al. [35] provided an infrastructure to help the exe-
cution of controlled experiments related to software testing techniques.
The main purpose is to support reproducible experimentation and mini-
mize some challenges when performing a new study, such as the high
costs when gathering proper artifacts for the controlled experiment. The
infrastructure provides elements to execute test cases (e.g., oracles, test

Ihttp://faultlinux.1ip6.fr/

http://faultlinux.lip6.fr/

6.2. Empirical Studies of Software Bugs 91

classes, stubs, etc.) and inputs to reveal faults. Likewise, VBDb can also
contribute to future studies and experiments, but it is a more specific
data infrastructure, since we focus only on bugs related to variability. In
this context, future research can benefit, for example, from the simplified
bugs (which can reduce effort when compared to understanding the
actual bugs) and from the inputs—i.e., configurations—that trigger the
bugs. In addition, the VBDb database might be used to conduct empirical
studies to better understand how developers introduce variability bugs
in highly-configurable systems. The work that introduces the infrastruc-
ture [35] also includes a list of research already using and benefiting
from it. Similarly, VBDDb has already been used in a variety of recent
publications [63, 3].

Nadi et al. [71] mined the Linux repository to study the causes and
tixes of variability anomalies. An anomaly is a mapping error, such as map-
ping code to an invalid configuration or code mapped to nonexistent
tfeatures, which can be detected by checking satisfiability of Boolean
formulas over features. While we conducted our study in a similar way,
we have focused on a broader class of semantic errors in code, including
data- and control-flow bugs. They could analyze several commits auto-
matically, we however performed an in-depth manual analysis for every
single commit.

Apel et al.[6] used a model checker to find feature interactions in
a simple email client, using a technique known as variability encoding
(configuration lifting [77]). In variability encoding, features are encoded
as Boolean variables and conditional compilation directives (e.g., #1if)
are transformed into ordinary conditional statements (e.g.,if). We, in
turn, focused on understanding the nature and complexity of variability
bugs widely. This cannot be done with a model checker looking for a
specific class of feature interactions. In fact, searching for bugs with tools
only finds cases that these tools cover. Thus, an automated bug hunt
would be heavily biased against a few kinds of bugs for which the tools
were designed. Understanding variability bugs should lead to building
scalable bug finders, enabling studies (e.g., [6]) to be run on Linux in the
tuture.

Medeiros et al.[65] investigated syntactic variability errors in pre-
processor-based systems. They used a variability-aware C parser [54]
to automate their bug finding and exhaustively find all syntax errors.
They noticed that developers introduce syntax errors when changing
existing code and adding preprocessor directives, and that some of the

92 Chapter 6. Related Work

relevant errors survive in the life cycle all the way to the release stage.
But, they found only few tens of errors in 41 program families, suggesting
that syntactic variability errors are not common in committed code. In
contrast to our work, the difference is that we are not concerned with
syntactic errors, but rather with the wider category of more complex
semantic errors.

Medeiros et al.[66] have also conducted an empirical study on
configuration-related issues, specifically, investigating undeclared and
unused identifiers. They found 39 configuration-related issues, includ-
ing 14 (36%) undeclared functions, 2 (5%) undeclared variables, 7 (18%)
unused functions, and 23 (41%) unused variables. In other words, they
noticed that 59% of the issues are related to unused functions and vari-
ables. We complement this finding by generating randomly thousands
of configurations from the Linux kernel, in which we observed that the
most abundant warning is unused function and the third most is unused
variable. Besides that, we ranked both warnings and subsystems, e.g., the
drivers/ subsystem and include/ header files produced warnings in
around half of all configurations we compiled; whereas core subsystems
such as kernel/ and security/ rarely produced warnings. In addition,
we focused on configuration-related bugs and warnings widely, i.e., not
targeting a particular type of bug.

Tian et al. [90] studied the problem of distinguishing bug fixing com-
mits in the Linux repository. They used semi-supervised learning to
classify commits according to tokens in the commit log and code metrics
extracted from the patch contents. They remarkably improved recall
over keyword-based methods, without lowering precision. In contrast,
we used the keyword-based method for two reasons. First, our main
emphasis was on analyzing commits; not in finding commits to be ana-
lyzed, which was secondary and not difficult for our study. Second, it
can easily be applied in any project that stores historical information on
changes. Thus, we found a simple keyword-based method sufficient for
our purpose.

Yin et al. [96] studied more than 500 configuration errors (or misconfig-
urations) in open source and commercial software. They target systems
in which parameters are read from configuration files, as opposed to
systems configured statically. More importantly, they document errors
from the user perspective, whereas we provide a documentation from the
programmer standpoint.

6.3. Techniques for Finding Variability Bugs 93

Padioleau et al. [73] studied collateral evolution of the Linux kernel,
especially device drivers, following a research method close to ours.
Collateral evolution happens when existing code is adapted to changes
in the kernel interfaces. They automatically identified potential collateral
evolution candidates by analyzing bug fixes using heuristics, and then
manually selected 72 for a more meticulous analysis. Similarly, they
classified and performed an in-depth analysis of their data. Yet, the
main difference to our work is that we performed an exploratory study
on variability bugs widely (not in a particular subsystem), once we did
not have any prior knowledge about the nature of these bugs.

6.3 Techniques for Finding Variability Bugs

This section examines related work to the proposed rewriting variability
technique (Paper 3A) for lifting conventional single-program analysis
tools to find variability bugs, as described in Chapter 5.

Recently, formal analysis and verification of program families have
been a topic of considerable research. The challenge is to develop efficient
techniques that work at the level of program families, rather than the level
of single programs. There are two main approaches to lifting analysis
to program family level [88]: (1) to develop dedicated variability-aware
(family-based) techniques and tools; (2) to use specific simulators and
encodings which transform program families into single programs that
can be analyzed by the standard single-program verification tools. The
two approaches have different strengths and weaknesses. The advantage
of (1) is that precise (conclusive) results are reported for every variant,
but the disadvantage is that their design and implementation can be
tedious and labor intensive. On the other hand, the approaches based
on (2) re-use existing tools from the single-program world, but some
precision may be lost when interpreting the obtained results.

Various variability-aware techniques have been proposed which [ift
existing single-program analysis techniques to work on the level of pro-
gram families. This includes variability-aware syntax checking [52, 39],
type checking [51, 20], static analysis [14, 13, 70], model checking [22],
and so forth. For instance, TypeChef [52] and SuperC [39] are able to
parse C code with preprocessor directives. The results are ASTs with
variability (choice) nodes [37]. Representationally, the difference be-
tween these two approaches is that feature expressions are represented

94 Chapter 6. Related Work

as formulae in TypeChef, and as BDD’s in SuperC. TypeChef also has im-
plemented some variability-aware dataflow analyses. Several approaches
have been proposed for type checking program families directly. For ex-
ample, Késtner et al. [51] presented a variability-aware type checking for
Featherweight Java, and Chen et al. [20] studied variational lambda cal-
culus. Additionally, Classen et al. [22] introduced lifted model checking
for verifying variability intensive systems. SNIP, a specifically designed
family-based model checker, is implemented for efficient verification of
temporal properties of such systems. The input language to SNIP is
fPromela, which represents a variability-aware extension of the Promela
language for the (single-system) SPIN model checker [45]. fPromela
uses an #ifdef-like statement for encoding multiple variants, which
represents a nondeterministic “if” statement guarded by features ex-
pressions that are used to specify what system parts are included (resp.,
excluded) for which variants. Brabrand et al. [14] and Midtgaard et al. [70]
have showed how to lift any single-program dataflow analysis from the
monotone framework to work on the level of program families. The
obtained lifted dataflow analyses are much faster than ones based on
the naive (brute-force) approach that generates and analyzes all program
variants individually. Another efficient implementation of lifted analysis
formulated within the IFDS framework for inter-procedural distributive
environments has been proposed in SPLUFT [13]. Dimovski et al. [32]
have proposed variability abstractions to speed up the lifted verification
techniques. These abstractions tame the exponential blowup caused by
the large number of features and variants in a program family. This way,
variability abstractions enable deliberate trading of precision for speed
in the context of lifted (monotone) data-flow analysis [32, 33] and lifted
model checking [31].

Another technique to analyze program families efficiently is called
variability encoding [92] (or configuration lifting [77]), which is based on
generating a so-called variant simulator which simulates the behavior of
all variants in a program family. Then, an existing off-the-shelf single-
program analyzer is used to verify the generated simulator, which repre-
sents a single program. Rhein et al. [92] have defined variability encoding
on top of TypeChef for C and Java program families. They have applied
the results of variability encoding to testing [53], model checking [7], and
deductive verification [89]. Compared to [92], our work has the following
distinguished characteristics. First, our C RECONFIGURATOR tool is aimed
to transform C program families. Second, we showed variability-related

6.3. Techniques for Finding Variability Bugs 95

transformation rules and their correctness with respect to a minimal
C-like imperative (state-based) language, whereas in [92] the rules and
their correctness are demonstrated to Featherweight Java. C is a language
much wider used in industry for variability than (Featherweight) Java.
Third, we did not have to rely on object-oriented encodings to make the
variability-transformations work. Furthermore, we provided an evalua-
tion of our technique with several state-of-the-art single-program analysis
tools for finding variability bugs on realistic C programs (both on large
and sanitized files). In the end, we provided evidence that all studied
single-program analysis tools—that do not normally handle variability—
could detect successfully and efficiently most of the variability bugs in the
transformed (reconfigured) code, after rewriting the variability of the
source code. Thus, I believe that rewriting variability is a cost-efficient
strategy for lifting analysis tools to program family level.

Chapter /

Discussion: Variability Skeleton for
Understanding the Impact of Changes

98 Chapter 7. Discussion: Variability Skeleton for Understanding the Impact of Changes

This is a short chapter in which I will only sketch one possible idea to
the open research question Q4, which asks for solutions to minimize
the difficulty that software developers have when reasoning about (all)
configurations in a program with variability (cf. Table 7.1). I stress that
this chapter does not belong to the main contributions of this Ph.D. thesis,
but it solely describes a preliminary idea in the form of a technique
to support programmers when maintaining code in the presence of
variability.

PROBLEM SOLUTION

SPACE

— QUADRANT 1 - — QUADRANT 4 —
P4: Programmers fail to reason about
configurations.

Q4: How to support programmers to
reason about configurations?

T4: Beyond the scope of this disser-
tation. (Chapter 7 provides a
sketch of one possible solution.)

PERSPECTIVE

— QUADRANT 2 — — QUADRANT 3 —

ProcraM PROGRAMMER

Table 7.1: Research problem and question of the QUADRANT 4.

In the problem statement (Chapter 2), I describe the problem P4, which
focuses on the intersection between solution space and programmer per-
spective. Debugging highly-configurable systems, which include both
large industrial product lines and open-source systems with thousands
of features, requires understanding the combinations of features along
with their data and control flows. In fact, I provide evidence that many
developers fail to identify exactly the set of erroneous configurations,
already for only three features (cf. Paper 1A and Paper 1B).

/.1 Motivating Scenario

Configurable software systems are challenging for developers because
code fragments may be conditionally included or excluded depending

7.1. Motivating Scenario 99

on whether particular features are enabled or disabled. This means that
developers need to reason about several different configurations (versions
of the program), each with different data- and control-flow in order to
understand a program with variability. In fact, I have observed that
developers navigate much more between definitions and uses of program
objects when interleaved with variability, and that variability appears to
be “contagious” along the flow of control (cf. Paper 1B).

Figure 7.1 presents a code scenario extracted from a commercial
highly-configurable race game, BEstLAP, with about 15 KLOC. For clarifi-
cation, I have simplified and adapted the running example. The program
contains two functions (computeLevel and setScore) responsible for
computing the score, involving two optional features, namely, ARENA and
NEG_SCORE. Feature ARENA is responsible for publishing the scores on a
network server, while the variable totalScore stores the player’s total
score, which is greater than or equal to zero.

In this scenario, consider the following user requirement: the game
should compute negative scores as well. To add penalties when the
player crashes the car, the developer modifies the score computation
right after the totalScore assignment. The changed code is shown in
dark green in lines 18-20 (prefixed with a plus sign). This patch appears
to be correct and in the appropriate location. For instance, compiling the
configurable program with only NEG_SCORE enabled, the program variant
runs properly. So, the developer can commit and push the change into
the repository.

However, looking closer at this patch, we can see that the change is
incomplete for configurations with ARENA enabled. The function setScore
contains a condition prohibiting negative scores, thus breaking the spec-
ification of the program (the program is supposed to publish negative
scores). This is a semantic (logical) error. To find this bug, the developer
should consider all configurations and somehow see that the variable
totalScore is always equal to zero in the end of setScore computation,
when passing negative values to the function. For our program in Fig-
ure 7.1, the error occurs in only one configuration (out of four); whenever
ARENA and NEG_SCORE are both enabled.

Therefore, the developer must somehow consider all configurations
when debugging a configurable program. Moreover, for a program with
variability it is not enough to simply find an error in some configuration.
(Although, in this simplified scenario, it actually happens to be.) In order
to fix a bug, a developer must thus not only pinpoint the error, but also

IO Ul WN P~

NN NDNDNMNNNRP PR PR PR R R R, R,
NV WO PRP, O OVWONANU R WN R OO

100 Chapter 7. Discussion: Variability Skeleton for Understanding the Impact of Changes

int totalScore = 0;

#ifdef NEG_SCORE
int penalty = totalCrashes * TIME_MULTIPLIER;
#endif

#ifdef ARENA
void setScore(int score)

{

totalScore = (score < 0) ? 0 : score;

}
#endif

void computeLevel()

{
totalScore = perfectCurvesCounter * PERFECT_CURVES_BONUS + ... ;

+ #ifdef NEG_SCORE
+ totalScore = totalScore - penalty;
+ #endif

#ifdef ARENA

setScore(totalScore);

#endif

... // Publish scores on the network

¥

Figure 7.1: Simplified patch in a configurable program.

be aware of the exact set of erroneous configurations (combinations of
feature enablings/disablings). If the developer gets the configurations
wrong, the bug may only be partially fixed, as presented in our scenario.
In fact, Paper 1A provides empirical evidence that many developers
fail to identify the exact set of affected configurations. Clearly, this is a
difficult task. A professional senior Linux kernel developer from RedHat
also attests to the difficulty of reviewing patches in presence of variability.
During an interview with him, he mentioned that predicting the impact
of changes in the presence of variability is a difficult challenge for him,
e.g., what parts of the program a change affected and was affected by.
For these reasons, a developer has to be highly alert and conscious of the
features (#ifdefs) and configurations in the code.

7.2. Variability-Aware Program Slicing 101

In the following, I present the general idea of a solution that might
help developers reason about configurations.

/.2 Variability-Aware Program Slicing

Yin et al. [97] conducted a comprehensive study on incorrect bug-fixes
from large operating systems including Linux, OpenSolaris, FreeBSD
and also a mature commercial OS. They noticed that 27% of the incorrect
tixes are made by developers who have never touched the source code
tiles associated with the fix. The study indicates that both developers
and reviewers of incorrect fixes usually do not have enough knowledge
about the involved code for debugging or changing it. This may mean
that developers make mistakes during bug fixing because they do not
know all the potential impact of the code they are changing. If the main
potential impact (control- or data- dependencies) are plainly presented to
developers, they could better detect the cause of a bug and, consequently,
provide a correct fix to it. Program slicing can be adapted to analyze
such information, making the patch as the slicing criterion. Then, its
mostly a matter of extracting the most relevant program parts that most
directly affect or is affected by the program point. Proximity is likely to
be a key aspect in determining the most relevant parts to be extracted
into a skeleton. Earlier indication that variability is difficult makes us
believe that it would be advantageous to keep most of the variability
structure intact in the skeleton (at least the variability that has to do with
the modification point).

Program slicing [94] is an analysis that establishes which part of the
program is relevant for a given criterion. For instance, it can compute
which program elements could possibly participate in reaching a program
point exhibiting an error. This can be used to speed up bug finding
analyses. Slicing has applications in debugging [95], regression testing
[12], program comprehension [29], among others.

However, we still lack family-based extensions of program slicing.
There is only one work that tries to lift classic program slicing [48],
but there is no stable implementation. In the context of variability,
developers agree that variability bugs are easier to introduce, harder
to fix, and more critical than other bugs [64]. Many still admit that
they check only few configurations of the source code in practice when
testing their implementations. (I confirmed these qualitative insights
and provided quantitative evidence in Paper 1A and Paper 1B.) With

102 Chapter 7. Discussion: Variability Skeleton for Understanding the Impact of Changes

1 #include<stdio .h> 1

2 2

3 #ifdef A 3

4 void foo(int i){...} 4

5 #endif 5

6 #ifdef B 6 #ifdef B

7 void bar(int i, int j){...} 7 void bar(int i, int j){...}
8 #endif 8 #endif

9 9

10 int main(void) 10 int main(void)
11 | 11 |

12 int x = 2; 12

13 int y = 3; 13 int y = 3;

14 14

15 #ifdef A 15 #ifdef A

16 int z =7 +y; 16 int z =7 +y;
17 foo(x); 17

18 #endif 18 #tendif

19 19

20 #ifdef B 20 #ifdef B

21 — foo(y); 21

22 + bar(y,z); 22 bar(y,z); //criterion
23 #endif 23 #endif

24 24

25 printf ("%d", x); 25

26 return 0; 26

27 } 27 }

Figure 7.2: Example of a code change (commit) in a configurable program;
and of a variability skeleton based on bar(y,z) in line 22.

this lack of awareness, developers can introduce errors when changing a
feature code, making maintenance even more expensive. To tackle this
issue, in the following I present the idea of contextual variability skeleton.

7.2.1 General Idea

The main idea is to generate a simplified program with a variability
skeleton for a code change, helping developers understand the impact
of the change. I believe that a slicing technique that deals with both
the C code and the preprocessor directives (#ifdefs) has a potential
to improve reasoning about features and configurations. In this way,
developers might be able to comprehend, debug, and fix configurable
programs. To illustrate this idea, let us consider the code example
displayed in Figure7.2. The left-hand side illustrates a commit (patch) in
a configurable program involving one change; the function call (foo(y))
in line 21 is removed, while bar(y, z) is added in line 22. Suppose that a

7.2. Variability-Aware Program Slicing 103

maintainer gets this code change to review. So, instead of analyzing the
entire program, she can focus on the variability skeleton as a stepping stone
for understanding the impact of the modification on the real program. To
run a slicing technique, one needs first to select a slicing criterion, which
serves to compute the data and control dependencies accordingly. By
making the patch as the slicing criterion, she pinpoints the function call
(bar(y,z)) in line 22 as her program point of interest. The right-hand
side of Figure 7.2 shows the program slice without the parts that are
deemed irrelevant with respect to the variability skeleton computed.
Now, looking only at the (relevant) potential impacts of the change, she
may have better chances to detect that this change is broken in certain
configurations. Variable z in declared only inside feature A (line 16),
while it is used in feature B (line 22). Thus, this program causes an
undeclared variable error when feature A is disabled and feature B is
enabled, respectively. I therefore believe that a variability-aware program
slicing might make it easier to understand the potential impacts of a code
change and to further identify problematic situations like changes that
introduce bugs.

7.2.2 Preliminary implementation

I have a preliminary implementation of a prototype tool, Variability Skele-
ton Generator, which takes as input a C program with #ifdefs along
with a program point (line number), and generates a simplified version
of the configurable program based on the given criterion. The early
version of the prototype tool is available online.! I have implemented it
on top of TypeChef [54], which provides an infrastructure to work with
preprocessor-based variability. TypeChef parses the source code con-
taining variability in a variability-aware fashion, i.e., without generating
particular configurations. As a result, it returns an abstract syntax tree
(AST) with variability, in which variability is reflected with choice nodes
over feature expressions [37]. TypeChef also has a variability-aware type
system, as well as control- and data-flow analyses.

Technically speaking, the prototype tool works as follows: First, the
Variability Skeleton Generator calls TypeChef to parse the source code
with preprocessor annotations, and to perform type checking on the
resulting AST with variability. Second, it runs the reaching definitions
analysis and gets the def-use and use-def chains including variability

1https ://github.com/jccmelo/TypeChef/tree/master/CSlicer

https://github.com/jccmelo/TypeChef/tree/master/CSlicer

104 Chapter 7. Discussion: Variability Skeleton for Understanding the Impact of Changes

context. Subsequently, this step provides the definitions and uses of
every variable and function in the configurable program. We now can
query what are the definitions (or uses) of a particular variable using
these mappings. Third, and finally, the tool performs a classic but lifted
program slicing (cf. [94]) based on a program point, taking into account
all the variability. As a result, a simplified program is generated with a
variability skeleton, which might ease in understanding the impact of
particular code elements including features.

However, this is just one idea among many others to support pro-
grammers reasoning about configurations. Perhaps, the combination of
Braz et al. [15] work (change-centric approach) with the Variability Skele-
ton Generator has the potential to help developers and maintainers who
commit, review, and merge variability code every day. I acknowledge
that this idea should be further implemented and evaluated to obtain
hard evidence whether it does improve reasoning about configurable
programs, and that it scales to a large number of variants. One way of
evaluating is to run a controlled experiment combined with a survey
and follow-up interviews with software developers, and measure time,
accuracy, and usefulness of the prototype tool in a variety of debugging,
comprehensive, and fixing tasks.

Chapter 8

Conclusion and Future Work

106 Chapter 8. Conclusion and Future Work

In this Ph.D. thesis, I have investigated the impact of variability on pro-
grammers and programs through different perspectives. First, I studied
about a hundred variability bugs in highly-configurable systems with
the objective of understanding the complexity and nature of such bugs.
Second, I designed and ran two controlled experiments with almost one
hundred programmers in total to quantify the impact of variability on
debugging of preprocessor-based programs. The study of variability
debugging using eye tracking is the first study of its kind. I have also pre-
sented a variability-aware technique that makes single-program analysis
tools able to detect (variability) bugs in configurable software.

In the following, I divide my final conclusions into three parts which
correspond to Theses T1, T2, and T3 (described in Chapter 2). I discuss
the results, implications, limitations and future work for each thesis.

The time needed for finding bugs appears to increase with the
number of features, while effectiveness of finding bugs is relatively
independent of variability. However, identifying the exact set of
erroneous configurations is difficult, already for a low number of
features. Variability also increases the number of gaze transitions
(eye movements) between definition-usages for variables and call-
returns for methods.

J

I investigated the impact of variability on the time and accuracy of bug
finding in highly-configurable systems via two controlled experiments
(cf. Chapter 3). The objective of the first experiment was to quantify the
impact of variability on debugging. I ran the experiment with N=69
programmers while measuring speed and precision for bug finding
tasks defined at three different degrees of variability on several subject
programs derived from real configurable systems. In the second study, I
focused on qualitatively understanding how actually developers approach
and debug programs in presence of variability. I exposed developers to
debug programs with and without variability, while recording their eye
movements using an eye tracker.

In Paper 1A, I learned that the time needed for finding bugs appear
to increase (only) linearly with the number of features, with the time
becoming less predictable with more features. I also observed that most
developers correctly identify bugs, yet many fail to identify the exact
set of affected configurations. This is consistent with earlier hypotheses

107

that programmers introduce errors because it is difficult to reason about
all the executions involved via configuration choices. Interestingly, this
ability does not seem to improve with increasing level of education, while
general, non-variability related, bug-finding skills do seem to improve. I
could also see that challenges with reasoning about configurations are
already measurable for low degrees of variability.

On top of quantitative results, Paper 1B showed that variability in-
creases debugging time for code fragments that contain variability and
for neighboring locations. Also, it appears that developers navigate much
more between definitions and uses of program objects when interleaved
with variability. This is presumably caused by increased complexity
of def-use relationships, or by difficulties of maintaining all variants
in short-term memory. Additionally, I noticed that variability seems
to prolong the “initial scan” of the program that most subjects initiate
debugging with and that developers appear to debug programs with
variability by using either a consecutive or simultaneous approach.

Even though variability complicates debugging, it is not terribly
so (only linearly). If developers reasoned about each of the variants
separately we would have observed an exponential, not linear, growth.
The practical implication is that it is beneficial to introduce variation
points into programs from the debugging perspective. I mean, it is
beneficial to pay a linear price for bug finding, if the alternative is
to maintain a super-linear set of variants. However, there might be
benefits in selecting designs (architectures and algorithms) that require
less variability, if possible.

Another point, which seems obvious, is that reasoning about multiple
configurations is a challenge. This is consistent with earlier qualitative
indications that variability bugs appear when developers unintention-
ally ignore an execution that is enabled by an unexpected (for them)
configuration of features. In fact, my study suggests that, for higher
degrees of variability, it is more difficult to correctly identify the set of
erroneous configurations than to find the bug in the first place. This is
rather unexpected, given the fact that to understand the bug one needs to
reason about control flow, a temporal non-local phenomenon that is not
obviously simpler than combinatorics. This means that it is beneficial to
work on support tools that help developers to navigate the configuration
space (on top of flow-oriented bug finders).

Also, knowing that developers perform more navigation in code with
variability, I encourage the developers to structure the code in a way that

108 Chapter 8. Conclusion and Future Work

minimizes the distance between uses and definitions of field variable
declarations or between methods calling each other, especially for those
declarations and uses that involve variability. For the builders of pro-
grammer supporting tools, I suggest that they shall consider providing
convenient ways to navigate from uses to definitions and back again and
along call-returns for method invocations. Emergent interfaces [78] and
emergent feature interfaces [67] are examples of tooling that attempt to
simplify reasoning about variability. This thesis confirms the need for
more research on such tools.

Future work. The way that these two experiments have been conducted
was optimized for internal validity and observations in lab conditions.
(There is an inherent trade-off between internal versus external validity
in experiment design [82].) It would be interesting to investigate the
extent to which the results generalize to more realistic (non-lab) condi-
tions; more programs, larger programs, more realistic programs, higher
degrees of variability, in order to confront the findings presented here
and to draw new ones. However, each of these generalizations extend
the duration of tasks beyond one hour. This makes it significantly harder
to attract anywhere near one hundred participants for the experiments.
Thus, I believe that qualitative research like surveys, case studies and
action researches could gather more evidence. It would be also interest-
ing to know when the linear relationship I observed (increasing of the
bug-finding time) breaks down, for some higher degrees of variability.
Presumably, at some point, developers will not be able to simply cope
with the exponentially many combinations of features. Another possible
direction is to exploit the results of these studies—in particular that it
is challenging for developers to correctly identify the set of erroneous
configurations—by building programmer supporting tools to simplify
reasoning about the data and control flows of all configurations.

109

Variability is ubiquitous. There appears to be no specific nature
of variability bugs that could be exploited. Variability bugs are
not confined to any particular type of bug, error-prone feature, or
location. Variability also increases the complexity of bugs due to
unintended feature interactions, hidden features, combinations of
layers (code, mapping, model) involving different languages (e.g.,
C, cpp, Kconfig for Linux), many function calls, etc.

I studied variability from the program perspective by analyzing about a
hundred of bugs and warnings in highly-configurable systems (cf. Chap-
ter 4). The idea behind this study was to understand the complexity and
nature of variability bugs and gather concrete examples of such bugs in
order to ground research in actual problems and to evaluate tool imple-
mentations of variability-sensitive analyses. Additionally, I analyzed one
of the largest open source projects, the Linux kernel, with the objective
to quantify basic properties of configuration-related warnings.

In Paper 2A, I found that variability bugs are not limited to any
particular type of bugs, error-prone features, or specific locations. In total,
the corpus of 98 variability bugs falls in 25 different types of error
categories, involving 155 distinct features, and spread out in over 30
different subsystems in the four highly-configurable systems investigated.
I therefore conclude that variability is ubiquitous. There appears to
be no specific nature of variability bugs that could be exploited. If
analysis tools were to focus on particular kinds of variability bug during
family-based analysis, they would thus fail to detect large classes of
errors (the kinds not focused on). Hence, analysis tools aiming to find
variability bugs in highly-configurable systems need to be targeted widely
at all types of bugs, all kinds of features, and all subsystems. This
conclusion is also interesting from the point of view of understanding
the reasons for which bugs appear. Appearing everywhere, variability
bugs hint that it is the variability itself that enables or amplifies their
introduction (possibly standalone, or in concert with other aspects of
system complexity). Perhaps all of this is not so surprising, but now we
could confirm these folkloric hypotheses with evidence in terms of hard
evidence.

I also characterize in what ways variability affects bugs. In addition
to introducing an exponential number of program variants, variability
increases the complexity of bugs along several dimensions:

110 Chapter 8. Conclusion and Future Work

— Bugs occur because the implementation of features is intermixed,
leading to undesired interactions, for instance, through program
variables;

— Interactions occur between features from different subsystems, de-
manding cross-subsystem knowledge from the developers;

— Variability may be implicit and even hidden in alternative or con-
ditionally defined function, macro, variable, and type definitions
specified at remote locations;

— Variability bugs are the result of errors in the code, in the mapping,
in the feature model, or any combination thereof;

— Further, each of these layers involves different languages (e.g., C,
Crpr, GNU MAKE and KCONFIG for Linux);

— Not all these bugs will be detected by maximal configuration testing
due to interactions with disabled features;

— The existence of compiler errors in committed code trees shows
that conventional feature-insensitive tools are not enough to find
variability bugs.

In Paper 2B, I observed 13 different types of warnings appearing in
the Linux kernel. The majority of these are regarding dead code (e.g.,
unused variable) and uninitializations. I also found that the drivers/ and
include/ subsystems contain warnings in about half of all configura-
tions, whereas much fewer warnings originate from the core subsystems
kernel/ and security/. Additionally, I observed that there are generally
more warnings in the in-development version of LiNux than in the stable
version. Finally, I hope that indication of which areas are hot in warnings
can be useful for further research on bug finding in LiNux, showing
which subsystems are good candidates as analysis subjects. Also, this
study seems to confirm the, commonly held but rarely followed, recom-
mendation to focus bug-finding studies on unstable trees of LiNnux, as
opposed to stable. Moreover, the study shows that the errors survive all
the way to the stable version, so the variability-aware tools could help to
substantially decrease the bug density in LiNuUx.

m

Future work. A natural direction to continue the study of 98 variability
bugs in four highly-configurable systems would be to design quantitative
studies to confirm the qualitative observations. Such studies can be de-
signed in two directions: either by building suitable tools and applying
them massively to the available historical source code, or by designing
controlled experiments when programmers are observed during pro-
gramming, with attention to bug finding and bug fixing tasks. Observing
bug introduction however is very difficult in a quantitative manner, and
would have to be done qualitatively. Some of these observations may lead
to better sampling strategies for configurable systems, or optimizations
for family-based analysis, which can be a worth exploring direction in the
future. In fact, the VBDb database has already influenced a quantitative
study on the effectiveness of sampling strategies for configurable sys-
tems [63]. Al-Hajjaji et al. [3] also used VBDDb to derive a set of mutation
operators for software with preprocessor-based variability. I hope that
our variability bugs database will continue being useful to the variability
research community, especially to designers of program analysis and
bug finding tools. At the same time, I also hope that the community can
contribute to the usefulness of this data by providing new bug reports
and new simplified bugs. The VBDDb project allows contributions as pull
requests against its bitbucket repository and as discussion comments in
the online website.

Regarding the quantitative analysis of warnings in Linux, one pos-
sible direction would be to evaluate whether the current results hold
for another technique that generates random configurations instead of
randconfig (as the probability distribution of randconfig is not thor-
oughly representative).

Single-program analysis tools, which do not handle variability,
are able to effectively and efficiently find bugs in configurable
programs by rewriting variability. Rewriting variability appears to
be a cost-efficient solution to lifting program analyses.

Knowing that variability is ubiquitous and that program analysis tools
aiming to find variability bugs in highly-configurable systems need to be
targeted widely, I along with my co-authors proposed a method to lift
any analysis tools to configurable systems (cf. Paper 3A). The method

112 Chapter 8. Conclusion and Future Work

is called rewriting variability which consists of a series of variability-
related transformations for translating configurable systems into single
programs by replacing compile-time variability (#ifdefs) with run-time
variability (ordinary ifs). We evaluated our transformations by analyzing
the obtained transformed (single) programs using off-the-shelf single-
program analysis tools such as FRama-C, CLANG, and LLBMC. In fact,
we could detect successfully and efficiently some interesting variability
bugs using those tools.

Another way of analyzing configurable software is to use variability-
aware analysis tools. However, in comparison with conventional analysis
tools, variability-aware analyzers are rare, experimental, and not fast
enough to extensively scan the long history of real software systems like
Linux. For these reasons, we opted for transforming the source code by
rewriting variability. One limitation of this approach is the precision loss,
which depends on the analysis tools, since our transformation produces
a super single variant that contains all possible paths that may occur in
any variant.

Future work. One immediate extension is to consider more files, larger
tiles, and realistic files to gather further evidence on the practicality
of rewriting variability and confront our findings. In terms of imple-
mentation, the next step is to run our tool on a wide variety of highly-
configurable systems (e.g., Linux and BusyBox), which would make it
more accessible to the research community. Another direction would
be to test the technique against variability-aware tools and assess the
trade-offs.

SUMMARY

In this Ph.D. project I have studied software variability from the
problem and solution space in combination with the program and
programmer perspective. Overall, this Ph.D. thesis shows that vari-
ability complicates debugging and the complexity of bugs, but not
terribly so. This is positive and consistent with the existence of
highly-configurable software systems with hundreds, even thou-
sands, of features, testifying that developers in the trenches are able
to deal with variability. This thesis also shows that, by rewriting the
variability in the source code, off-the-shelf single-program analysis
tools are able to detect successfully and efficiently variability bugs.

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

Typechef analysis engine. http://ckaestne.github.com/
TypeChef/.

I. Abal, C. Brabrand, and A. Wasowski. 42 Variability Bugs in the
Linux Kernel: A Qualitative Analysis. In Proceedings of the 29th
ACMY/IEEE International Conference on Automated Software Engineering,
ASE 14, pages 421-432, New York, NY, USA, 2014. ACM.

M. Al-Hajjaji, F. Benduhn, T. Thiim, T. Leich, and G. Saake. Mutation
operators for preprocessor-based variability. In Proceedings of the 10th

International Workshop on Variability Modelling of Software-intensive
Systems, VaMoS 16, pages 81-88, New York, NY, USA, 2016. ACM.

S. Apel, D. Batory, C. Késtner, and G. Saake. Feature-Oriented Software
Product Lines. Springer-Verlag, 2013.

S. Apel, C. Kastner, A. Groplinger, and C. Lengauer. Type safety
for feature-oriented product lines. Automated Software Engineering,
17(3):251-300, Sept. 2010.

S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. De-
tection of feature interactions using feature-aware verification. In
Proceedings of the 26th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE "11, pages 372-375, Washington, DC,
USA, 2011. IEEE Computer Society.

S. Apel, A. von Rhein, P. Wendler, A. Grofilinger, and D. Beyer.
Strategies for product-line verification: case studies and experiments.
In 35th Intern. Conference on Software Engineering, ICSE '13, pages
482-491, 2013.

http://ckaestne.github.com/TypeChef/
http://ckaestne.github.com/TypeChef/

114 Bibliography

[8] D. Benavides, S. Segura, and A. R. Cortés. Automated analysis
of feature models 20 years later: A literature review. Information
Systems, 35(6):615-636, 2010.

[9] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wa-
sowski. Three cases of feature-based variability modeling in industry.
In International Conference on Model Driven Engineering Languages and
Systems, pages 302-319. Springer, 2014.

[10] T. Berger, R. Rublack, D. Nair, J]. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski. A survey of variability modeling in industrial
practice. In Proceedings of the Seventh International Workshop on Vari-
ability Modelling of Software-intensive Systems, page 7. ACM, 2013.

[11] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. A
study of variability models and languages in the systems software
domain. Software Engineering, IEEE Transactions on, 39(12):1611-1640,
Dec 2013.

[12] D. Binkley. The application of program slicing to regression testing.
Information and Software Technology, 40(11-12):583 — 594, 1998.

[13] E. Bodden, T. Tolédo, M. Ribeiro, C. Brabrand, P. Borba, and
M. Mezini. Spllift: Statically analyzing software product lines in
minutes instead of years. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
"13, pages 355-364, New York, NY, USA, 2013. ACM.

[14] C. Brabrand, M. Ribeiro, T. Tolédo, J. Winther, and P. Borba. Intrapro-
cedural dataflow analysis for software product lines. Transactions on
Aspect-Oriented Software Development X, pages 73-108, 2013.

[15] L. Braz, R. Gheyi, M. Mongiovi, M. Ribeiro, F. Medeiros, and L. Teix-
eira. A change-centric approach to compile configurable systems
with #ifdefs. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, GPCE
2016, pages 109-119, New York, NY, USA, 2016. ACM.

[16] K. Burr and W. Young. Combinatorial test techniques: Table-based
automation, test generation and code coverage. In Proceedings of
the International Conference on Software Testing Analysis & Review. San
Diego, 1998.

Bibliography 115

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson,
C. Schulte, B. Sharif, and S. Tamm. Eye movements in code reading;:
Relaxing the linear order. In 2015 IEEE 23rd International Conference
on Program Comprehension, pages 255-265, May 2015.

T. Busjahn, C. Schulte, and A. Busjahn. Analysis of code reading
to gain more insight in program comprehension. In Proceedings of
the 11th Koli Calling International Conference on Computing Education
Research, Koli Calling "11, pages 1-9, New York, NY, USA, 2011.
ACM.

M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature
interaction: A critical review and considered forecast. Comput. Netw.,
41(1), 2003.

S. Chen, M. Erwig, and E. Walkingshaw. An error-tolerant type sys-
tem for variational lambda calculus. In ACM SIGPLAN International
Conference on Functional Programming, ICFP’12, pages 29-40, 2012.

Clang. Clang static analyzer. Clang: a C language family frontend
for LLVM.

A. Classen, M. Cordy, P. Schobbens, P. Heymans, A. Legay, and
J. Raskin. Featured transition systems: Foundations for verifying
variability-intensive systems and their application to LTL model
checking. IEEE Transactions on Software Engineering, 39(8):1069-1089,
2013.

A. Classen, P. Heymans, P. Y. Schobbens, and A. Legay. Symbolic
model checking of software product lines. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE), pages 321-330,
May 2011.

A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and].-F. Raskin.
Model checking lots of systems: efficient verification of temporal
properties in software product lines. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering (ICSE) -
Volume 1, pages 335-344. ACM, 2010.

P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

116

[26]

[27]

[28]

[29]

[32]

Bibliography

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The
AETG system: an approach to testing based on combinatorial design.
IEEE Transactions on Software Engineering, 23(7):437-444, 1997.

K. Czarnecki and K. Pietroszek. Verifying feature-based model tem-
plates against well-formedness OCL constraints. In Proceedings of the
5th international conference on Generative programming and component
engineering, GPCE 06, New York, NY, USA, 2006. ACM.

S. R. Dalal, A.J. N. Karunanithi, J. M. L. Leaton, G. C. P. Patton, and
B. M. Horowitz. Model-based testing in practice. In Proceedings of
the International Conference on Software Engineering (ICSE "99), pages
285-294, 1999.

Y. Deng, S. Kothari, and Y. Namara. Program slice browser. In
Proceedings of the 9th International Workshop on Program Comprehension,
IWPC "01, pages 50-59, Washington, DC, USA, 2001. IEEE Computer

Society.

A. S. Dimovski. Symbolic game semantics for model checking
program families. In Model Checking Software - 23nd International
Symposium, SPIN 2016, Proceedings, volume 9641 of LNCS, pages
19-37. Springer, 2016.

A. S. Dimovski, A. S. Al-Sibahi, C. Brabrand, and A. Wasowski.
Efficient family-based model checking via variability abstractions.
International Journal on Software Tools for Technology Transfer, pages
1-19, 2016.

A. S. Dimovski, C. Brabrand, and A. Wasowski. Variability abstrac-
tions: Trading precision for speed in family-based analyses. In 29th
European Conference on Object-Oriented Programming, ECOOP 15, vol-
ume 37 of LIPIcs, pages 247-270. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

A. S. Dimovski, C. Brabrand, and A. Wasowski. Finding suitable
variability abstractions for family-based analysis. In FM 2016: Formal
Methods - 21st International Symposium, Proceedings, volume 9995 of
LNCS, pages 217-234, 2016.

Bibliography 117

[34] A.S. Dimovski and A. Wasowski. Variability-specific abstraction
refinement for family-based model checking. In International Confer-
ence on Fundamental Approaches to Software Engineering, pages 406—423.
Springer, Berlin, Heidelberg, 2017.

[35] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled ex-
perimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering: An International
Journal, 10:405-435, 2005.

[36] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analysis
of C preprocessor use. IEEE Transactions on Software Engineering,
28:1146-1170, 2002.

[37] M. Erwig and E. Walkingshaw. The choice calculus: A representation
for software variation. ACM Transactions on Software Engineering and
Methodology, 21(1):6:1-6:27, Dec. 2011.

[38] J. Feigenspan, C. Késtner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake. Do background colors

improve program comprehension in the #ifdef hell? Empirical
Software Engineering, 18(4):699-745, Aug. 2013.

[39] P. Gazzillo and R. Grimm. SuperC: Parsing all of C by taming the
preprocessor. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI "12, pages
323-334, New York, NY, USA, 2012. ACM.

[40] M. Goedicke, K. Pohl, and U. Zdun. Domain-specific runtime
variability in product line architectures. Proceedings of Object-Oriented

Information Services (OOIS’02).: Lecture Notes in Computer Science,
pages 213-218, 2002.

[41] C. L. Goues, S. Forrest, and W. Weimer. Current challenges in
automatic software repair. Software Quality Journal, 21(3):421-443,
2013.

[42] A.Gruler, M. Leucker, and K. D. Scheidemann. Modeling and model
checking software product lines. In FMOODS, 2008.

[43] M. Hansen, R. L. Goldstone, and A. Lumsdaine. What makes code
hard to understand? arXiv preprint arXiv:1304.5257, 2013.

118

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Bibliography

W. E. Hick. On the rate of gain of information. Quarterly Journal of
Experimental Psychology, 4(1):11-26, 1952.

G. J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Tech. Rep. CMU
/SEI-90-TR-21, CMU-SEI, 1990.

K.-C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA). Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21, Software Engineering Institute,
1990.

E. Kanning and S. Schulze. Program slicing in the presence of
preprocessor variability. In Proceedings of the 2014 IEEE International
Conference on Software Maintenance and Evolution, ICSME "14, pages
501-505, Washington, DC, USA, 2014. IEEE Computer Society.

C. Kastner and S. Apel. Type-checking software product lines - a
formal approach. In Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE '08, pages 258-267,
Washington, DC, USA, 2008. IEEE Computer Society.

C. Késtner, S. Apel, and M. Kuhlemann. Granularity in Software
Product Lines. In Proceedings of the 30th International Conference on
Software Engineering (ICSE), pages 311-320. ACM, 2008.

C. Késtner, S. Apel, T. Thiim, and G. Saake. Type checking
annotation-based product lines. ACM Transactions on Software Engi-
neering and Methodology, 21(3):14, 2012.

C. Kastner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-aware parsing in the presence of lexical macros
and conditional compilation. In Proc. 2011 ACM int. conf. on Object
oriented programming systems languages and applications, OOPSLA,
pages 805-824, 2011.

C. Késtner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Rendel,
and K. Ostermann. Toward variability-aware testing. In FOSD "12,
pages 1-8, 2012.

Bibliography 119

[54] A.Kenner, C. Késtner, S. Haase, and T. Leich. Typechef: Toward type
checking #ifdef variability in c. In Proceedings of the 2Nd International
Workshop on Feature-Oriented Software Development, FOSD "10, New
York, NY, USA, 2010. ACM.

[65] C. H. P. Kim, E. Bodden, D. Batory, and S. Khurshid. Reducing
configurations to monitor in a software product line. In 1st Interna-
tional Conference on Runtime Verification (RV), volume 6418 of LNCS.
Springer, November 2010.

[56] E.Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-C: A software analysis perspective. Formal Aspects of Comput-
ing, 27(3):573-609, 2015.

[57] M. Krone and G. Snelting. On the inference of configuration struc-
tures from source code. In Proceedings of the 16th International Con-
ference on Software Engineering (ICSE), pages 49-57. IEEE Computer
Society Press, 1994.

[58] K. Lauenroth, K. Pohl, and S. Toehning. Model checking of domain
artifacts in product line engineering. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering,
ASE '09, pages 269-280, Washington, DC, USA, 2009. IEEE Computer
Society.

[59] D. Le, E. Walkingshaw, and M. Erwig. #ifdef confirmed harm-
ful: Promoting understandable software variation. In IEEE Interna-
tional Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 143-150, 2011.

[60] J. Liebig, S. Apel, C. Lengauer, C. Késtner, and M. Schulze. An anal-
ysis of the variability in forty preprocessor-based software product
lines. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering (ICSE), pages 105-114. ACM, 2010.

[61] B. P. Lientz and E. B. Swanson. Software Maintenance Management.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1980.

[62] R. Malaquias, M. Ribeiro, R. Bonifacio, E. Monteiro, F. Medeiros,
A. Garcia, and R. Gheyi. The discipline of preprocessor-based
annotations does #ifdef tag n’t #endif matter. In Proceedings of the

120

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Bibliography

25th International Conference on Program Comprehension, ICPC 17,
pages 297-307, Piscataway, NJ, USA, 2017. IEEE Press.

F. Medeiros, C. Késtner, M. Ribeiro, R. Gheyi, and S. Apel. A
comparison of 10 sampling algorithms for configurable systems. In

Proceedings of the 38th International Conference on Software Engineering,
ICSE 16, pages 643-654, New York, NY, USA, 2016. ACM.

F. Medeiros, C. Kastner, M. Ribeiro, S. Nadi, and R. Gheyi. The
love/hate relationship with the C preprocessor: An interview study.

In 29th European Conference on Object-Oriented Programming, ECOOP
2015, July 5-10, 2015, Prague, Czech Republic, pages 495-518, 2015.

F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating preprocessor-
based syntax errors. In Proceedings of the 12th International Conference
on Generative Programming: Concepts & Experiences, GPCE, pages
75-84. ACM, 2013.

F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and R. Gheyi.
An empirical study on configuration-related issues: Investigating
undeclared and unused identifiers. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences, GPCE 2015, pages 35-44, New York, NY, USA,
2015. ACM.

J. Melo and P. Borba. Improving modular reasoning on preprocessor-
based systems. In Proceedings of the 7th Brazilian Symposium on
Software Components, Architectures and Reuse, SBCARS "13, pages
11-19, Washington, DC, USA, 2013. IEEE Computer Society.

M. Mendonca, A. Wasowski, and K. Czarnecki. SAT-based analysis
of feature models is easy. In Proceedings of the 13th International
Software Product Line Conference, SPLC "09, pages 231-240, Pittsburgh,
PA, USA, 2009. Carnegie Mellon University.

F. Merz, S. Falke, and C. Sinz. LLBMC: bounded model checking
of C and C++ programs using a compiler IR. In Verified Software:
Theories, Tools, Experiments - 4th International Conference, VSTTE 2012,
Proceedings, volume 7152 of LNCS, pages 146-161. Springer, 2012.

J. Midtgaard, A. S. Dimovski, C. Brabrand, and A. Wasowski. Sys-
tematic derivation of correct variability-aware program analyses. Sci.
Comput. Program., 105(C):145-170, July 2015.

Bibliography 121

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

S. Nadi, C. Dietrich, R. Tartler, R. C. Holt, and D. Lohmann. Linux
variability anomalies: What causes them and how do they get
tixed? In Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR "13, pages 111-120, Piscataway, NJ, USA, 2013. IEEE
Press.

P. W. Oman, R. Cook, and M. Nanja. Effects of programming
experience in debugging semantic errors. Journal of Systems and
Software, 9(3):197-207, 1989.

Y. Padioleau, J. L. Lawall, and G. Muller. Understanding collateral
evolution in linux device drivers. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006, Eu-
roSys ‘06, New York, NY, USA, 2006. ACM.

N. Palix, G. Thomas, S. Saha, C. Calves, J. Lawall, and G. Muller.
Faults in linux: Ten years later. SIGARCH Comput. Archit. News,
39(1):305-318, Mar. 2011.

L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wasowski, K. Czar-
necki, P. Borba, and J. Guo. Coevolution of variability models and
related software artifacts. Empirical Software Engineering, 21(4):1744—
1793, 2016.

K. Pohl, G. Bockle, and E. J. van der Linden. Software Product Line
Engineering. Springer, 2005.

H. Post and C. Sinz. Configuration lifting: Verification meets soft-
ware configuration. In Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE, pages 347-350,
Washington, DC, USA, 2008. IEEE Computer Society.

M. Ribeiro, P. Borba, and C. Kiastner. Feature maintenance with
emergent interfaces. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 989-1000, New York, NY,
USA, 2014. ACM.

P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and
S. D'Mello. Improving automated source code summarization via
an eye-tracking study of programmers. In Proceedings of the 36th
International Conference on Software Engineering, pages 390-401. ACM,
2014.

122 Bibliography

[80] S. Schulze, J. Liebig, J. Siegmund, and S. Apel. Does the discipline of
preprocessor annotations matter?: A controlled experiment. In Pro-
ceedings of the 12th International Conference on Generative Programming:
Concepts & Experiences, GPCE "13, pages 65-74, 2013.

[81] J. Siegmund, C. Késtner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann. Understanding understanding source
code with functional magnetic resonance imaging. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
pages 378-389, New York, NY, USA, 2014. ACM.

[82] J. Siegmund, N. Siegmund, and S. Apel. Views on internal and
external validity in empirical software engineering. In Software
Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, volume 1, pages 9-19, May 2015.

[83] J. Slaby, J. Strejcek, and M. Trtik. ClabureDB: Classified Bug-Reports
Database. In R. Giacobazzi, J. Berdine, and 1. Mastroeni, editors,
Verification, Model Checking, and Abstract Interpretation, volume 7737
of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013.

[84] H. Spencer and G. Collyer. #ifdef considered harmful, or portability
experience with C news. In Proceedings of the Usenix Summer Technical
Conference, pages 185-198. Usenix Association, 1992.

[85] R. Tartler. Finding and burying Configuration Defects in Linux with
the undertaker. 2011.

[86] R. Tartler, C. Dietrich, J. Sincero, W. Schroder-Preikschat, and
D. Lohmann. Static analysis of variability in system software: The
90, 000 #ifdefs issue. In G. Gibson and N. Zeldovich, editors, 2014
USENIX Annual Technical Conference, USENIX ATC 14, Philadelphia,
PA, USA, June 19-20, 2014., pages 421-432. USENIX Association,
2014.

[87] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. Con-
tiguration coverage in the analysis of large-scale system software.
Operating Systems Review, 45(3):10-14, 2011.

[88] T. Thiim, S. Apel, C. Késtner, I. Schaefer, and G. Saake. A classifi-
cation and survey of analysis strategies for software product lines.
ACM Computing Surveys (CSUR), 47(1):6:1-6:45, June 2014.

Bibliography 123

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

T. Thiim, I. Schaefer, M. Hentschel, and S. Apel. Family-based
deductive verification of software product lines. In Generative Pro-
gramming and Component Engineering, GPCE’12, pages 11-20. ACM,
2012.

Y. Tian, J. Lawall, and D. Lo. Identifying linux bug fixing patches.
In Proceedings of the International Conference on Software Engineering,
ICSE 2012, Piscataway, NJ, USA, 2012. IEEE Press.

M. Vélter. Handling variability. In Proceedings of the 14th annual Eu-
ropean Conference on Pattern Languages of Programming, EuroPLoP’09.
Kelly & Weiss, 2009.

A. von Rhein, T. Thiim, I. Schaefer,]. Liebig, and S. Apel. Variability
encoding: From compile-time to load-time variability. Journal of
Logical and Algebraic Methods in Programming, 85(1):125-145, 2016.

E. Walkingshaw and K. Ostermann. Projectional editing of varia-
tional software. In Proceedings of the 2014 International Conference on
Generative Programming: Concepts and Experiences, GPCE 2014, pages
29-38, New York, NY, USA, 2014. ACM.

M. Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE), pages 439-449. IEEE Press,
1981.

M. Weiser. Programmers use slices when debugging. Commun. ACM,
25(7):446-452, July 1982.

Z.Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pa-
supathy. An empirical study on configuration errors in commercial
and open source systems. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, SOSP "11, New York, NY, USA, 2011.
ACM.

Z.Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram.
How do fixes become bugs? In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering (ESEC/FSE), pages 26-36. ACM, 2011.

B. Zhang and M. Becker. Recovar: A solution framework towards
reverse engineering variability. In Proceedings of the 4th International

124 Bibliography

Workshop on Product Line Approaches in Software Engineering (PLEASE),
pages 45-48, 2013.

How Does the Degree of Variability Affect
Bug Finding? (Paper 1A)

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

How Does the Degree of Variability Affect Bug Finding?

Jean Melo, Claus Brabrand, Andrzej Wasowski
IT University of Copenhagen, Denmark
{ieanmelo,brabrand,wasowski}@itu.dk

ABSTRACT

Software projects embrace variability to increase adaptabil-
ity and to lower cost; however, others blame variability for
increasing complexity and making reasoning about programs
more difficult. We carry out a controlled experiment to quan-
tify the impact of variability on debugging of preprocessor-
based programs. We measure speed and precision for bug
finding tasks defined at three different degrees of variability
on several subject programs derived from real systems.

The results show that the speed of bug finding decreases
linearly with the degree of variability, while effectiveness
of finding bugs is relatively independent of the degree of
variability. Still, identifying the set of configurations in
which the bug manifests itself is difficult already for a low
degree of variability. Surprisingly, identifying the exact set
of affected configurations appears to be harder than finding
the bug in the first place. The difficulty in reasoning about
several configurations is a likely reason why the variability
bugs are actually introduced in configurable programs.

We hope that the detailed findings presented here will
inspire the creation of programmer support tools addressing
the challenges faced by developers when reasoning about
configurations, contributing to more effective debugging and,
ultimately, fewer bugs in highly-configurable systems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Variability, Preprocessors, Bug Finding

1. INTRODUCTION

A recent study reports that the global cost of debugging
software has risen to 312 billion dollars annually, and that
on average, software developers spend half of their program-
ming time finding and fixing bugs [14]. This is particularly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ICSE 16, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. .. $15.00
DOI: http://dx.doi.org/10.1145/2884781.2884831

679

worrisome in the context of variability. Software projects em-
brace variability hoping to increase flexibility at lower cost
(to better control system resources, to extend portability
across different hardware, to meet requirements of various
market segments). However, multiple research indicate that
variability might also amplify maintenance problems. Recent
literature on variability is riddled with claims to that end.
We list a few examples: “bug-finding is a time-consuming and
tedious task in the presence of variability”[30]; “managing
variability can become complex” [34]; “variability specifications
and realizations tend to erode in the sense that they become
overly complex.” [36]; “understandability and maintainability
may be negatively affected” [12].

However reasonable, there is little to no hard evidence
for these claims. Specifically, how are maintenance tasks
(bug finding in particular) affected by variability? How much
harder is it to debug a program as variability increases? Does
variability affect speed or also quality of debugging? In this
paper, we set off to understand such issues using a controlled
experiment designed to quantify the impact of the degree of
variability in program code on bug finding.

In the experiment we use simplifications of real bugs ex-
tracted from LINUX, BusyBox, and BESTLAP. We define
three degrees of variability: no, low, and high; corresponding
to zero, one, and three features, respectively. Given a pro-
gram and a degree of variability, we ask the participants to
debug the programs. In summary, we learn that:

e The time needed for finding bugs increases only linearly
with the amount of features, with the time becoming
less predictable with more features. The differences in
effectiveness of various programmers are amplified by
the increase of variability.

e Most developers correctly identify bugs (partial correct-
ness), yet many fail to identify the set of affected config-
urations (complete correctness). This is consistent with
earlier hypotheses that programmers introduce errors
because it is difficult to reason about all the execu-
tions involved via configuration choices. Interestingly,
this ability does not seem to improve with increasing
level of education, while general, non-variability related,
bug-finding skills do seem to improve.

e Challenges with reasoning about configurations are
already measurable for low degrees of variability.

The intended audience of this work are designers of vari-
ability management tools, of bug-finding tools, and of other
supporting methods, such as variability-aware software archi-
tectures, aiming at improving efficiency and correctness in

126

1 |int netpollSetup() | i |int netpollSetupl) | I |int retpollSetup() |

2 int erzr; 2 int crz; 2 int err;

] boolean ipvi = true; 3 boolean ipwvd = true; 3 boolean l}?v‘l = true;
4 boolean flag = true; 4 boolean flag - true; 4 boclean flag = true;
5 - 5 - 5 -

[flag = false; [flag = false; & flag = false;

7 - 7 - 7 -

] if (flag) err = -1; g if (flag) err = =1; 8 if (flag) err = -1;
9 - 9 - 9 -

10 if (ipvi) return err;: 10 if (ipvd) return err; 10 if (ipv4) return err;
i - 11 - i e

12 return 1; 12 return 1; 12 return 1;

13} 12 12 |}

(a) No variability (zero features).

(b) Low variability (one feature).

(c) High(er) variability (three features).

Figure 1: A program with an wuninitiliazed variable error with progressively increasing degrees of variability.

development of variability-intensive systems. We hope that
the insights provided will influence new tools and methods
that can help avoiding bugs like the one presented in the
next section, or help debugging programs that contain them.
We also hope to inspire software architecture researchers
to (further) understand the trade-offs between increasing
variability and development cost, by also including potential
debugging costs.

2. MOTIVATING SCENARIO

Today, variability-intensive software systems include both
large industrial product lines [8, 26, 4, 3] and open-source
systems of various sizes, up to the LINUX kernel with more
than 13,000 configurable features [5]. A multitude of tech-
nologies can be used to implement configurable systems:
object-oriented patterns, aspects, domain-specific languages
and code generation, plugin mechanisms, and so on. Among
these, the C preprocessor (CPP) is one of the oldest, the
stmplest, and the most popular [9, 19, 17] mechanisms in use,
especially in the systems domain. For these reasons, we use
the preprocessor in our study. The results do not generalize
to other mechanisms, but provide a good indication, given
that the other solutions are more complex and require much
more additional code to handle variability.

Figure 1 presents an example extracted from the Netpoll
module of LINUX kernel, slightly adapted to JAVA syntax
using coloured lines instead of preprocessor [17]. Netpoll is
an API that provides a means to implement UDP clients and
servers in the kernel independently of the main networking
stack. These can be used in unusual situations, like failure
monitoring, crash recovery, or debugging of the kernel. The
original function, called netpoll_setup in C, is used to ini-
tialize the module. It is about 100 lines long and involves one
optional feature. Historic versions of the function, contained
an error.t If the feature is disabled, the function returns the
value of an uninitialized variable, err, intended to hold an
error value in case of unexpected situations.

We illustrate how the task of debugging becomes more
complex as the numbers of features increase. Figure la
shows a version of the bug as a conventional program without
variability. It is fairly easy to establish that the function
returns the value of an uninitialized variable in line 10. (In
line 6, the variable flag is assigned false which means that

! http://git.kernel.org/cgit/linux/kernel /git/stable/linux-stable.git/commit/
?id=e39363a9def53dd4086be107dc8b3ebca09f045d

680

the conditional statement in line 8 is not executed; hence,
the variable err which was declared and uninitialized in line
2, is never assigned a value. Now, since the value of the
variable ipv4 is true (line 3), the conditional statement in
line 10 returns the value of the uninitialized variable err.)

Figure 1b contains the same program, but now involving
one feature shown in light gray background color. A feature,
such as light gray in this example, can be configured either
as enabled or disabled. Features are used in compile-time
conditional directives (#ifdefs) to control whether to in-
clude or ezxclude code fragments in a program. We use the
conventions of CIDE [17] which assign colors to features and
show conditional statements using background colors rather
than #ifdefs. We discuss implications of this difference in
Section 5. A colored statement is to be included in a program
if and only if the corresponding feature (color) is enabled.
Obviously, a feature thus gives rise to two possible config-
urations: a program with the light gray statement, and a
program without it. In general, n features will give rise to
2" configurations; i.e., 2" programs.

Now programming errors conditionally depend on configu-
rations. Indeed, the error in Figure 1b occurs only whenever
we enable the light gray feature. If the light gray statement
in line 6 is included, the variable err is not initialized in
line 8. If we disable the light gray feature, the error no longer
occurs; err would then be initialized in line 8.

Ultimately, this leads to a notion of partial correctness
for debugging. A developer can correctly diagnose the error
(find the bug), but incorrectly misdiagnose the exact set of
configurations (the combinations of features producing the
bug). In the case of a single feature, partial correctness
(misdiagnosis) means mixing up enabled and disabled.

The problems and difficulties escalate when we consider
more features; i.e., higher degrees of variability. Figure 1c
shows the same programs as before, but now with three fea-
tures: light gray, gray, and dark gray. The three features yield
eight configurations. In debugging the program, the devel-
oper must somehow consider all configurations. Determining
the erroneous products becomes a non-trivial combinatorial
problem which, as we shall see in Section 4, is difficult. In-
deed, for our program in Figure 1lc, the error now occurs in
exactly three (out of eight) configurations.

3. EXPERIMENT

In this section we explain our experimental design and setup.

import jawva.util.Random;

1

2

3 |publie eclass Hdtip |

4 B8tring subject = null;

5 int totallength = 600;

G final int HITP_UNAUTHORIZED = 401;

7 final int HTTP NOT IMPLEMENTED = 501;
& 8tring REQUEST GET = "GET";

9

1] public void sendHeaders(int responseNum) {
11 int buf = 0;

12 buf = totallength - responseNum;
13 subject = "response header";

14

15 if (subject.isEmpty())

16 subject = "Void respense";

17

18 System.out.println("Done");

19 1

20

21 private void handlelncoming(String requestType) [

boolean http unauthorized = new Random() .nextBoolean();
if (http unauthorized)
sendHeaders (EITP_UNAUTHORIZED) ;

if (!requestType.equals (REQUEST GET))
sendHeaders (HITP NOT_IMPLEMENTED) ;
28 }

public class CameScreen {
private int totalScore = 0:
private int penalty;
private final int TIME_BONUS = 2;
private final int PERFECT CURVE - 4;
private final int PERFECT_STRAIGET - 1;

private void setScore (int score) {
if (score >= 0) {
totalScore = score;
} else |
totalScore = 0;
}
}
private void setPenalty(int penalty) {
this.penalty = penalty;
}
private void gc_computelevelScore() |
assert 0;
totalScere = PE ' CURVE + PERFECT STRAIGHT;
totalScore += TIME_BONUS;
totalScere -= penalty;

totalScore

assert totalScore < 0;
setScore (totalScore) ;
assert totalScore < 0;

public static void main(String[] axgs)

30 public static void main(String[] args) 29 GameScreen game = new GameScreen();
31 Http http = new Http(): 30 game.setPenalty(10);
12 http.handleIncoming ("BOST") ; 31 game.gc_computeLevelScore () ;
13 1 32 }
34 |} 3}
(a) P2. (b) P3.

Figure 2: Programs P2 and P3 with HI variability degree; P1 is a larger version of Fig. lc.

Prg Origin Filename Bug type LOC #mth Prg Degree |F| Scattering Tangling VCC
P1 Linux netpoll.c Uniniialized = o 2 PL NO/LO/HI 0/1/3 0/1/3 0/2/6 5/6/7
variable
Null-pointer
P2 BusyBox http.c doreferomce 29 3 P2 NO/LO/HI 0/1/3 0/3/4 0/4/8 7/8/9
P3 BESTLAP GameScreen.java ZZ;ZZZT 31 4 P3 NO/LO/HI 0/1/3 0/5/10 0/6/15 8/12/14

Figure 3: Characteristics of our three benchmark programs: P1, P2, and P3.

3.1 Objective

Our experiment aims to analyze the impact of variability
on bug finding. We want to understand exactly how much
harder does the debugging task become as the degree of
variability in a program increases? Specifically, we aim to
answer the following research questions:

e RQ1: How does the degree of variability affect
the time of bug finding?

e RQ2: How does the degree of variability affect
the accuracy of bug finding?

To address these research questions, we perform a range of
classic “find the bug” experiments [25] and measure the time
and accuracy of the bug-finding task. We expose develop-
ers to programs with different degrees of variability, while
controlling for noise factors such as learning, developer com-
petence and program complexity. We measure accuracy as
the number of correct vs incorrect identifications of bugs.
We are particularly interested in the time and accuracy of
bug finding as functions of the degree of variability.

3.2 Treatments

In order to study debugging as a function of variability, we
expose each participant to programs with different degrees of
variability, so programs using different amounts of conditional
compilation blocks. We settled on using three distinct degrees
of variability. Let F denote the set of features (conditional
compilation symbols used in a program). First, to establish

681

a baseline, we consider programs with no variability (degree
NO, F = 0). Then we consider programs that use one feature
(degree LO, |F| = 1) and programs with three features (degree
HI, |F| = 3). The number of configurations grows from one
for degree NO programs, two for LO programs, to eight for
HI. This should make any performance differences manifest
themselves clearly. Even though it would be interesting to
study higher degrees, the limitation to three features has one
important advantage: it leaves us with programs sufficiently
small to be used in a time-delimited controlled experiment.

We derive programs of lower degrees by taking an erroneous
program with three features (see below) and appropriately
fix features as either enabled or disabled retaining the original
error. We thus obtain three versions of each program: “N0”,
“L0”, and “HI” (much like in Fig.1).

3.3 Subjects

We now turn to the subjects of the experiment which are
affected by the treatments; the participants and the programs.

Participants. We performed the experiment with N=69
participants: 31 M.Sc. students, 32 Ph.D. students, and 6
post-docs. The M.Sc. students came from two courses at
the IT University of Copenhagen: “Interactive Web Services
using Java and XML”and “System Architecture and Security”.
The Ph.D. students and post-docs came from three Danish
universities: IT University of Copenhagen (ITU), University
of Copenhagen (KU), and Technical University of Denmark
(DTU). We informed all participants that they could stop

128

participating at any time.

All participants had programming experience, especially
in JAVA, and around half of the participants had industrial
experience ranging from a few months to several years.

Programs. For the robustness of our experiment—in order
to minimize risks of specific effects from particular programs
and bug types—we took three programs with different kinds
of errors. We based our programs on real variability errors
from three highly-configurable systems: LINUX [1], Busy-
Box?, and BESTLAP [27]. These are qualitatively different
systems in terms of size, architecture, purpose, variability,
and complexity. LINUX is an operating system and is likely
the largest highly-configurable open-source system with more
than 12 MLOC and 13,000 features. BusyBoX is an open-
source highly-configurable system with 204 KLOC and about
600 features, that provides several essential Unix tools in
a single executable file. BESTLAP is a commercial highly-
configurable race game with about 15 KLOC. The kinds of
errors we consider are also different: an uninitialized variable,
a null-pointer dereference, and an assertion violation. We
simplified the error in each system down to an erroneous
program that would fit on a screen without scrolling (25-35
lines) yet involve exactly three features.

Figure 2 shows the programs P2 and P3 with HI variability
degree (P1 is a larger version of Fig.1c). The LO and NO
variability programs are obtained from the HI variants by
selecting a feature and configuration that preserves the bug
and influences the program size as little as possible, so that
it can still be comparable to the HI variant. In the following,
we describe the bugs used in the experiment of HI variability
degree, informing the type and erroneous configurations of
each bug.

Bug description of P1. P1 has one only method which
contains conditional statements and an integer local variable
called err, as shown in Fig.1lc. The three features yield
eight possible configurations. In debugging the program,
the developer must somehow consider all configurations. To
accomplish the task, the developer needs to identify that the
variable err is uninitialized in exactly three (out of eight)
configurations. Indeed, for our program in Figure 1lc, the
error occurs in the following configurations by enabling only:
(i) dark gray; (ii) light gray and dark gray; (iii) light gray,
gray, and dark gray. In these erroneous configurations, the
variable err is not initialized in line 8.

Bug description of P2. P2 contains two methods to handle
incoming HTTP requests (see Figure 2a). It also has a
variable (subject) that may be null and is dereferenced for
certain configurations. So, to identify the bug, the developer
should realize that this happens in three configurations. In
fact, the error in Figure 2a occurs only when we disable the
green feature. Thus, the erroneous configurations are (when
we enable only): (i) blue; (ii) yellow; (iii) blue and yellow.
If the sendHeaders method is called by either the yellow or
blue features, the variable subject will be null whenever the
green feature is disabled, and in line 15 there is an access to
subject which may cause null pointer exception.

Bug description of P3. P3 has three methods responsible
for computing the score, as can be seen in Fig. 2b. According
to a user requirement, the game should also compute negative
scores. But, the method setScore contains a condition

2 http://git.busybox.net/busybox/commit/?id=
5cd6461b6fb51e8cf297249074fce825€1960774

129

682

prohibiting negative scores. We encode the requirement using
assertions. To find the bug, the developer should consider all
configurations and somehow see that the variable totalScore
is always equal to zero in the end of setScore computation,
when passing negative values to the method, which is revealed
through an assertion violation in the code (line 26). For our
program in Figure 2b, the presence condition of the error is:
blue N yellow. Thus, the assertion error occurs in exactly
two configurations: (i) blue and yellow; (ii) blue, yellow, and
green.

Figure 3 lists various characteristics for each of our pro-
grams. The left-hand side gives the basic characteristics of
the programs; their origins (project and file name), bug type,
number of lines of code (excluding whitespace and comments),
and number of methods. The right-hand side lists variability
metrics for each of the degrees: feature scattering, feature
tangling, and variational cyclometric complexity (vcc). We
show metrics for each of the degrees using a slash-separated
notation (NO/LO/HI). For each feature, scattering counts the
number of conditional-compilation (colored) blocks (based
on the cDC metric [29]). We give accumulated numbers for
all features involved. The feature in P2-L0, for example, is
scattered over three locations in the source code. For each
feature, tangling, in turn, counts the number of switches be-
tween regular code and feature code through the control-flow
of the program (based on the CDLOC metric [29]). Again,
the feature in P2-L0, for instance, requires a concern/scope
change between the code base and the feature code four
times through the program. For vcc, we use the cyclomatic
complexity metric [21] on the variability programs, treating
#ifdefs (colored lines) as ordinary ifs.

Notice that the programs are all quite different, yet in
terms of complexity they are hierarchically ordered from P1
(simplest) to P3 (most complex).

3.4 Design

We present first a fully randomized experiment design, point
out a problem, and address it using a well-known technique.
In terms of debugging tasks, we have nine, in total: three
programs, each at three degrees of variability. However, a
developer cannot be assigned to perform all nine debugging
tasks. Clearly, we can only have a developer find bugs in a
given program once, otherwise there would be a learning effect
on subsequent attempts. For similarly obvious reasons, we
can only have a developer consider a variability degree once.
Abiding by these constraints, we can have each developer
debug three different programs, each at a different variability
degree. However, there might still be learning effects lurking
due to sequencing of assigned tasks. Presumably, debugging
LO after HI is not the same as debugging HI after LO, even for
different programs. Similarly, debugging an “easy” program
after a “hard” one is not the same as in the reverse order.

Fully Randomized Design. To counter these effects, we
need to randomize the order developers consider the tasks.
Aside from learning effect, we also need to control for other
subject-related noise factors (confounding factors) such as
differences in developer competence and program complex-
ity. After all, a “competent” developer debugging an “easy”
program will obviously not produce the same result as an
“incompetent” developer debugging a “hard” program. Again,
randomization may be used to control for these effects. For
larger samples these effects will diminish.

Thus, one solution would be, for each developer, to assign

programs

P1 P2 P3
® D1|| NO | LO | HI
§ D2 || LO | HI | NO
"§ D3|f HI | NO | LO

Figure 4: Latin Square (3x3).

programs and degrees completely at random without ever
reusing a program or a degree. This does control for con-
founding factors. However, statistically, we could get vastly
different number of data points for the nine debugging tasks.
In particular, we could get a low number of data points for
certain debugging tasks (e.g., P1-N0). Obviously, this could
compromize the quality of subsequent statistical analysis.

Latin Square Design. However, there is a better solution.
A nxn Latin square is an nxXn matrix with n distinct values
as entries with the property that no row or column contains
the same value twice.

Latin squares present a common solution to the above
statistical problem in many experimental setups [24, 2, 6].
Figure 4 depicts a 3x3 Latin square applied to our context.
The columns are labelled with the three subject programs
(P1, P2, P3). The rows are labelled with names of three
subject developers (D1, D2, D3). The nine squares in the
center contain the three treatments (NO, LO, HI). Now with
this design, each developer receives all three treatments listed
in his row, for all three subject programs listed in the headers
of the corresponding columns.

We apply the Latin square design to ensure the same
number of data points for all debugging tasks, without com-
promising control over the confounding factors. There are
12 distinct 3x3 Latin squares, modulo swapping rows and
swapping columns. For each three developers, we randomly
pick one of these 12 Latin squares and randomize also the
assignment of developers and programs to rows and columns.
The result is the same number of data points for all debugging
tasks, without compromising control over the confounding
factors such as developer personal competence or program
complexity. Still, each combination of treatments and pro-
grams is equally probable for each developer (in any order
of programs and in any order of treatments). For N=69
participants, each performing three out of nine tasks, we get
exactly 23 data points for each of the nine debugging tasks.

Technically, our experiment is an instance of the so-called
within-group design in which all subjects are exposed to every
treatment. We apply our treatments (independent variable:
variability with three levels: NO, LO, and HI) to the subjects
(programs and developers). In addition, we distinguish the
tasks for each program since the programs are not equivalent.
We measure our dependent variables; time and number of
correct and incorrect answers for bug-finding tasks.

Data Analysis. We used ANOVA [6] to test significance of
differences between different treatments. ANOVA is heavily
used in controlled experiments and useful in comparing three
or more means for statistical significance. ANOVA requires
a normal distribution, variance homogeneity, and model
additivity of the samples. We check these assumptions using
the Box CoX, BARTLETT, and TUKEY tests, respectively.

683

We conventionally consider a factor as significant when a
p-value < 0.05.

3.5 Execution

Before the actual large-scale experiment on 69 subjects, we
executed a pilot study with a small group of local students to
assess our design and tasks. The results of the pilot are not
considered in our analysis and the number 69 is excluding
the pilot study. Based on the pilot feedback, we changed
mainly the presentation of the tasks.

Before the subject developers were confronted with their
tasks, we presented a simple tutorial on the basics of variabil-
ity; in particular, features, configurations, and compile-time
conditional statements. Also, we demonstrated how to solve
a small warm-up task to demonstrate the nature of the tasks
and what kind of answers are expected. The warm-up task
was inspired by Figure 2 in a paper by Liebig et al. [20].

We randomly generated 23 Latin squares as described
above. We then used the Latin squares to compile a task
description sheet for each participant with their three relevant
debugging tasks (e.g., first P2-L0, second P1-HI, third P3-
NO). Every participant then performs the debugging task (i.e.,
find the bug) for the three given programs, in sequence.

All task description sheets contained instructions and a
link to an online form for completing the task. We ensured
that each program fits in a single screen to avoid participants
scrolling up and down to see the entire code. We prepared
all tasks using Google forms to avoid heterogeneous environ-
ments and installing software on different machines. That is,
we provided to the participants only a static window, i.e., no
IDEs, no tools, no navigation. We recorded timestamps for
each of the participants when they start and finish, allowing
us to calculate the duration of their debugging. In addition
to time, after the experiment, we calculated the number of
correct, incorrect, and partially correct answers.

We eliminated participants who left the experiment early
without completing the task, and returned their Latin square
assignments to the pool of the rows available for further
random allocation. The eliminated (unmotivated) partici-
pants are not included in the 69 figure. No other deviations
happened during execution.

In addition to the quantitative results, we conducted semi-
structured interviews after the experiments. This was to get
qualitative feedback on how the participants approached the
debugging tasks, particularly the ones involving a HI degree.
We asked two questions: (i) How did you go about finding
the HI bug? and (ii) What were the difficulties?

4. RESULTS

We now present the results of our experiment and discuss
the implications. We make eight observations addressing the
research questions—the impact of variability on the time and
accuracy of bug finding. Before proceeding, we stress that
the observations should not be generalized far beyond the
degree of variability for which we ran the experiment; i.e.,
|F| < 3. We will elaborate on external validity in Sect. 5.4.
All experiment materials are available online at http://itu.
dk/people/jeam /variability-experiment/ (including data, pro-
grams, task descriptions, and statistical processing scripts).

4.1 How does the degree of variability affect
the time of bug-finding? (rRQ1)

130

8

Time (Minutes)

o

T T T T
NO (|F|=0) LO (FI=1) HI(|F|=3)

Degree (|F|)

Figure 5: Mean bug-finding time (along the y-axis in minutes)
as a function of the degree of variability (z-axis).

We consider the first research question now.

OBSERVATION 1: Mean bug-finding time appears
to increase linearly with the degree of variability.

Figure 5 plots the mean bug-finding times (in minutes, along
the y-axis) for each of our three benchmark programs. Each
dot depicts the mean time to find the bug, for a particular
program (P1, P2 and P3), for a particular degree of variability,
i.e., NO (|F| = 0), LO (|F| = 1), and HI (|F| = 3). For instance,
the fastest mean bug-finding time is about 3% minutes (for
program P1 with NO variability), whereas the slowest mean
bug-finding time is a bit less than 10 minutes (for program
P3 with a HI variability degree of |F| = 3). For each program,
we fit a regression line to its respective points. The lines
suggests that the mean bug-finding time increases linearly
with the degree of variability. According to an ANOVA
test, the difference between bug-finding times for distinct
degrees of variability is statistically significant, with p-value
=2.0 x 1078, Also bug-finding time is a linear function of
programs and degrees, with p-value = 3.6 x 107%, by F-test
for regression.

Recall that the number of variant programs to be consid-
ered by a participant grows exponentially with the degree of
variability (i.e., |[K| = 2!, assuming all variants constitute
valid programs). Clearly, a developer has to somehow con-
sider each of the 2! variants in order to make an accurate
diagnosis of the bug. Afterall, each of the variants may or
may not harbour a bug. One might then, in fact, suspect
that bug-finding time ought to increase exponentially with
the degree of variability.

The post-treatment interviews provide qualitative insights
into how the participants approached the problem and what
difficulties they faced in understanding programs with a
HI variability degree. The participants agreed that finding
bugs in the NO programs, so without variability, required less
effort than in programs with HI degree of variability. One
participant explains:

“I tried to keep all different paths in mind, but it
was espectally difficult with multiple colors [HI].”

Along the same lines, another participant says:

“With more variability [HI] you need to build up
exponentially more traces in your head.”

The participants analyze programs as one unit despite vari-

131

684

Time (Minutes)
1

EEsT. -

o
o —_—
- : E
T T
LO H NO LO H

NO LO HI NO
(F=0) (F=1) (F=3) (F=0) (F=1) (F=3) (F=0) (F=1) (F=3)
Degree (|F|)

Figure 6: The distribution of bug-finding time.

ability. They do not split the task into analysis of exponen-
tially many independent programs, one variant at a time.
An unconscious use of brute force would yield a 2/¥! factor
slow down in overall bug-finding time.

Hick’s Law [15] from psychology, based on so-called choice-
reaction-time experiments, explains that the amount of time
for a human response increases logarithmically with the num-
ber of possible choices. Compared to a baseline program with
NO variability, programs with higher degrees of variability
involve exponentially more choices to be made. Obviously,
composing an exponential function with a logarithmic one
yields a linear function. We thus hypothesize that the seem-
ingly linear increase in bug-finding time, in spite of the
exponential blow up, can be attributed to Hick’s Law.

Presumably, the more complex the variability of a program,
the more time it would take to find bugs in that program.
Indeed, Fig. 5 is consistent with this expectation: the slopes
of the lines are ordered according to the complexity of the
respective programs. Recall from Figurel that programs
P1, P2, and P3 were increasingly complex both in terms
of variability-unaware and variability-aware characteristics.
Also, we remark that, even if we exclude participants that
failed to correctly identify the bug, we see a picture similar
to that of Fig.5.%

In summary, the first observation indicates that an increase
in variability (e.g., by adding features) complicates bug find-
ing, but not dramatically and not prohibitively so. This is
a very positive finding, that is consistent with existence of
software products with hundreds, even thousands, of features,
testifying that developers in the trenches are able to deal
with variability.

OBSERVATION 2: The variance of bug-finding time
appears to be amplified by the degree of variability.

Figure 6, we plot the distribution of bug-finding times for
each program and variability degree. Each box encapsulates
the middle 50% data points. The lower and upper limit of the
box respectively represent the lower and upper quartiles (the
25% and 75% percentiles). The upper and lower whiskers
represent the data above and below the middle half of the
data. The horizontal line within the box draws up the median

3The diagram can be found in the accompanying materials.

Sy 1z r 1T
H 11]
IR |
. - - - l -
| i - I = = = = Ph.D.
| H H | i 5 H] M.Sc.
1 I B n 1 n n 1
NO Lo HI NO L0 HI NO L0 HI
P1 P2 P3

Figure 7: Ranking of fastest (at the bottom) to slowest (top)
participants according to their educational level (i.e., M.Sc.
vs. Ph.D. students).

of the data points. Finally, the circles above the boxes
visualize outliers. For instance, for program P3 (the three
rightmost boxes), the middle half of the participants spent
between 3% and 5 minutes to find the bug with NO variability,
whereas, for HI variability, the middle half spent from about
7 to 10% minutes. Again, considering only participants that
found the bug yields a similar diagram, consistent with the
above.

Amplification of variance is a predictable consequence of
our first finding. For the variance of a stochastic variable, X,
multiplied by a constant factor, ¢ (depending on the degree
of variability), we have that: Var(c X) = ¢* Var(X).

In popular terms, this observation means that differences
in bug-finding competences are amplified when working with
variability. Ultimately, this means that getting talented
developers on such projects is important.

OBSERVATION 3: Ph.D. students appear to not
be faster at finding variability bugs than M.Sc.
students.

Figure 7 shows the ranking of bug-finding from the fastest
participants (towards the bottom) to the slowest participants
(towards the top), abstracting away the actual time they
spent debugging. M.Sc. students are shown in light gray,
Ph.D. students in black. There appears to be no pattern of
one group of students being faster than the other, even for
higher degrees of variability.

In the late 1980es, Oman et al. [25] compared debugging
abilities of novice, intermediate, and skilled student program-
mers using two programs written in Pascal. Among other
things, they found that experienced programmers find errors
faster than less experienced programmers. We, in turn, do
not notice any difference in terms of bug-finding time be-
tween Ph.D. and M.Sc. students. This can be explained by
the level of subjects in that study. They considered only
undergraduate students, separating them according to the
amount of computer science courses taken, whereas we test
with graduate students, who would likely be considered as
skilled programmers in their setup. Furthermore, we study
a different phenomenon, which is variability, that might be
challenging independently of education level.

4.2 How does the degree of variability affect
the accuracy of bug-finding? (rRQ2)

We now turn to our second research question (RQ2) on the

accuracy of bug-finding:

OBSERVATION 4: Most developers correctly iden-
tify bugs in programs regardless of the degree of

4See the accompanying website for more information.

685

M]

Lo] Wincorrect

no] DOCorrect
0% 20% 40% 60% 80% 100%

Figure 8: Ratio of incorrectly vs. correctly identifying a bug.

variability.

Figure 8 shows shows what percentage of developers were able
to find the bugs correctly. The incorrect answers are black,
and the correct ones are gray. The data is presented for each
degree of variability separately. The frequency of incorrect
answers is consistently low, with around a fifth being the
incorrect answers. For programs with NO variability, 16% of
subjects (11 out of 69) did not find the bug. Even for the HI
variability programs, only 22% of the subjects (15 out of 69)
answered incorrectly.

Generally, developers seem to be good at finding bugs in
programs—and in programs with variability (at least, up to
three features). Interestingly, more than half (38 out of 69)
of the participants correctly identified the bug in all three
tasks. On average, if we disregard the variability degrees,
79% of the participants were able to correctly find the bug.
All in all, we conclude that finding bugs in programs seems
to not be significantly affected by the degree of variability
(at least for |F| < 3).

OBSERVATION 5: Many developers fail to exactly
identify the set of erroneous configurations, al-
ready for a low degree of variability.

We now look a little closer at accuracy and split the correct
answers in two sets. If the participant got the set of erroneous
configurations exactly right, we classify her answer as fully
correct. Similarly, we classify answers as partially correct,
if the developer has correctly identified the bug, but failed
to correctly specify the set of configurations in which the
error occurred (missing some configurations or listing too
many). We ignore incorrectly identified bugs for this part
of the analysis, as it is hard to interpret the identification
of configurations for them. For instance, program P3 with
HI variability, contains an assertion error that occurs in two
(out of eight) configurations. For this task, some participants
found only one of the erroneous configurations and others
listed extra configurations for which the error does not occur.
Figure 9, presents the numbers of fully and partially correct
answers at different levels of variability.

Obviously, partial correctness does not make sense for
programs without variability (for NO we have only one possible
configuration). Already for LO variability (one feature), we
see that the number of partially correct answers quickly rises
t0 17% (9 out of 52). For HI variability, this number escalates
to almost 40% (20 out of 54).

Identifying the exact set of erroneous configurations seems
to become difficult already for |F| = 3 (HI variability). Do-
ing this requires understanding the combinations of features
that enable the incriminated execution paths—a form com-
binatorial reasoning, which apparently becomes difficult fast.
Such problems are notoriously hard for humans. For realis-
tic systems, where a feature model additionally shapes the
set of legal configurations, this task would presumably be
even harder (as one needs to reason about feature model

132

W 7277277777777]

\o A] SESESTK?SJJ o

NO |]

0% 20% 40% 60% 80% 100%
Figure 9: Ratio of partially correctly versus fully correctly

identifying a bug.

constraints, in addition).

From a prior qualitative study [1], we know that program-
ming errors related to variability appear due to inability
of programmers to correctly reason about all variations of
the program that they are modifying. Those findings are
consistent with the above: it is plausible that developers
mis-identify the sets of configurations during programming
tasks and during debugging tasks for the same reasons. To
the best of our knowledge, this study presents the first quan-
titative confirmation that indeed reasoning about multiple
configurations is a challenge, even for relatively small sets.

OBSERVATION 6: For higher degrees of variability,
it appears to be more difficult to correctly identify
the set of erroneous configurations than to find
the bug in the first place.

For HI variability, we saw that 22% (15 out of 69) did not find
the bug (see Figure 8). Among the ones that did, a staggering
37% (20 out of 54) erred on set of erroneous configurations
(cf. Figure 9).

Although the participants were only asked to find the
bugs, not (also) fiz them, we find that our results are con-
sistent with studies of creating and fixing bugs. Yin and
coauthors report that in general bug fixers “may forget to
fix all the buggy regions with the same root cause.” [35]. Our
earlier study [1] also reports that bugs are introduced because
the programmers do not realize the complexity of all the
configurations in which their code will run.

OBSERVATION 7: Ph.D. students appear to be
more accurate at finding variability bugs than
M.Sc. students.

Figure 10a compares the ratio of correct-to-incorrect answers
according to educational level, separating M.Sc. students
and Ph.D. students. We see that the number of incorrect
answers for Ph.D. students are consistently low. In fact, even
for HI variability, only 10% of the Ph.D. students answered
incorrectly. For M.Sc. students, the numbers are consistently
higher. For HI variability, the number of incorrect answers
are more than three times higher at 35%. On average, the
Ph.D. students found bugs three times more accurately than
M.Sc. students for all degrees of variability. Presumably,
Ph.D. students, having more education, are more careful and
meticulous when debugging than M.Sc. students.
Interestingly, Ph.D. students prevail only as far as identi-
fying the actual bug is concerned, but they are not better in
identifying the relevant set of configurations. For both M.Sc.
and Ph.D. students the percentage of fully correct answers
seems to not significantly be impacted by variability:
OBSERVATION 8: Identifying the exact set of er-
roneous configurations is hard regardless of edu-
cation (both for M.Sc. and Ph.D. students).
Figure 10b shows the frequency of partially correct answers
for M.Sc. versus Ph.D. students. For HI variability, for

133

686

instance, we see that 40% of M.Sc. students answered partially
incorrect versus 35% for that of Ph.D. students.

The numbers testify that the combinatorial task of identi-
fying the exact combination of features provoking an error is
difficult, regardless of educational level. We see the frequency
of partially correct answers double from LO to HI degree in
both groups of students.

5. THREATS TO VALIDITY

5.1 Internal validity

Choice of variability degrees? We chose zero, one, and
three features for pragmatic reasons. If we instead had chosen,
for instance, two, four, and siz features, the experiments
would have required much longer time, discouraging and
tiring participants. In fact, the mean time for program
P3 with three features is almost ten minutes. Also, five
participants spent more than twenty minutes to find the bug
in programs involving three features.

Choice of language? In this experiment, we adopted
JAVA as our programming language. This is because we want
to run the experiment with as many students as possible,
and JAVA is well-known among students in Denmark. We
only admitted students who had experience with JAVA.

Use of background color? Researchers have shown that
background colors may improve program comprehension and
subjects favor background colors [11]. Additionally, the
benefits of colors compared to text-based annotations is that
one can clearly distinguish background colors (feature code)
from base code and humans are able to recognize colors faster
than text [13]. Thus, we decide to use background colors
instead of preprocessor directives.

Choice of colors? Before the experiment, we check for
color blindness among the participants. We also take care of
choosing colors that are clearly distinguishable (blue, green,
and yellow). Aside from this, we do not believe that the
exact choice of colors matter so much,® for our experiment.

Selection bias? To minimize selection bias, we randomly
assign participants, degrees, and programs into the Latin
squares. So, we control our confounding factors via Latin
square design and randomization. Every participant takes
all treatments, including all the three programs. We did
have few (unmotivated) students who left the experiment
early without completing the tasks. As mentioned earlier,
we eliminated them from the study and returned their Latin
square assignments to the pool of the rows available for
further random allocation.

Participation incentives? We offered a chocolate bar
as a participation incentive. Aside from that, only pride
prohibits participants from deliberately performing poorly.
We found no indications of participants giving deliberately
silly answers.

5.2 Conclusion validity

Statistical tests? In this experiment, we use ANOVA (in-
cluding verification of its assumptions) to verify whether
or not the means of our test groups are equal by analyz-
ing variance. In fact, ANOVA is heavily used in controlled
experiments and useful in comparing three or more means
for statistical significance. Besides that, we are comparing

5The fashion industry may disagree.

Hi]

(M.Sc.) 10—] Wincorrect
No] Ocorect

0% 20% 40% 60% 80% 100%

H -]
(Ph.D.) 1o m— | Wincorrect
No L 1 Ocorrect

0% 20% 40% 60% 80% 100%

(a) Ratios of incorrect vs correct answers for M.Sc. students (above)
and Ph.D. students (below).

HI 77]
(M.Sc.) © wzzza | BPartially correct

NO |

1 DOFully correct

0% 20% 40% 60% 80% 100%

H 22222222224 |
.
(PhD) Lo | BPpartially correct

NO [

| OFully correct

0% 20% 40% 60% 80% 100%

(b) Ratios of partially correct vs fully correct answers for M.Sc.
students (above) and Ph.D. students (below).

Figure 10: Accuracy of bug-finding according to educational level (M.Sc. students vs Ph.D. students).

group means against each other, not specific subjects, which
decreases the impact of developer competence.

Time measured? The time measured to complete a test
involves both thinking as well as writing down the answer.
We asked the participants to write down the bug kind, line,
and a list of erroneous configurations (a configuration is
written as a list of enabled features). Obviously, this might
interfere in the measured time due to variations in writing
speed. However, we observed that the task of writing usually
took tens of seconds whereas thinking took on the order of
minutes. Hence, the speed of the task of writing is dwarfed
by the thinking. Note that we exclude the time of reading the
tasks, as we only start the timer once the participants have
read each task description (i.e., when they see the programs).

5.3 Construct validity

Do participants know what to do? Before exposure
to the programs with variability, we explained the basics
of variability (including features, compile-time conditional
statements, and configurations). In addition, we performed a
warm-up task with different degrees of variability with them
in order to demonstrate what they need to do and what
they need to answer (including the format of answers). In
summary, we essentially taught them how to accomplish the
tasks and fill in the forms.

Disregarding incorrect answers? When analyzing re-
sponse times, we decided not to exclude wrong answers
because we wanted to measure the time it takes to debug
a program, whether correct or not. Note, however, that we
do check that our observations still hold (are stable) when
disregarding incorrect answers.® Recall that the number of
incorrect answers were consistently low, regardless of the
degree of variability (cf. OBSERVATION 4, Figure 8 and 10a).

5.4 External validity

Beyond CIDE and preprocessors? Our experiment and
entire study is dedicated and tailored to a particular tech-
nique for dealing with variability: preprocessor. Our obser-
vations generalize to #ifdefs instead of background colors
because of their close relationship (after all, CIDE is based on
#ifdefs) [16] and known results shows that a judicious use
of colours instead of #ifdefs can only simplify the task [11].
Generalization to other variability techniques is not intended.

Beyond university students? The main question is
whether our study is also relevant to the industry? Our
N=69 participants were predominantly M.Sc. and Ph.D. stu-
dents from three different Danish universities. All had JAvA

5See the accompanying website for more information.

687

programming experience and around half of them had indus-
trial experience (few months to several years). Note that we
had participants from Africa, Asia (incl., The Middle East),
FEurope, North, and South America. In addition, previous
research has established that graduate students make good
proxies for industry developers [7]. All of this contributes to
representativity and generalization to “real-world” industrial
developers.

Beyond our buggy programs? We based our programs
(P1, P1, and P3) on real variability bugs from real highly-
configurable systems (LiNux [1], BusyBox,” and BEST-
LAP [28], respectively) precisely to minimize the risks of
introducing and studying artificial problems. Also, the pro-
grams were qualitatively different (cf. Figure 3). Further, our
bug-finding tasks present three qualitatively different types of
bugs: uninitialized variable, null-pointer dereference, and as-
sertion violation. In fact, these are common variability bugs
in bug reports [1]. For these reasons, we expect the results
should transfer to other (smaller) programs. Of course, there
may be additional effects, unaccounted for, when debugging
programs beyond 35 lines.

Beyond lab settings? More programs, larger programs,
higher degrees, realistic programs and tools, all extend the
task duration beyond one hour and make it significantly
harder to attract anywhere near 69 participants. For these
reasons, we optimized for internal validity and quantitative
observations in lab conditions, recognizing that there is an
inherent tradeoff between internal and external validity in
experiment design [32]. We ensured that each program fits
in a single screen to avoid participants scrolling up and down
to see the entire code. Additionally, we prepared all tasks
using Google forms to avoid heterogeneous environments
and installing software on different machines. That is, we
provided to the participants only a static window, i.e., no
IDEs, no tools, no navigation.

Beyond three features? It is entirely likely that the
linear relationship we observed (in OBSERVATION 1) breaks
down, at some point, for some higher degrees of variability.
Presumably at some point, developers will be unable to
simply cope with the exponentially many combinations of
features. However, this is beyond the scope of our study.

6. RELATED WORK

Variability Bugs. Previous studies have shown negative
aspects of preprocessor usage such as code pollution, no
separation of concerns, and error-proneness [33, 18, 10, 9, 17,

7http://git.busybox.net/busybox/v:ommit/?id:
5cd6461b6fb51e8cf297a49074fce825e1960774

134

19]. These studies are predominantly artifact-based (so based
on studying programs), not investigating human abilities to
work with the code.

Recently, Medeiros and co-authors interviewed 40 develop-
ers to study their perceptions of the C preprocessor [22]. The
developers assess that preprocessor-related bugs are easier to
introduce, harder to fix, and more critical than other bugs.
Many admit that they check only a few configurations of
the source code in practice when testing their implementa-
tions. Our experiment confirms these qualitative insights
and complements them with quantitative data.

Medeiros et al. [23] investigated syntactic errors in pre-
processor-based systems. They noticed that developers intro-
duce syntax errors when changing existing code and adding
preprocessor directives, and that some of the relevant errors
survive in the life cycle all the way to the release stage. In
this paper, we work with human developers (not artifacts),
which allows us to quantify the effort of bug finding. Also, we
are concerned not with syntactic but with semantic errors.

Ribeiro et al. [27] conducted a controlled experiment to
evaluate whether emergent interfaces reduce effort and num-
ber of errors during code-change tasks involving feature code
dependencies. In general, they found a decrease in code-
change effort and number of errors when using their tool
support. Emergent interfaces are an example of tooling that
attempts to simplify reasoning about variability. Our experi-
ment confirms the need for more research on such tools.

Bug Finding. Oman et al. [25] compared debugging abili-
ties of novice, intermediate, and skilled student programmers
using two Pascal programs. Among other things, they found
that programmers’ ability to find errors increases with gen-
eral programming experience; they become faster and make
fewer mistakes. Comparing to our study, we did not design
the experiment to directly compare novices versus experts
even though we discussed some indications. Our observations
suggest that Ph.D. students are not faster at finding variabil-
ity bugs than M.Sc. students. But, the former appear to be
more careful and meticulous when debugging than the latter.
Furthermore, we studied a different phenomenon, which is
variability, trying to measure the impact of the degree of
variability on debugging.

Program comprehension. Feigenspan et al.[11] in a se-
ries of controlled experiments show that use of distinct back-
ground colors improves comprehension of #ifdefs. This is
one important reason why are we using colours in the experi-
ment, instead of preprocessor directives. In accordance with
their work, the bug finding with actual #ifdef directives
should likely be slower than with colours.

Another controlled experiment applied functional mag-
netic resonance imaging (fMRI) to measure program com-
prehension [31]. They found that five different brain regions
associated with working memory, attention, and language
processing become activated for comprehending source code.
However, variability was not in their focus. We, in turn,
focused on quantifying the effect of the degree of variability
on debugging.

Schulze et al. [30] studied the influence of the discipline of
preprocessor annotations on program comprehension. They
found that the discipline of annotations has no influence
at all. Our observations agree in that finding bugs with
variability is time-consuming and difficult. We are however
able to quantify the increase of difficulties when the degree
of variability grows.

135

688

7. CONCLUSION

We have presented a controlled experiment quantifying the
impact of variability on the time and accuracy of bug finding
in highly-configurable systems. We observe that bug-finding
time appears to increase linearly with the degree of vari-
ability. This conclusion is both positive and negative. An
increase in variability complicates bug finding (negative), but
not dramatically so (positive)—if developers reasoned about
each of the variants separately we would have observed an
exponential, not linear, growth. The practical implication
is that it is beneficial to introduce variation points into pro-
grams from the debugging perspective: It is beneficial to
pay a linear price for bug finding, if the alternative is to
maintain a super-linear set of variants (at least up to three
variations in a file). However, there might be benefits in
selecting designs (architectures and algorithms) that require
less variability, if possible.

Somewhat expectedly, the variance in bug-finding time is
amplified by variability. In other words, differences in bug-
finding competences of developers appear to be amplified
when working on software projects with variability. Getting
talented developers for such projects might be important.

We also find that most participants correctly identify bugs
in programs with accuracy, that is independent of the de-
gree of variability. However, developers often fail to exactly
identify the set of erroneous configurations, and this happens
already for a rather low number of features, and gets worse
with the degree of variability increasing. Clearly, reasoning
about multiple configurations is a challenge. This is consis-
tent with earlier qualitative indications that variability bugs
appear, when developers unintentionally ignore an execution
that is enabled by an unexpected (for them) configuration of
features.

In fact, our study suggests that, for higher degrees of
variability, it is more difficult to correctly identify the set of
erroneous configurations than to find the bug in the first place.
This is rather unexpected, given that to understand the bug
one needs to reason about control flow, a temporal non-local
phenomenon that is not obviously simpler than combinatorics.
This means that it is beneficial to work on support tools that
help developers to navigate the configuration space (on top
of flow-oriented bug finders).

The future follow up on this work, is expected to design
tools exploiting the results of the study, in particular indicat-
ing the sets of configurations impacted by a program change,
in order to simplify reasoning about all flows that a change
participates in (cf. OBSERVATIONS 5 and 8). Additionally,
further research like replicating this experiment —with more
programs, larger programs, more subjects, higher degrees,
realistic programs and tools— is required to confront our ob-
servations and to draw new ones. It would be also interesting
to replicate our study using fMRI or eye-tracking to better
explain the impact of variability on debugging. With this, it
would be possible to actually see how developers approach
programs with different degrees of variability.

Acknowledgements. We thank all the students for devoting
their time. Fritz Henglein, Christian Probst, Sgren Debois
helped to attract the participants. We thank participants of
the FOSD’15 Meeting for valuable feedback. Melo is funded
by Brazilian Science without Borders Programme, CNPq
grant no. 249020,/2013-0. Wasowski is funded by The Danish
Council for Independent Research, grant no.(0602-02327B.

8.
(1]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

REFERENCES

I. Abal, C. Brabrand, and A. Wasowski. 42 Variability
Bugs in the Linux Kernel: A Qualitative Analysis. In
Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE
'14, pages 421-432, New York, NY, USA, 2014. ACM.
R. A. Bailey. Design of comparative experiment.
Cambridge University Press, 2008.

T. Berger, D. Nair, R. Rublack, J. M. Atlee,

K. Czarnecki, and A. Wasowski. Three cases of
feature-based variability modeling in industry. In
ACM/IEEFE 17th International Conference on Model
Driven Engineering Languages and Systems
(MODELS), 2014.

T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. Wasowski. A survey of variability
modeling in industrial practice. In Proceedings of the
Seventh International Workshop on Variability
Modelling of Software-intensive Systems, VaMoS 13,
pages 7:1-7:8, New York, NY, USA, 2013. ACM.

T. Berger, S. She, R. Lotufo, A. Wasowski, and

K. Czarnecki. A study of variability models and
languages in the systems software domain. Software
Engineering, IEEE Transactions on, 39(12):1611-1640,
Dec 2013.

G. E. P. Box, J. S. Hunter, and W. G. Hunter.
Statistics for Experimenters: design, innovation, and
discovery. Wiley-Interscience, 2005.

R. P. Buse, C. Sadowski, and W. Weimer. Benefits and
barriers of user evaluation in software engineering
research. ACM SIGPLAN Notices, 46(10):643-656,
October 2011.

P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

M. D. Ernst, G. J. Badros, and D. Notkin. An empirical
analysis of C preprocessor use. IEEE Transactions on
Software Engineering, 28:1146-1170, 2002.

J. M. Favre. Understanding-in-the-large. In Proceedings
of the 5th International Workshop on Program
Comprehension (WPC), pages 29-38. IEEE Computer
Society, 1997.

J. Feigenspan, C. Késtner, S. Apel, J. Liebig,

M. Schulze, R. Dachselt, M. Papendieck, T. Leich, and
G. Saake. Do background colors improve program
comprehension in the #ifdef hell? Empirical Softw.
Engg., 18(4):699-745, Aug. 2013.

M. Goedicke, K. Pohl, and U. Zdun. Domain-specific
runtime variability in product line architecture.
Proceedings of Object-Oriented Information Services
(O0IS’02).: Lecture Notes in Computer Science, 2002.
E. Goldstein. Sensation and Perception. Cengage
Learning Services, 2002.

P. Goodliffe. Becoming a Better Programmer. O’Reilly
Media, Inc., 2014.

W. E. Hick. On the rate of gain of information.
Quarterly Journal of Experimental Psychology,
4(1):11-26, 1952.

C. Kastner. Virtual separation of concerns: Toward
preprocessors 2.0, 5 2010. Logos Verlag Berlin, isbn
978-3-8325-2527-9.

C. Kistner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the 30th

689

18

19

[20

21

[22

[23

[28

[29

[30

]

]

]

]
]

]

]

]

International Conference on Software Engineering
(ICSE), pages 311-320. ACM, 2008.

M. Krone and G. Snelting. On the inference of
configuration structures from source code. In
Proceedings of the 16th International Conference on
Software Engineering (ICSE), pages 49-57. IEEE
Computer Society Press, 1994.

J. Liebig, S. Apel, C. Lengauer, C. Késtner, and

M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE), pages
105-114. ACM, 2010.

J. Liebig, A. von Rhein, C. Késtner, S. Apel, J. Dérre,
and C. Lengauer. Scalable analysis of variable software.
In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013,
pages 81-91, New York, NY, USA, 2013. ACM.

T. J. McCabe. A complexity measure. IEEE Trans.
Softw. Eng., 2(4):308-320, July 1976.

F. Medeiros, C. Késtner, M. Ribeiro, S. Nadi, and

R. Gheyi. The love/hate relationship with the C
preprocessor: An interview study. In Proceedings of the
29th European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer
Science, Berlin/Heidelberg, 2015. Springer-Verlag.

F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating
preprocessor-based syntax errors. In Proceedings of the
12th International Conference on Generative
Programming: Concepts & Experiences, GPCE, pages
75-84. ACM, 2013.

D. C. Montgomery. Design and Analysis of
Experiments. John Wiley & Sons, 2006.

P. W. Oman, C. R. Cook, and M. Nanja. Effects of
programming experience in debugging semantic errors.
J. Syst. Softw., 9(3):197-207, Mar. 1989.

K. Pohl, G. Bockle, and F. J. van der Linden. Software
Product Line Engineering. Springer, 2005.

M. Ribeiro, P. Borba, and C. Késtner. Feature
maintenance with emergent interfaces. In Proceedings
of the 36th International Conference on Software
Engineering, ICSE 2014, pages 989-1000, New York,
NY, USA, 2014. ACM.

M. Ribeiro, F. Queiroz, P. Borba, T. Tolédo,

C. Brabrand, and S. Soares. On the impact of feature
dependencies when maintaining preprocessor-based
software product lines. In Proceedings of the 10th ACM
International Conference on Generative Programming
and Component Engineering (GPCE), pages 23-32.
ACM, 2011.

C. Sant’anna, A. Garcia, C. Chavez, C. Lucena, and
A. v. von Staa. On the reuse and maintenance of
aspect-oriented software: An assessment framework. In
Proceedings XVII Brazilian Symposium on Software
Engineering, 2003.

S. Schulze, J. Liebig, J. Siegmund, and S. Apel. Does
the discipline of preprocessor annotations matter?: A
controlled experiment. In Proceedings of the 12th
International Conference on Generative Programming:
Concepts & Experiences, GPCE 13, pages 65-74, New
York, NY, USA, 2013. ACM.

[31] J. Siegmund, C. Késtner, S. Apel, C. Parnin,
136

32]

[33]

[34]

[35]

[36]

A. Bethmann, T. Leich, G. Saake, and A. Brechmann.
Understanding understanding source code with
functional magnetic resonance imaging. In Proceedings
of the 36th International Conference on Software
Engineering, ICSE 2014, pages 378-389, New York, NY,
USA, 2014. ACM.

J. Siegmund, N. Siegmund, and S. Apel. Views on
internal and external validity in empirical software
engineering. In Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on,
volume 1, pages 9-19, May 2015.

H. Spencer and G. Collyer. #ifdef considered harmful,
or portability experience with C news. In Proceedings
of the Useniz Summer Technical Conference, pages
185-198. Usenix Association, 1992.

M. Vélter. Handling variability. In Proceedings of the
14th annual European Conference on Pattern Languages
of Programming, FuroPLoP’09. Kelly & Weiss, 2009.
Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and

L. Bairavasundaram. How do fixes become bugs? In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering (ESEC/FSE), pages 26-36. ACM,
2011.

B. Zhang and M. Becker. Recovar: A solution
framework towards reverse engineering variability. In
Product Line Approaches in Software Engineering
(PLEASE), 2013 4th International Workshop on, pages
45-48, May 2013.

137

690

Variability through the Eyes of the
Programmer (Paper 1B)

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

Variability through the Eyes of the Programmer

Jean Melo, Fabricio Batista Narcizo, Dan Witzner Hansen,

Claus Brabrand, Andrzej Wasowski

IT University of Copenhagen, Denmark

Email: {jeanmelo, fabn, witzner, brabrand, wasowski} @itu.dk

Abstract—Preprocessor directives (#ifdefs) are often used to
implement compile-time variability, despite the critique that they
increase complexity, hamper maintainability, and impair code
comprehensibility. Previous studies have shown that the time of
bug finding increases linearly with variability. However, little
is known about the cognitive process of debugging programs
with variability. We carry out an experiment to understand how
developers debug programs with variability. We ask developers
to debug programs with and without variability, while recording
their eye movements using an eye tracker.

The results indicate that debugging time increases for code
fragments containing variability. Interestingly, debugging time
also seems to increase for code fragments without variability
in the proximity of fragments that do contain variability. The
presence of variability correlates with increase in the number
of gaze transitions between definitions and usages for fields and
methods. Variability also appears to prolong the “initial scan” of
the entire program that most developers initiate debugging with.

Keywords-Variability, Preprocessors, Debugging, Eye Tracking,
Highly-Configurable Systems

I. INTRODUCTION

Many modern software systems are highly configurable. They
embrace variability to increase adaptability, to extend porta-
bility across different hardware, and to lower cost. Highly-
configurable systems include both large industrial product
lines [1], [2], [3] and open-source systems. In some cases,
such as the LINUX kernel, thousands of configuration options
(features) controling the compilation process are used [4].
Although bringing important benefits, variability also comes
at a cost. It makes reasoning about programs more difficult [5].
As a consequence configuration-dependent (variability) bugs
appear [6], [7]. Previous studies [5], [8] have shown that
debugging is hard and time consuming in the presence of
variability. Specifically, our prior study [5] revealed that the
time it takes developers to find a bug increases linearly with
the number of features, while the ability to actually find the
bug is relatively independent of variability. Also, identifying
the exact set of configurations in which a bug manifests itself
appears to be difficult already for a low number of features.
These prior studies focus on quantitative questions only,
analyzing debugging time and correctness. There is little
evidence in the literature on how developers debug programs
with variability. In this paper, we describe an eye-tracking
experiment with follow-up interviews to study more precisely
how developers approach and debug programs with variability.
We use simplified versions of real buggy programs taken from

978-1-5386-0535-6/17 $31.00 © 2017 IEEE
DOI 10.1109/ICPC.2017.34

34

two highly-configurable systems: BUSYBOX and BESTLAP.
While the developers debug program versions with and without
variability, we record their eye movements using an eye-
tracking device.

Eye movement data constitute a continuous, non-interruptive
process measure that can proxy for ongoing mental processes
and human activities. Eye movements are intimately linked
to the allocation of attention and can be guided by low-
level and high-level factors (e.g., [9]). The most commonly
studied aspects of eye movement behavior are saccades and
fixations, but several additional specialized eye movements
that provide different information also exist. Which features
attract attention is subject to continued debate and research [9].
Eye tracking has a wide variety of applications outside code
comprehension studies. It has been used for medical diagnosis
(e.g., Alzheimer’s), communication tool for people with severe
disability and measures of workload, fatigue and stress levels
(101, [91.

Source code comprehension is a multi-level process that
involves visual processing, as well as mental encoding and
representing the program’s source code [11], [12], [13]. Pro-
gramming involves a series of tasks but with two processes
common to all: reading the code (chunking) and searching
through the code (tracing). In practice, programmers rarely
chunk every statement in a program but the programmer
searches for task specific relevant code [11], [13], [14], [15].
Analyzing what the programmer looks at while programming
can be monitored through an eye tracker. Eye tracking is used
to monitor the eye movements and estimate where the subject
is looking (e.g., on a screen) and is typically based on one or
more cameras observing the users’ eyes [10].

In our study we find that:

o Variability increases debugging time of code fragments

that contain variability.

o Debugging time also seems to increase for code fragments
without variability in the proximity of fragments that do
contain variability.

o Variability makes the number of gaze transitions (also
known as saccades) grow between definition-usages for
fields and call-returns for methods.

« Most developers initiate debugging with an “initial scan”
of the program from the first line down to the last, indepen-
dent of variability. However, variability seems to prolong
this “initial scan” of the program disproportionately.

o Developers appear to debug programs with variabil-

140

1 | import java.util.Random;

2

3 | public class Http {

4 String subject = null;

5 int totalLength = 600;

6 final int HTTP_UNAUTHORIZED = 401;

7 final int HTTP_NOT_IMPLEMENTED = 501;

8 boolean LARGE_FORMAT = false;

9 String REQUEST_GET = "GET";

10

11

12 public void sendHeaders (int responseNum) {
13 if (LARGE_FORMAT) {

14 int buf = 0;

15 buf = totalLength - responseNum;
16 subject = "response header";

17 }

18 if (subject.isEmpty())

19 subject = "Void response";

20 System.out.println("done");

21 }

22

23 private void handleIncoming (String requestType) {
24

25 boolean http_unauthorized = new Random() .nextBoolean();
26 if (http_unauthorized)

27 sendHeaders (HTTP_UNAUTHORIZED) ;

28

29

30 if (!requestType.equals (REQUEST_GET))
31 sendHeaders (HTTP_NOT_ IMPLEMENTED) ;
32

33 }

34

35 public static void main(String[] args) {
36 Http http = new Http();

37 http.handleIncoming ("POST") ;

38 }

39 }

(a) Without variability.

1 | import java.util.Random;

2

3 | public class Http {

4 String subject = null;

s int totalLength = 600;

6 final int HTTP_UNAUTHORIZED = 401;

7 final int HTTP_NOT_IMPLEMENTED = 501;

8 #ifdef CONFIG_FEATURE_HTTPD_CGI

9 String REQUEST_GET = "GET";

10 #endif

11

12 public void sendHeaders(int responseNum) {
13 #ifdef CONFIG_LFS

14 int buf = 0;

15 buf = totallength - responseNum;

16 subject = "response header";

17 #endif

18 if (subject.isEmpty())

19 subject = "Void response";

20 System.out.println("done");

21 }

22

23 private void handleIncoming(String requestType) {
24 #ifdef CONFIG_FEATURE_HTTPD BASIC_AUTH
25 boolean http_unauthorized = new Random() .nextBoolean();
26 if (http_unauthorized)

27 sendHeaders (HTTP_UNAUTHORIZED) ;

28 #endif

29 #ifdef CONFIG_FEATURE_HTTPD_CGI

30 if (!requestType.equals (REQUEST GET))
31 sendHeaders (HTTP_NOT IMPLEMENTED) ;
32 #endif

33 }

34

35 public static void main(String[] args) {
36 Http http = new Http();

37 http.handleIncoming ("POST") ;

38 }

39 |1

(b) With variability.

Fig. 1: Program P without and with variability.

ity by considering either one configuration at a time
(consecutively) or all configurations at the same time
(simultaneously).

We hope that our findings will help designers of debugging and
developer support tools, and inspire more research to further
investigate the interplay between debugging and variability.

II. MOTIVATING EXAMPLE

Developers of highly-configurable systems often use the C
preprocessor (CPP) to implement compile-time variability using
conditional compilation directives (#ifdefs)[16], [17]. For this
reason, we examine the impact of variability on debugging in
the context of CPP.

Configurable software systems are challenging for developers
because code fragments may be conditionally included or
excluded depending on whether particular features are enabled
or disabled. This means that developers need to reason about
several different configurations (versions of the program), each
with different data- and control-flow in order to understand a
program with variability. This impacts debugging. In programs
with variability, some errors occur conditionally, only in certain
erroneous configurations (i.e., when certain combinations of
features are enabled/disabled).

Previous studies have demonstrated that debugging is overall
difficult and time consuming in the presence of variability [5],
[8]. In this paper, we use eye tracking to study more precisely
how developers debug programs with variability. We ran a
classic “find the bug” experiment using programs containing
exactly one error and then compare how the developers look

141

35

at a program with variability against a version of it without
variability (as a baseline).

Figure 1 presents a code scenario extracted from BUSYBOX
which is an open-source highly-configurable system with about
600 features that provides several essential Unix tools in a
single executable file. We have adapted the extracted example
from C to JAVA to widen the audience of potential participants
for our experiment.

Figure 1a shows the version of this program without vari-
ability derived from the original version with variability shown
in Fig. 1b. The program contains an error in line 18 where
evaluation of the expression subject.isEmpty() causes a
null-pointer exception because subject has the value null.
The entry point main calls handleIncoming in line 37 which,
in turn, calls sendHeaders in line 27. This method then
skips past the statements in lines 14—16 because the variable
LARGE FORMAT has the value false (line 8). Hence, when we
reach line 18, the variable subject has never been assigned a
proper value aside from its initialization to null in line 4.

Figure 1b depicts the original version of the program with
variability. Notice that the program now contains three so-
called features: LFS, AUTH, and CGI (names abbreviated). Each
of these three features can be designated as either enabled or
disabled. Features are used in conditional compilation directives
(#ifdefs), which control whether to include or exclude code
before compilation, depending on whether features are enabled
or disabled. For instance, the fragment in lines 14-16 (wrapped
in an #ifdef and #endif in lines 13 and 17) is to be included
in the code if LFS is enabled; and excluded if LFS is disabled.
Since n features yield 2™ distinct configurations, our variability

program with three features then comes in eight (2%) distinct
configurations, each corresponding to a different version of the
program.

The null-pointer exception from before now only appears in
specific configurations: whenever we disable the feature LFS as
well as enable either AUTH or CGI. The exception thus occurs
in exactly three (out of eight) configurations. The error no
longer occurs if we, for instance, enable LFS; then subject is
indeed assigned a non-null value in line 16. Also, if we do not
enable either AUTH or CGI, sendHeaders is no longer invoked
in line 27 or 31. The developer must thus somehow consider all
configurations when debugging a variability program. Further,
for a program with variability it is not enough to simply
find an error in some configuration. In order to fix a bug,
a developer must thus not only identify the error, but also
correctly identify the exact set of erroneous configurations
(combinations of feature enablings/disablings). If the developer
gets the configurations wrong, the bug may only be partially
fixed. Clearly, this is a difficult task. Combinatorial problems
are notoriously difficult.

For these reasons, a developer has to be highly alert and
conscious of the features and #ifdefs in the code. Previous
work has demonstrated to what extent variability complicates
debugging. In this paper, we consider how variability impacts
debugging.

III. EXPERIMENT

We have designed a controlled experiment based on eye
tracking to investigate and compare how developers debug
programs with versus without variability. We will now explain
our experimental design and setup.

A. Objective

The experiment aims to investigate the effect of variability
on debugging. In other words, we want to understand how
developers debug programs with variability in comparison with
ordinary programs. Specifically, we aim to answer the following
research question:

RQ: How do developers debug programs with
variability?

To respond to this question, we perform several so-called “find
the bug” experiments [18] with an eye tracker and analyze
how developers go about finding the bug. We are particularly
interested in the impact of variability on bug finding from the
developer’s perspective.

B. Treatments

We expose each participant to programs with and without
variability, while controlling for noise factors such as learning
effect, developer competence, and program complexity. First,
we establish programs without variability (i.e., simple programs)
as a baseline. Then, we consider programs with variability
containing three features (eight configurations).

36

C. Participants

We performed the experiment with N=20 participants: seven
undergraduate students, one M.Sc. student, seven Ph.D. students,
and five post-docs. All participants had programming experi-
ence, especially in JAVA, and around half of the participants
had industrial experience ranging from a few months to several
years. All subjects were informed that they were free to stop
participating at any time, but no one elected to do so.

D. Programs

For the robustness of our experiment—in order to minimize
risks of specific effects from a particular program and bug
type—we took two programs with different kinds of errors. We
based our programs on real variability errors from two highly-
configurable systems: BUSYBOX and BESTLAP, taken from
previous research [6], [19]. These are qualitatively different
systems in terms of size, architecture, purpose, variability, and
complexity. BUSYBOX is an open-source highly-configurable
system with 204 KLOC and about 600 features, that pro-
vides several essential Unix tools in a single executable file.
BESTLAP is a commercial highly-configurable race game with
about 15 KLOC. The kinds of errors we consider are also
different: a null-pointer dereference and an assertion violation.
We simplified the error in each system down to an erroneous
program that would fit on a screen without scrolling (about 40
lines) yet involve exactly three features.

Bug description of P: The program has two methods
to handle incoming HTTP requests and to send headers (see
Fig. 1). As previously explained, the program provokes a null-
pointer exception in certain configurations. In debugging this
program, the developer needs to identify that the variable
subject is dereferenced with value null, in exactly three
(out of eight) configurations. The method sendHeaders is
invoked in line 27 (if AUTH is enabled) or in line 31 (if CGI
is enabled); the variable subject will be null whenever the
feature CONFIG_LFS is disabled.

Bug description of Q: The program originates from a
commercial race game. It has one main method responsible for
computing a score, as can be seen in the online appendix.! The
car racing game calculates lap times and assesses qualification
for so-called pole position. According to a user requirement,
the game should add a penalty when the car crashes. This
means that the score can also be negative. However, the
method setScore() contains a condition prohibiting negative
scores. We encode the requirement using assertions. To
identify the bug, the developer should somehow see that the
variable totalScore is always equal to zero after setScore()
computation, when passing negative values to the method. This
error is revealed through an assertion violation in the code
(line 31) whenever the features ARENA and NEGATIVE SCORE
are both enabled, which occurs in exactly two configurations.

Figure 2 lists several characteristics of our benchmark
programs. Figure 2a depicts the basic characteristics of the

Uhttp://itu.dk/people/jeam/code- gaze-experiment/

142

Prg _ Origin Filename Bug type LOC #mih
P BusyBox http.c Null-pointer 2 3
dereference
Q BESTLAP GameScreen.java Assertion 41 4
violation

(a) Basic characteristics.

Prg #features Scattering Tangling VCC
P 3 4 8 9
Q 3 9 15 14

(b) Variability characteristics.

Fig. 2: Characteristics of our benchmark programs: P and Q.

Program 1 Program 2
Developer 1 without with
P variability | variability
with without
Developer 2|\ ability | variability

Fig. 3: Latin Square (2x2).

programs: project, filename, bug type, number of lines of code,
and number of methods (including the main). Figure 2b lists the
variability characteristics of the programs with #ifdefs, such
as: number of features, feature scattering, feature tangling, and
variational cyclometric complexity (VCC). Feature scattering is
the number of #ifdef blocks throughout the entire program.
We put accumulated numbers for all features involved. For
example, P contains four #ifdef blocks. Feature tangling, in
turn, counts the number of switches between regular code and
feature code or between different features. VCC consists of the
cyclomatic complexity metric [20] (and counting two flows for
#ifdef statements).

The programs are similar in terms of size and the number
of features. The programs differ in terms of bug type and
their variability characteristics, but we control for this in the
experiment design, as described below.

E. Design

The two subject programs give rise to four debugging tasks: one
for each program with and without variability. However, in this
setup, we need to deal with two main constraints: First, every
developer must get each program once, otherwise there would
be a learning effect on subsequent attempts. Second, every
developer must get each treatment (with or without variability)
once, for a similar reason.

Abiding by these constraints, we use a standard Latin
Square design, which is a common solution for this kind of
experiment [21], [22], [23]. A Latin square ensures that no
row or column contains the same treatment twice. Figure 3
depicts a 2x2 Latin square applied to our context. The columns
are labelled with two programs (Program 1 and Program 2).
The rows are labelled with two developers (Developer 1 and
Developer 2). The four squares in the center contain the
two treatments (with and without variability). Therefore, each
developer debugs two different programs, each at a different
variability degree, according to her row.

Finally, we randomly assign participants, treatments, and
programs into the Latin squares. The result is the same number

143

37

of data points for all debugging tasks, without compromising
control over the confounding factors such as developer com-
petence or program complexity. For N=20 participants, each
performing two out of four debugging tasks, we get exactly
10 data points for each of the four tasks. Technically, our
experiment is a within-group design in which all participants
are exposed to every treatment.

FE. Procedure

Before the actual experiment, we executed a pilot study with
a few local students to test our experiment design and the
eye tracking setup. We do not consider the results of the pilot
study in our analysis. Based on the pilot study, we optimized
mostly the alignment of the programs on the screen for the
eye tracker.

The entire experiment consists of five phases: (1) tutorial, (2)
warm-up, (3) questionnaire, (4) debugging, and (5) interview.
First, when a subject enters the room, we present a tutorial on
variability explaining the concepts of features, configurations,
and variability. Second, we demonstrate the nature of the tasks
and questions through a small warm-up task. Third, we ask
the participant to fill in a self-assessment questionnaire about
her programming background and experience with JAVA and
#ifdefs. Fourth, we run the actual debugging experiment using
an eye tracker. We use the randomly generated Latin squares to
create a fask description sheet detailing the order of the tasks
for a participant. We also run the personal calibration procedure
right before the tasks. Then, the participant performs the “find
the bug” debugging task for each treatment, in order. Fifth, once
a developer finishes the tasks, we conduct a semi-structured
interview to get qualitative feedback on how the participant
approached the debugging tasks, especially the program with
variability. We ask three questions: (i) How did you go about
finding the bug? (ii) What were the difficulties? and (iii) How
could you fix the bug?

All task description sheets contain instructions and questions
that every participant should answer (see the online appendix
for an example). We ensure that each program fits onto a
single screen to avoid participants scrolling up and down,
which would significantly complicate getting the eye tracking
data. In other words, we provided the participants with only
a static screen (i.e., no IDEs, no tools, no navigation) and
the task description sheets on paper. For each participant, we
recorded timestamps, the duration of each debugging task, as
well as x and y coordinates (fixations) via the eye tracker.

To avoid unintended effects from different software and
hardware environments, we executed all experiments on a 64-bit

import java.util.Random;

IZED = 401;
EMENTED = 501;

48

private void haﬁ/g] 5/4’5(5:unq requestType) (
#1£def CONF H
Sooitan MEh Histah

if (hi§p, i

IRE HT{Ep. BASTG AUT
RIS " neremnos

S 15

i
oA X

14 c"?f e A Gl cen)
i degrdes. ;
G J«ZQMPWTED};

public static\void main(String[] args) {

AT T

Fig. 4: Fixation sequence: sequence of all fixations from one
developer as a “connect-the-dots” visualization.

Windows®8.1 machine, Intel®Core”™ i5 CPU running at 2.5
GHz with 8 GB memory. Also, all experiments were conducted
in the same room (quiet location). We recorded all of the eye
tracking data using the open-source tool OGAMA.? In the
experiment, we used the Tobii EyeX Controller integrated into
the Eyelnfo Framework.? Together they had a radial accuracy
error of < 0.4 degrees which translates to a mere 1.5 lines
of inaccuracy on the screen. We discuss implications of this
inaccuracy in Sect. V.

We eliminated the data from two subjects because of the
eye tracker malfunction occurring during the experiment. The
N=20 subjects include only the valid data points. We discuss
this issue in Section V. No other deviations happened.

IV. RESULTS & DISCUSSION

We now present the results of the experiment and discuss the
implications. We make five observations on how developers
debug programs with variability. We begin with presenting
our framework of abstractions to simplify data analysis. Then,
we address the research question and discuss the findings. All
materials of the experiment are available at:

http://itu.dk/people/jeam/code- gaze-experiment/

A. Abstractions for data analysis

Figure 4 displays a scan path registered for a single developer
as a sequence of all gaze fixations during a debugging task. For
each participant, the eye tracker records a set of triples: x and
y coordinates over time ¢. The raw data enables us to draw the
fixation sequence of Fig.4, a “connect-the-dots” visualization,
not particularly helpful for a big set of data of more than one
subject. Since the diagram is difficult to understand, we use a
range of abstractions (Fig. 5) to ease the data interpretation. We
use additional three abstractions besides the fixation sequence,
obtained by simplifying away selected dimensions: heat maps,
gaze transitions, and areas of interest (AOI).

2http://www.ogama.net/
3http://eyeinfo.itu.dk/

38

abstract

x-eoonﬁma\
[£w)]
/ I

abstract visualize
time

—
abstract Il
time visualize

- i
(@)}
Il

visualize abstract

\U/ X-coardinarf\ / U/
)
I
visualize
A

areas of interest

Fig. 5: Overview of abstractions for data analysis.

Heat Map: First, we marginalize the data over time which
gives us a multi-set of timeless (z,y) pairs. We convert this
to a histogram, telling us for each screen location, how much
fixation time it attracted. The two-dimensional histogram can
be visualized as a so-called heat map—using colors to represent
the value of time for each location on the screen. An example
is shown in Fig. 6. The lowest value in the heat map (lowest
fixation time) is shown using the purple color and the highest
value is red (long fixation time), with a smooth transition
between these extremes.

Gaze Transition (a.k.a. Saccade): We can abstract the
z-coordinate away, obtaining a set of (y, f) pairs, from which,
we are able to generate a timeline of how the participants
read programs vertically—the gaze transitions graphs. In our
gaze transition graph (cf. Fig. 11) the y-coordinate is translated
to line numbers in code and plotted as a function of time in
seconds. The gaze transition graph shows where exactly in the
program the participant’s gaze is at in the corresponding time.

Areas of Interest: The last abstraction is a combination
of the previous two—we abstract away both the horizontal
coordinate and time. We end up with a histogram over y-
coordinates (see Fig.8 for an example). This abstraction is
primarily useful for displaying the number of fixations related
to given areas of interest (AOI). An AOI is a region of interest
in a study. In our study, we define the areas of interest with
the AOI editor in OGAMA following the guidelines provided
by Holmgvist et al. [24]. Consequently, once we have the set
of y-coordinates and the AOIs defined, we are able to visualize
the percentage/amount of fixations from each participant via a
table or a bar chart.

An observant reader will notice that we ignored another
natural abstraction—marginalizing over the y-coordinate. Ab-
stracting the y-coordinate is not relevant for this study, as we
are not interested in how subjects approach lines horizontally
(how they read within a line).

We now return to discussion our research question.

144

(a) Without variability.

(b) With variability.

Fig. 6: Aggregated heat maps for the program P.

Program P Program Q
without variability || 53 min 5 min
with variability || 101 min | 10 min

Fig. 7: Average total debugging times in our experiment.

B. How do developers debug programs with variability?

Previous work has demonstrated that debugging time increases
with variability; in fact, the increase appears to be linear in
the number of features [5]. Figure 7 shows the average total
debugging time for each of the two programs P and Q, without

variability (zero features) vs. with variability (three features).

For both programs, the average total debugging time goes up
from roughly five to fen minutes when the programs involve
variability; i.e., the debugging time is doubled.

Using the eye tracking data we can investigate deeper where
developers are spending all this extra debugging time. Based
on our eye-tracking experiment, we made five observations:

OBSERVATION 1: Variability appears to increase
debugging time of the areas of the program that
contain variability.

Figure 6 shows the aggregated heat maps for the program P
without variability (to the left) versus with variability (to the
right). Aggregated heat maps are produced by first normalizing
(with respect to time) and then superimposing all individual

145

39

heat maps such that contributions from each developer will
be accounted for equally. (Since we have N=20 participants,
each aggregated heat map is derived from ten individual heat
maps.) Aggregated heat maps give an overall picture of the
focus of the developers; i.e., how much they were looking at
each part of the program, on average. Importantly, in contrast
to Figure 7 that considers absolute time, Figure 6 considers
relative time: how attention is distributed among the program
parts.

The hot spots (red regions) indicate areas where most of
the attention was directed. Not surprisingly, most attention
was awarded to the method containing the bug, sendHeaders
(specifically, lines 12 to 18). Recall that the bug was in line 18
where the condition subject.isEmpty() produces a null-
pointer exception since the variable subject has the value
null. (In the case with variability, this happens in certain
configurations.*) Overall, the red regions appear quite similar.
Without variability, developers dedicate 12% of all fixations to
this area (752 out of 6,355). With variability, the dedication to
this area is comparable in relative terms with 15% fixations
(although using more fixations in absolute terms: 1,249 out
of 8,339). The Kullback-Leibler Divergence test confirms that
the similarity between the two hot spots is highly significant
(divergence value = 0.05, in a scale [0,1]). We observe the
same phenomenon for the hot spots in the other program Q
(divergence value = 0.07).

Figure 8 details the total time spent looking at each of the
four designated areas of interest of the program: the field

“The bug occurs when LFS is disabled and either AUTH or CGI is enabled;
ie., SLFS A (AUTH V CGI).

Fig. 8: Average debugging time for four areas of interest
of the program P without vs. with variability.

5]
// 'b/ \

f gy 3 2T
M.H

"1.,;_ T ,v;.[
. R

(a) Without variability.

area of interest variability increase sub-area of interest variability increase

lines | area without | with factor lines | sub-area without | with factor
4-9 fields 26 s 58 s 22X P:12-17 | - with variability 38's 77 s 2.0 x
12-21 sendHeaders 63 s 120 s 19 x P:18-21 - without variability 25s 43 s 1.7 x
23-33 | handleIncoming 56 s 98 s 1.8 x > sendHeaders L B 1
35-38 | main 82 s 33 s 0.7 x Q:18-20 | - without variability 24's 45's 1.9 x
) 17 T 153 < 781 < 13 Q:21-33 | - with variability 48 s 130 s 2.7 x

all four areas S 5 X P gc_computelLevelScore 72's 175 s 24 x

Fig. 9: Average debugging time for fragments without
variability in proximity of fragments with variability.

SN §
// 4EF vCA » U?E.Z \
B e O i

1.0, v.u 3.1

(b) With variability.

Fig. 10: Average number of gaze transitions (eye switches) between the differents elements of program P.

declarations (lines 4-9); the method sendHeaders (lines 12—
21); handleIncoming (lines 23-33); and main (lines 35-38).
For instance, the attention devoted to the method sendHeaders
goes up from about a minute (63 seconds) to two minutes (120
seconds) in the presence of variability; i.e., an increase factor
of 1.9 (almost twice as much attention). Overall, it appears that
the extra (roughly double) debugging time is spent on all areas
of the program that involve variability: the field declarations
and the two methods sendHeaders and handleIncoming all
double debugging time. In contrast, no extra time is spent on
main that does not involve variability. In fact, attention to this
area appears to drop slightly in the presence of variability.

Please note that the attention awarded to the four areas
of interest (last line in Figure 8) does not add up to the
total debugging time of Figure 7. This is because the four
elements do not cover everything (e.g., imports, blank lines,
class definitions, and even areas beyond the screen), gaze
transitions (rapid eye movements) are not accounted for in
Figure 8, and the total debugging time also involves answering
questions about the bugs on a sheet of paper (i.e., not looking
at the screen).

OBSERVATION 2: Debugging time also increases for
code fragments without variability in proximity of
code fragments that do contain variability.

Consider the body of the sendHeaders method in program P
with variability (cf.Fig. 6b). We see that it consists of a code
fragment with variability (lines 13-17) followed by a fragment
without variability (lines 18-20). A similar phenomenon occurs
in program Q in the function gc_computelLevelScore, where

40

the top part (lines 18-20) does not contain variability followed
by a fragment (lines 21-33) with variability.

Designating these as our sub-areas of interest, we can thus
zoom in and study the impact of code fragments with variability
on code fragments without variability within the same method.

Figure 9 splits these two methods into their sub-areas of
interest with vs. without variability. The sub-areas without
variability “in proximity” of variability are shown in bold
face. Variability appears to be “contagious” along the flow of
control, within a method. Even though lines (18-21) in P do
not have variability, they go from 25 seconds to 43 seconds to
debug in the presence of variability (i.e., debugging takes 1.7
times longer). Similarly, for lines 18-20 in Q; they go from 24
seconds to 45 seconds (i.e., debugging takes 1.9 times longer).

We hypothesize that this is because the developers are
considering different configurations while debugging (more
on this in OBSERVATION 5 later).

OBSERVATION 3: Variability appears to increase the
number of gaze transitions between definition-usages
for fields and call-returns for methods.

Figure 10 depicts the average number of gaze transitions
between the four previously introduced areas of interest.
Without variability there are, for instance, on average 8.6
navigations from handleIncoming to sendHeaders and 9.1
back again (see Fig. 10a). Navigations between two methods are
annotated with call and return according to invocations in the
program (e.g., sendHeaders is called from handleIncoming
in line 27 and 31). The gaze transition diagrams confirm that the
eye movements proceed along method invocations. Similarly,

146

f T T T T T T T T T
0.0min 0.5min 1.0min 1.5min 2.0min 2.5min 3.0min 3.5min 4.0min 4.5min 5.0 min

Fig. 11: Gaze transition diagram with initial scan.

method-to-field navigations are annotated with def and use as
developers navigate from a field variable usage to its definition
and back again to the use. For instance, we see on average 8.6
navigations from sendHeaders to the fields area of interest
(def) and exactly the same number going back again to the
usage within the method (use).

With variability, all gaze transitions out of methods contain-
ing variability increase significantly (cf. Figure 10b compared
to Figure 10a). The method-to-method navigation along call-
return from handleIncoming to sendHeaders goes up to 15
and 13 (from 8.6 and 9.1). For method-to-field, the (def-use)
navigations out of sendHeaders, for instance, goes up to 13
and 14 (from 8.6 and 8.6). For navigations out of the method
main that does not contain any variability (shown as dotted
gray edges), we see little change.

Thus, the participants made significantly more gaze transi-
tions in the presence of variability. Again, we hypothesize that
developers are exploring and re-exploring different configura-
tions while debugging (cf. OBSERVATION 5).

OBSERVATION 4: Variability appears to prolong the
“initial scan” of the program (first line to last line)
that most developers initiate debugging with.

Previous work has reported that when performing static code
review of program (without variability), reviewers initially
perform a preliminary reading of the code, known as a
scan, whereby a reviewer will “read the entire code before
investigating the details [..]” [25]. Similarly, when debugging
programs (without variability), developers perform a “first scan
followed by several rounds of navigation” [26].

Not surprisingly, for debugging programs with variability, we
also see this initial scan. Figure 11 illustrates a gaze transition
diagram of the first five minutes of a participant debugging
P with variability. The diagram shows the y-coordinate the
developer is looking at as a function of time. The top of the
diagram corresponds to the first line (line 1) and the bottom
to the last line of the program (line 39). We have highlighted
the initial scan which, in this case, lasted for one minute.

This is supported by the post-experiment interviews: “I took
a global look first from top to bottom and then I started from
the main” (one developer); “First, I started reading from the
top and double checking the fields and methods” (another one).

Without variability, 7 out of 10 developers performed an
initial scan within half a minute (32 seconds) on average. With
variability, 8 out of 10 developers scanned initially and it
took an average of 51 seconds. Obviously, scanning a larger

147

41

R T

25min 3.0min 3.5min 40min 45min 5.0min 55min 6.0min 6.5min 7.0min 7.5min

Fig. 12: Gaze transition diagram for a developer using a
consecutive strategy and repeatedly considering a method
(highlighted in black).

program will take longer time. Because of the conditional
compilation directives (i.e., the #ifdef and #endif directives),
the programs with variability are slightly larger. In fact, they
contain 14% more characters. However, this does not account
for the 65% increase in debugging time (from 32 to 51 seconds).

OBSERVATION 5: Developers appear to debug pro-
grams with variability by considering either one
configuration at a time (consecutively) or all config-
urations at the same time (simultaneously).

The interviews give some qualitative insights into how the
subjects debug programs with variability. Most participants
complained that they had trouble finding the bug in the
presence of variability. One subject explains that he is using
a consecutive strategy by considering one configuration at a
time: “I began with all features enabled, then I removed one-
by-one.” Along the same lines, another explains: “After I get
a good understanding of the code, I started to enable/disable
features one at a time to see if the bug appears.” This approach
manifests itself on his gaze transition diagram which contains
repetitions corresponding to the method sendHeaders with
variability (cf. Figure 12).

Another subject claims to adopt a simultaneous strategy by
considering all configurations at the same time: “I tried to
keep track of everything by compiling every combination in
mind.” The two strategies are also well-known in automated
program analysis of programs with variability [27].

Independent of strategies, all developers agreed that debug-
ging programs without variability required much less effort.
This finding aligns with the study of Medeiros et al.[28] in
which they observed that bugs involving variability are easier
to introduce and harder to debug and fix than ordinary bugs.

C. Discussion: Implications of our Results

Our results confirm previous hypotheses [5], regarding the
accuracy of debugging programs with variability:

CONFIRMATION: Most developers correctly identify
bugs in programs with variability; however, many
developers fail to identify exactly the set of erroneous
configurations (already for 3 features).

This is also consistent with previous research reporting that
developers admit that when fixing programs with variability,
they “check only a few configurations of the source code” [28].

Observation 3 (above) stated that developers perform more
navigation in the presence of variability. Knowing that, we
encourage the programmers using variability to structure the
code in a way that minimize the distance between uses and
definitions of field variable declarations or between methods
calling each other, especially for those declarations and uses that
involve #ifdefs. At the same time, the builders of development
environments shall consider providing convenient ways to
navigate from uses to definitions and back again and along
call-returns for method invocations. An IDE equipped with
continual eye tracking could even automatically “pop up’
relevant definitions next to uses as they are being considered
by the developer. Clearly, as shown in our data, these pop-ups
might be more useful, in areas of code that involve variability
(so intensive variability could activate them).

Observations 1-3 indicate that it is worth to contain vari-
ability in as few methods as possible to keep other methods
variability free. Observation 2 hints that it is advantageous
to hoist code fragments without variability “in proximity” of
variability out of the method. For instance, in program P with
variability, lines 18-20 could be moved into a fresh method.

All observations 1-5 may indicate that there are potential
gains from projectional editing of program with variability.
Developers could work separately on particular configurations
(programs without variability) which would then be automati-
cally synchonized with the entire variability program (spanning
all configurations) [29]. This could be activated/suggested
automatically for programmers who work following the consec-
utive (brute-force) process, as this process can be presumably
detected automatically as multiple scans in the eye-tracking
data. Of course, we do not know to what extent, or whether
at all, these suggestions improve debugging programs with
variability. However, our findings do provide indications, that
these are the directions that might be worth exploring.

s

V. THREATS TO VALIDITY

A. Internal Validity

Selection bias: To minimize selection bias, we randomly
assigned our subjects into the Latin squares. Additionally, every
participant took all treatments (with and without variability) for
all subject programs. Therefore, we controlled the confounding
factors via Latin square design and randomization.

All participants voluntarily accepted to take part in the
experiment. We found no indications of participants performing
deliberately bad or exchanging information. However, we
eliminated the data points from two participants because the
eye tracker stopped tracking their eye movements during the
experiment. For this reason, we did not include them in our
data analysis. Thus, the N=20 participants represent only valid
data points.

Choice of lab setting: We executed the experiment N=20
times (i.e., one for each participant). All experiments were done
in the same room and with our supervision, avoiding extra
confounding factors. Since this is the first study of variability
debugging using eye-tracking, we opted for a controlled

42

experiment to understand how developers debug programs with
variability in lab conditions. We thus optimized for internal
validity rather than external validity and a real development
environment.

Choice of eye tracker: We used the Tobii EyeX Controller
integrated into the EyeInfo Framework for two reasons. First,
they are portable and easy to set up and install. Second and,
more importantly, they have a good accuracy. In fact, they
had a radial accuracy error of < 0.4 degrees only. This is
excellent since an accurate and reliable calibration is crucial
for eye-tracking studies and conclusions. This translates to an
inaccuracy of approximately 1.5 lines on the screen. For this
reason, we never considered areas of interest with less than
three lines of code.

Choice of language: In this experiment, we used the
JAVA programming language because we wanted to run
the experiment with several participants and JAVA is well-
known among students at our universities. All participants had
experience with JAVA, ranging from months to years, including
professionally. We chose bugs that are relatively independent
of programming language, i.e., they occur in programs written
in subset of C that is essentially shared with JAVA.

Choice of the number of features: We studied variability
up to three features in a program mainly because of timing.
Otherwise, the experiment would require much longer time,
discouraging and tiring participants. In fact, the participants
spent around 15 minutes to debug only the two programs (with
and without variability), on average. Additionally, there are
very few examples of bugs with higher number of features
than three in the literature [6], [30]. Thus, our study focused
on the range of variability that seems most relevant.

Program vs. variability complexity: Note that from this
experiment and its results, we do not know the origins of
the extra debugging effort entailed by variability, since we
did not focus on the difference between complex programs vs
variability programs. This would require another experiment
setup and, therefore, it is out of the scope of our study.

B. External Validity

Beyond preprocessors: Our experiment applies to a
particular technique for implementing variability: preprocessor
(#ifdefs). However, among a multitude of technologies that
can be used to implement configurable systems, the C preproces-
sor is one of the oldest, simplest, and most popular mechanisms
in use. Generalization to other variability techniques is not
intended, even though it might provide hints. Presumably, our
results do not translate to CIDE [16], which uses colors to
visualize #ifdef blocks, since the human visual system is
highly sensitive to colors [31].

Beyond university students: The experiment were done
predominantly with graduate students. All had JAVA pro-
gramming experience and several of them had industrial
experience. In addition, research has demonstrated that graduate
students make good proxies for industry developers [32]. This
contributes to representativity and generalization to “real-world”
industrial developers. We acknowledge though that more studies

148

are needed to further understand and confirm the presented
observations.

Beyond simple programs: The programs used in our
experiment are based on real variability bugs from real
highly-configurable systems (BUSYBOX and BESTLAP) and
previous research [6], [19], which minimize the risks of
studying artificial problems. Additionally, the programs were
qualitatively different (cf. Figure 2), and comprising of different
kinds of bugs. We thus believe that the results may transfer to
other smaller programs.

Beyond simple debugging tasks: We purposely designed
our debugging tasks to not require a long time and, conse-
quently, discouraging participants. In fact, the participants spent
around 15 minutes to debug the two programs, on average. So,
there may be additional effects, unaccounted for, when scaling
to longer debugging tasks.

Beyond lab settings: We made sure that each program fits
onto a single screen to avoid participants scrolling up and down.
We prepared all debugging tasks in slideshow manner using
OGAMA, a framework to analyze eye movements. We also did
not bold or highlight any code constructs in the programs in
order not to attract special attention and, consequently, favor
any particular code elements. In other words, no IDEs, no tools,
no navigation were provided to the participants; they only had
a static screen with the programs and task sheets (on paper).
Anything beyond that it is out of the scope for this paper.

Beyond three features: There are very few examples of
bugs with higher number of variability than 3 in the literature.
Medeiros et al. [30] found that 95% of undeclared/unused bugs
involve 0-3 features. Other research also found that variability
bugs predominantly involve 0-3 features [6]. For this reason,
we focused on this range that seems most relevant. However,
it would be interesting to investigate programs with higher
number of features.

VI. RELATED WORK

In a previous study, we have investigated the impact of
variability on bug finding in terms of time and accuracy [5].
However, our previous study focused only on quantitative
aspects of debugging, and not on how developers debug
programs with variability. Thus, to better account for the
effect of variability on debugging, we carried out this eye-
tracking experiment to actually “see” how developers approach
programs with variability, as shown in Section IV. To the best
of our knowledge, this is the first study of variability debugging
using eye tracking. A few other studies have used eye tracking
to study debugging and program comprehension in ordinary
programs (i.e., without variability).

Hansen et al. [33] used eye-tracking to investigate factors
that impact code comprehension. They found that even subtle
notation changes can have impact on performance, and that
notation can also make a simple program more difficult to
read.

Busjahn et al. [34] conducted eye-tracking studies on small
programs to investigate how programmers read code. They
found that the fixation durations increased when reading source

149

43

code in comparison with natural language text. Busjahn et
al. [35] also studied linearity and whether or not the linearity
effect in reading natural languages transfers to reading of source
code. They observed that expert programmers read code less
linearly than novices which, in turn, read code less linearly
than natural language text.

Rodeghero et al. [36] conducted an eye-tracking study of
ten JAVA programmers. They noticed that the programmers
looked more at a method’s signature than its body in order to
summarize it in plain English.

Siegmund et al. [37] conducted a controlled experiment with
17 programmers by applying functional magnetic resonance
imaging (fMRI) to measure program comprehension. They
found a distinct pattern active in five brain regions that are
thus deemed necessary for source code comprehension.

None of the these studies investigated debugging in the
presence of variability using an eye tracker. In other words,
variability was not in their focus. We, in turn, focused
on the interplay between debugging and variability from
the programmers’ perspective. We could draw a number of
qualitative conclusions (cf. Section IV). However, we believe
that further research using eye tracking on variability debugging
is important and required to confront our findings, and to draw
new ones.

VII. CONCLUSION

We have presented an experiment aimed at understanding how
developers debug code with variability implemented using
preprocessor directives. We observed that variability increases
debugging time for code fragments that contain variability
and for neighboring locations. Also, it appears that developers
navigate much more between definitions and uses of program
objects when interleaved with variability. This is presumably
caused by increased complexity of def-use relationships, or by
difficulties of maintaining all variants in short-term memory.
Variability prolongs the “initial scan” of the program that most
subjects initiate debugging with. We notice that developers
appear to debug programs with variability by using either a
consecutive or simultaneous approach.

Our results are consistent with those of prior studies to
the extent that they overlap. The new findings provide some
indications how code should be organized to minimize the
number of gaze transitions, and on what kind of tools could
aid debugging. Automatic tools showing definitions at usage
locations, could consider intensive variability as an indicator
that the definition is a more sought for information at a given
context. Also, possibly, projectional editing techniques can be
used to reduce the cognitive overload of variability, especially
for subjects using the consecutive approach.

Acknowledgements. We thank Thao for carrying out a pilot study
in connection with her Master’s Thesis. This work is supported
by Brazilian Science without Borders Programme, CNPq
grants no.249020/2013-0 and no. 229760/2013-9. Wasowski
is partially funded by The Danish Council for Independent
Research, Sapere Aude grant no.0602-02327B, VARIETE
project.

[1]
2

—

[3

=

[4

=

[10]

(1]
[12]

(13]

[14]

[15]

[16]

(171

(18]

(191

[20]

REFERENCES

P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering. Springer, 2005.

T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and
A. Wasowski, “Three cases of feature-based variability modeling
in industry,” in ACM/IEEE 17th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
2014. [Online]. Available: http://gsd.uwaterloo.ca/sites/default/files/
2014-models-vmstudy.pdf

T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A study
of variability models and languages in the systems software domain,”
Software Engineering, IEEE Transactions on, vol. 39, no. 12, pp. 1611-
1640, Dec 2013.

J. Melo, C. Brabrand, and A. Wasowski, “How does the degree
of variability affect bug finding?” in Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016, 2016, pp. 679—-690. [Online]. Available:
http://doi.acm.org/10.1145/2884781.288483 1

I. Abal, C. Brabrand, and A. Wasowski, “42 Variability Bugs in the Linux
Kernel: A Qualitative Analysis,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ser.
ASE ’14. New York, NY, USA: ACM, 2014, pp. 421-432. [Online].
Available: http://doi.acm.org/10.1145/2642937.2642990

J. Melo, E. Flesborg, C. Brabrand, and A. Wasowski, “A quantitative
analysis of variability warnings in linux,” in Proceedings of the Tenth
International Workshop on Variability Modelling of Software-intensive
Systems, ser. VaMoS *16. New York, NY, USA: ACM, 2016, pp. 3-8.
[Online]. Available: http://doi.acm.org/10.1145/2866614.2866615

S. Schulze, J. Liebig, J. Siegmund, and S. Apel, “Does the discipline
of preprocessor annotations matter?: A controlled experiment,” in
Proceedings of the 12th International Conference on Generative
Programming: Concepts & Experiences, ser. GPCE ’13. New
York, NY, USA: ACM, 2013, pp. 65-74. [Online]. Available:
http://doi.acm.org/10.1145/2517208.2517215

M. Land and B. Tatler, “Looking and acting: eye movements in everyday
life,” 2009.

D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of models
for eyes and gaze,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, no. 3, pp. 478-500, March 2010.

M. E. Crosby and J. Stelovsky, “How do we read algorithms? a case
study,” Computer, vol. 23, no. 1, pp. 25-35, 1990.

Y.-G. Guéhéneuc and P. Team, “A theory of program comprehension,”
2005.

R. Bednarik and J. Randolph, “Studying cognitive processes in computer
program comprehension,” in Passive Eye Monitoring. Springer, 2008,
pp- 373-386.

C. Parnin, “A cognitive neuroscience perspective on memory for
programming tasks,” Programming Interest Group, p. 27, 2010.

M. E. Hansen, A. Lumsdaine, and R. L. Goldstone, “Cognitive architec-
tures: A way forward for the psychology of programming,” in Proceedings
of the ACM international symposium on New ideas, new paradigms, and
reflections on programming and software. ACM, 2012, pp. 27-38.

C. Kistner, S. Apel, and M. Kuhlemann, “Granularity in Software Product
Lines,” in Proceedings of the 30th International Conference on Software
Engineering (ICSE). ACM, 2008, pp. 311-320.

J. Liebig, S. Apel, C. Lengauer, C. Kistner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,” in
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE). ACM, 2010, pp. 105-114.

P. W. Oman, C. R. Cook, and M. Nanja, “Effects of programming
experience in debugging semantic errors,” J. Syst. Softw., vol. 9, no. 3,
pp. 197-207, Mar. 1989. [Online]. Available: http://dx.doi.org/10.1016/
0164-1212(89)90040-X

M. Ribeiro, P. Borba, and C. Kistner, “Feature maintenance with
emergent interfaces,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 989-1000. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568289

T. J. McCabe, “A complexity measure,” [EEE Trans. Softw.
Eng., vol. 2, no. 4, pp. 308-320, Jul. 1976. [Online]. Available:
http://dx.doi.org/10.1109/TSE.1976.233837

44

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

R. A. Bailey, Design of comparative experiment.
Press, 2008.

G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters:
design, innovation, and discovery. Wiley-Interscience, 2005.

D. C. Montgomery, Design and Analysis of Experiments. John Wiley
& Sons, 2006.

K. Holmgqvist, M. Nystrom, R. Andersson, R. Dewhurst, H. Jarodzka,
and J. van de Weijer, Eye Tracking. A comprehensive guide
to methods and measures. Oxford University Press, 2011.
[Online]. Available: http://www.oup.com/us/catalog/general/subject/
Psychology/CognitivePsychology/CognitivePsychology/?view=usa&
#38;ci=9780199697083

H. Uwano, M. Nakamura, A. Monden, and K. ichi Matsumoto, “Ana-
lyzing individual performance of source code review using reviewers’
eye movement,” in in Proceedings of 2006 symposium on Eye tracking
research & applications (ETRA), 2006, pp. 133-140.

X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu, “Revisit of
automatic debugging via human focus-tracking analysis,” in Proceedings
of the 38th International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 808-819. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884834

C. Brabrand, M. Ribeiro, T. Tolédo, J. Winther, and P. Borba, “Intrapro-
cedural dataflow analysis for software product lines,” Transactions on
Aspect-Oriented Software Development X, 2013.

F. Medeiros, C. Kistner, M. Ribeiro, S. Nadi, and R. Gheyi, “The
love/hate relationship with the C preprocessor: An interview study,”
in Proceedings of the 29th European Conference on Object-Oriented
Programming (ECOOP), ser. Lecture Notes in Computer Science.
Berlin/Heidelberg: Springer-Verlag, 2015.

E. Walkingshaw and K. Ostermann, “Projectional editing of variational
software,” in Proceedings of the 2014 International Conference on
Generative Programming: Concepts and Experiences, ser. GPCE 2014.
New York, NY, USA: ACM, 2014, pp. 29-38. [Online]. Available:
http://doi.acm.org/10.1145/2658761.2658766

F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and R. Gheyi, “An
empirical study on configuration-related issues: Investigating undeclared
and unused identifiers,” in Proceedings of the 2015 ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences, ser. GPCE 2015. New York, NY, USA: ACM, 2015, pp.
35-44. [Online]. Available: http://doi.acm.org/10.1145/2814204.2814206
D. Moody, “The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering,” IEEE Trans.
Softw. Eng., vol. 35, no. 6, pp. 756-779, Nov. 2009. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2009.67

R. P. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers of user
evaluation in software engineering research,” ACM SIGPLAN Notices,
vol. 46, no. 10, pp. 643-656, October 2011.

M. Hansen, R. L. Goldstone, and A. Lumsdaine, “What makes code
hard to understand?” arXiv preprint arXiv:1304.5257, 2013.

T. Busjahn, C. Schulte, and A. Busjahn, “Analysis of code reading to
gain more insight in program comprehension,” in Proceedings of the
11th Koli Calling International Conference on Computing Education
Research, ser. Koli Calling *11. New York, NY, USA: ACM, 2011, pp.
1-9. [Online]. Available: http://doi.acm.org/10.1145/2094131.2094133
T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte,
B. Sharif, and S. Tamm, “Eye movements in code reading: Relaxing the
linear order,” in 2015 IEEE 23rd International Conference on Program
Comprehension, May 2015, pp. 255-265.

P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 390-401.

J. Siegmund, C. Kistner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding understanding source
code with functional magnetic resonance imaging,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 378-389. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568252

Cambridge University

150

Variability Bugs in Highly-Configurable
Systems: A Qualitative Analysis (Paper 2A)

Variability Bugs in Highly-Configurable Systems:
A Qualitative Analysis

lago Abal
iago@itu.dk

Claus Brabrand
brabrand@itu.dk

ABSTRACT

Variability-sensitive verification pursues effective analysis
of the exponentially many variants of a program family.
Several variability-aware techniques have been proposed, but
researchers still lack examples of concrete bugs induced by
variability, occurring in real large-scale systems. A collection
of real world bugs is needed to evaluate tool implementations
of variability-sensitive analyses by testing them on real bugs.
We present a qualitative study of 98 diverse variability bugs
(i.e., bugs that occur in some variants and not in others)
collected from bug-fixing commits in the Linux, Apache,
BusyBox, and Marlin repositories. We analyze each of the
bugs, and record the results in a database. For each bug,
we create a self-contained simplified version and a simplified
patch, in order to help researchers who are not experts on
these subject studies to understand them, so that they can
use these bugs for evaluation of their tools. In addition, we
provide single-function versions of the bugs, which are useful
for evaluating intra-procedural analyses. A web-based user
interface for the database allows to conveniently browse and
visualize the collection of bugs. Our study provides insights
into the nature and occurrence of variability bugs in four
highly-configurable systems implemented in C/C++, and
shows in what ways variability hinders comprehension and
the uncovering of software bugs.

CCS Concepts

e Software and its engineering — Software testing and
debugging; Preprocessors;

e Theory of computation — Program verification; Pro-
gram analysis

Keywords

Bugs; Feature Interactions; Linux; Software Variability.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

(© 2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642990.

~Jean Melo

jeanmelo@itu.dk
Marcio Ribeiro

marcio@ic.ufal.br

Stefan Stanciulescu
scas@itu.dk

Andrzej Wasowski
wasowski@itu.dk

Many software projects adopt variability to tailor develop-
ment of individual software products to particular market
niches [3]. Other software projects, such as the Linux kernel,
embrace variability and use configuration options known as
features [30] to tailor functional and non-functional proper-
ties to the needs of a particular user. Such systems are often
referred to as highly-configurable systems and can get very
large and encompass large sets of features. There exist re-
ports of industrial systems with thousands of features [7], and
extensive open-source examples are documented in detail [8].

Features in a configurable system interact in non-trivial
ways, in order to influence the functionality of each other.
Interestingly, bugs in configurable systems do not always
occur unconditionally, in all configurations. Bugs involving
one or more feature that have to be either enabled or disabled
in order for the bug to occur are known as variability bugs.
Importantly, variability bugs therefore occur only in certain
configurations and not in others. Some variability bugs
involve multiple (two or more) features each of which have
to be enabled, respectively, disabled in order for the bug to
occur; such bugs are known as feature-interaction bugs. A
bug in an individual configuration may be found by analyzers
based on standard program analysis techniques. However,
since the number of possible configurations is exponential
in the number of features, it is not feasible to analyze each
configuration separately.

Family-based analyses [56] tackle this problem by consid-
ering all configurable program variants as a single unit of
analysis, instead of analyzing the individual variants sepa-
rately. In order to avoid duplication of effort, common parts
are analyzed once and the analysis forks only at differences
between variants. Recently, various family-based extensions
of both classic static analysis [4, 9, 12, 19, 32, 35] and model
checking [5, 16, 17, 36, 26, 49] based techniques have been
developed.

Most of the research so far has focused on the inherent
scalability problem. However, we still lack evidence that
these extensions are adequate for specific purposes in real-
world scenarios. In particular, little effort has been put into
understanding what kind of bugs appear in highly config-
urable systems, and what are their variability characteristics.
Gaining such understanding would help to ground research
on variability-sensitive analyses in actual problems.

The understanding of the complexity of variability bugs is
not common among practitioners and in available artifacts.
While bug reports abound, there is little knowledge on how
those bugs are caused by feature interactions. Very often,
due to the complexities of a large project like Linux, and

152

the lack of variability-aware tool support, developers are not
entirely conscious of the features that affect the software
they work on. As a result, bugs appear and get fixed with
little or no indication of their variational program origins.
The objective of this work is to understand the complexity
and nature of variability bugs (including feature interaction
bugs) occurring in four highly configurable systems: Linux,
Apache, BusyBox, and Marlin. We address this objective
via a qualitative in-depth analysis and documentation of 98
cases of such bugs. We make the following contributions:

o Identification of 98 variability bugs in four highly config-
urable systems: Linuzx, Apache, BusyBox, and Marlin;
including in-depth analysis and presentation for non-
experts.

e A database with the results of our analysis, encompass-
ing a detailed data record about each bug. These bugs
comprise common types of errors in C software, and
cover different types of feature interactions. We intend
to grow the collection in the future with the help of
the research community. The database is available at:

http://VBDb.itu.dk/

o Self-contained simplified C99" versions of all bugs, in-
cluding single-function versions. These ease compre-
hension of the underlying causes, and can be used
for testing bug-finders in a smaller scale. The single-
function versions can be used to test intraprocedural
analyses.

o Simplified patch versions of the bugs. These patches
also help to understand the bugs and present ways of
fixing them in accordance with the bug-fixing commits.

e An aggregated reflection over the collection of bugs.
Providing insight on the nature of bugs induced by
feature interactions in four highly configurable systems.

We adopt a qualitative manual methodology of analysis for
the following reasons. Most importantly, searching for bugs
with tools only finds cases that these tools cover, while we
are interested in exploring the nature of variability bugs
widely. Tools are generally approximating and biased due to
undecidability of essentially all interesting questions about
programs. An automated bug hunt would be heavily biased
against a few kinds of bugs for which the tools were designed,
and for the cases of these bugs that they are able to handle.
Also, manual sampling from historical bugs avoided false-
positives that would pollute the data, had we used automatic
bug finding tools. Additionally, family-based bug-finders are
rare, experimental (only effective type checkers exist), and
not fast enough to extensively scan the long history of Linux
and similar systems. Sampling [39] is a good alternative,
however uniform sampling of valid configurations for large
systems (like the Linux kernel) is known to be difficult. This
would require investment in new research of applying and
evaluating PSAT-based solutions for the purpose, which,
while a fascinating research problem, was judged to be out of
scope for this work. Obviously, the manual sampling has not
been uniform either but helped to direct the work towards

199 is an informal name for ISO/IEC 9899:1999, a version
of the C programming language standard.
153

qualitative insights. It helped to increase the diversity of the
bugs covered, and in the process inspired us to generate much
more information about the bugs (simplified bugs, simplified
patches, etc).

Reflecting on the collected material, we learn that com-
plexity of variability bugs comprises the following aspects:
variability bugs involve many aspects of programming lan-
guage semantics, they are distributed in most parts of the
code bases, involve multiple features and span code in remote
locations. Detecting these bugs is difficult for both people
and tools. Once variability-sensitive analyses that are able
to capture these bugs are available, it will be interesting to
conduct extensive quantitative experiments to confirm our
qualitative intuitions.

We direct our work to designers of program analysis and
bug finding tools. We believe that all the knowledge con-
densed in our collection of variability bugs can inspire them
in several ways: (i) it will provide a set of concrete, well
described challenges for analyses, (ii) it will serve as a prelim-
inary benchmark for evaluating their tools, and (iii) it will
dramatically speed up design of new techniques, since they
can be tried on simplified project-independent bugs. Using
realistic bugs from a large piece of software in evaluation
can aid tuning the analysis precision, and incite designers to
support certain language constructs in the analysis.

We present basic background in Sect. 2. The methodology
is detailed in Sect. 3. Sections 4-6 describe the analysis: first
the considered dimensions, then the aggregate observations.
We finish surveying threats to validity (Sect.7), related work
(Sect. 8) and a conclusion (Sect.9).

2. BACKGROUND

We understand the term software bug broadly, as it is defined
by IEEE Standard Glossary of Software Engineering [55].
This includes any run-time crash, compiler warning or error,
and software weakness in the Common Weakness Enumera-
tion (CWE) taxonomy. Often, these bugs manifested as a
kernel panic (crash), or were spotted by the compiler (in the
form of a warning) when building a specific kernel configura-
tion. While some compiler warnings may appear harmless
(for instance an unused variable), they could be side-effects
of serious misconceptions that may lead to more serious
problems.

A feature is a unit of functionality additional to the core
software [15]. The core (base variant) implements the basic
functionality present in any variant of a program family. The
different selections of features (configurations) define the set
of program variants. Often, two features cannot be simul-
taneously enabled, or one feature requires enabling another.
Feature dependencies are specified using a feature model [30]
(or a decision model [27]), denoted here by 1ru; effectively a
constraint over features defining legal configurations.

Preprocessor-based program families [31] associate features
with macro symbols, and define their implementations as
statically conditional code guarded by constraints over fea-
ture symbols. The macro symbols associated to features
(configuration options) are often subject to naming conven-
tions, for instance, in Linux these identifiers are prefixed by
CONFIG_. We follow the Linux convention throughout this
paper. Figurel presents a tiny preprocessor-based C pro-
gram family using two features, INCR and DECR. Statements
at lines 10 and 13 are conditionally present. Assuming an

1| int printf(const char * format, ...);

2

3| void foo(int a) { —(5)
o4 printf("%d\n",2/a); // ERROR (6) x
5/ }

6

o7| int main(void) { // START =(1)
8 int x = 1; (2)
12 #ifdef CONFIG_DECR // ENABLED 1
13 x=x-1; (3)
14 #endif 4
15 foo(x); (4)—
16| }

Figure 1: Example of a program family with a vari-
ability bug. A division-by-zero error occurs in line
four whenever INCR is disabled and DECR is enabled.
The right column traces the statements involved
from (1) to (6).

unrestricted feature model (¢pm = true), the figure defines
a family of four different variants.

A presence condition ¢ of a code fragment is a minimal
(by the number of referred variables) Boolean formula over
features, specifying the subset of configurations in which the
code is included in the compilation. The concept of presence
condition extends naturally to other entities; for instance,
a presence condition for a bug specifies the subset of con-
figurations in which a bug occurs. Concrete configurations,
denoted by k, can also be written as Boolean constraints—
conjunctions of feature literals. A code fragment with pres-
ence condition ¢ is thus present in a configuration « iff k - ¢.
As an example, consider the decrement statement in line
13, which has presence condition DECR, thus it is part of
configurations ko = —INCR A DECR and x; = INCR A DECR.

Features can influence the functions offered by other fea-
tures—a phenomenon known as feature interaction, which
can be either intentional or unexpected. In our example, the
two features interact explicitly through the program variable
x which they both manipulate (read and write). Enabling
either INCR or DECR, or both, results in different values of x
prior to calling foo. In general, the presence condition of a
bug will implicitly tell us that features interact, but it does
not necessarily explicitly tell us how they interact.

As a result of variability, bugs can occur in some configu-
rations but not in others, and can also manifest differently in
different variants. If a bug occurs in one or more configura-
tions, and does not occur in at least one other configuration,
we call it a variability bug. Figure 1 shows how one of the pro-
gram variants in our example family, namely ko, will crash
at line 4 when we attempt to divide by zero. Because this
bug is not manifested in any other variant, it is a variability
bug—with presence condition —~INCR A DECR.

Program family implementations are usually conceptually
stratified in three layers: the problem space (typically a
feature model), a solution space implementation (e.g. C
code), and the mapping between the problem and solution
spaces (the build system and CPP in Linux). We show how
the division-by-zero bug of the example could be fixed in
each layer separately. We show changes to code in unified
diff format (diff -U0).

Fix in the Code

If function foo ought to accept any int value, then the bug
could be fixed by appropriately handling zero as input:
Q@ -4 +4,4 @
- printf("%d\n",2/a);
if (a !'= 0)
printf ("%d\n",2/a);
else

¥
¥
+
+ printf ("NaN\n");

Fix in the Mapping
If we assume that function foo should never be called with a
zero argument, a possible fix would be to decrement x only
whenever both DECR and INCR are enabled:

Q0 -12 +12 Q@

- #ifdef CONFIG_DECR
+ #if defined(CONFIG_DECR) && defined(CONFIG_INCR)

Fix in the Model

Finally, if the bug is deemed to be caused by an illegal
interaction, we can introduce a dependency in the feature
model to prevent the “faulty configuration”, k. For instance,
let DECR be only available when INCR is enabled. Assuming
feature model ¥ry = DECR — INCR forbids ko.

3. STUDY DESIGN

Our objective is to qualitatively understand the complexity
and nature of variability bugs (including feature-interaction
bugs) in open-source highly-configurable software systems.
This includes addressing the following research questions:

Research questions:

e RQ1: Are variability bugs limited to specific type of
bugs, features, or locations in the code base?

e RQ2: In what ways does variability affect bugs?

This paper relies on the initial findings of our exploratory case
study on variability bugs in Linux published previously [1].
That study followed an exploratory qualitative method, iden-
tifying what is possible to learn about diversity of variability
bugs using the case study method. It produced a method
design and a list of nine? initial observations based on the
analysis of 42 variability bugs. These observations explained
the answers to the research questions RQ1 and RQ2 for the
Linux kernel project, but they were hypotheses in as far as
other systems are considered. Methodologically, this paper
is a confirmatory study where we extend the previous ez-
ploratory study with three new systems and (in)validate the
previous hypotheses. In the end, we confirm all previous
observations from the original Linux-only study. This attests

*We merge observations 7 and 8 from [1] due to overlap.

Table 1: The four subject systems with size metrics
(as of December 2015).

System Domain LOC #Features #Commits
Marlin 3D-printer firmware 43 k 821 2,783
BusyBox UNIX utilities 176 k 551 13,878
Apache Web Server 195 k 681 27,677
Linux Operating system 14 M 16,490 521,276

154

to the stability and generalizability of our observations (more
on this later).

We extend the prior work by executing three independent
confirmatory case studies, replicating the same data collection
process and analysis for three new subjects that significantly
differ from Linux. The case studies are executed by three
new researchers on the project, and the original researcher
responsible for the case study only supervises adherence
to the method. This leads to extending the data sample
with 55 new bug analyses, all available in our bug database.
After collecting the data we check, whether the original
observations formulated for Linux still hold. It turns out that
we are able to confirm all the observations, thus observations
in discussion of RQ1 (Sect.5) and RQ2 (Sect. 6) are labeled
as CONFIRMED.

3.1 Subjects

We study four open-source highly-configurable systems: Linux,
Apache, BusyBox, and Marlin. Linux and BusyBox use
KCONFIG to model their configuration space, while the other
two do not have an established way of expressing their vari-
ability in a well-specified format. Crucially, all have bug data
including commits, developer comments and bug trackers
publicly available. They are qualitatively different highly con-
figurable systems: one small (Marlin), two medium (Apache
and BusyBox), and one large (Linux). They are also different
in terms of purpose, variability, and complexity. Besides that,
all have different architectures and developers, which allows
us to draw slightly broader conclusions.

Linux is likely the largest highly-configurable open-source
system in existence, with more than 14 million lines of code
and 16 thousand features. We have free access to the bug
tracker,® the source code and change history, and to pub-
lic discussions on the mailing list* (LKML) and other fo-
rums. There also exist books on Linux development [11,
38]—valuable resources when understanding a bug-fix. Ac-
cess to domain-specific knowledge is crucial for the qualitative
analysis.

Likewise, BusyBox is an open-source highly-configurable
system that provides several essential Unix tools (such as
1s, cp, and mkdir) in a single executable file. BusyBox has
more than 500 features and 176 KLOC. Compared to Linux,
BusyBox is a much smaller system: about 80 times less LOC
and 29 times less features.

Apache has been developed for over 20 years and is one of
the most used and popular web servers. It is written in C
and C++, consisting of almost 200 KLOC and 700 features.

Marlin is a firmware for 3D printers that is highly config-
urable, with 43 KLOC and around 800 features. The project
is written in C4++, is hosted on GitHub, and uses GitHub’s
issue tracker. Compared to the other three systems, Marlin
is a much newer (started in August 2011) and smaller project
(only 43 KLOC) mainly due to its focused domain.

Table 1 characterizes the subject systems by aggregating
the information about domain, lines of code, number of fea-
tures, and size of the commit history that we analyze. We
examine the entire history (not a specific version) of each
project up to December 2015, since our focus is on individual
bugs in whatever version of the project they happened to
reside. Throughout this paper, we count the lines of code

Shttps://bugzilla.kernel.org/
‘https://1kml.org/

155

(in any language) with CLOC® version 1.53, with the de-
fault options. For Linux and BusyBox, we approximate the
number of features as the number of unique (menu)config
entries declared in KCONFIG files.® As Apache and Marlin
do not have an explicit feature model nor use KCONFIG,
we use grep to extract all *#if or #ifdef or #elif’ direc-
tives, and parse the expressions from which we count the
unique identifiers. In this process we eliminate identifiers
that have a suffix of the following form: >_H or H__ or H_’,
as these represent include guards and we do not treat them
as features. The size of the commit history is measured as
the number of non-merge commits in the repository, which
corresponds to the output of git rev-list HEAD --no-merges
These statistics are approximate, but serve the
purpose of characterizing our four subjects.

3.2 Method

For each of the four cases, we follow a three-part method
developed during the Linux study: first, we identify the vari-
ability bugs in the history of our subject systems. Second, we
analyze and explain them. Finally, we reflect on the aggre-
gated material to answer our research questions (formulating
hypothetical observations or confirming them respectively).

To do so, we take the Linux 7, Apache®, BusyBox?, and
Marlin '° repositories as the units of analysis. In all cases,
we analyze the master branch of the repository. We focus on
bugs already corrected in commits to the repositories. These
bugs have been publicly discussed (usually on the project’s
mailing list or issue tracker) and confirmed as actual bugs by
the developers, so the information about the nature of the
bug fix is reliable, and we minimize the chance of including
fictitious problems.

3.3 Part 1: Finding Variability Bugs

The large commit history of the projects rules out manual
investigation of each commit. We have settled on a semi-
automated search through the project’s commits and issue
tracking system (mostly for Marlin) to find variability bugs
via historic bug fixes.

We have thus searched through the commits for variability
bugs using the following steps:

—--count.

1. Selecting variability-related commits. We retain com-
mits whose message indicates a variability-related change;
or whose patch appears to alter the feature model
(in the case of Linux and BusyBox, as Apache and
Marlin do not use KCONFIG), the feature mapping,
or configuration-dependent code. This is achieved by
matching regular expressions of Fig. 2. (We always per-
form case-insensitive matching of regular expressions.)
Expressions in Fig. 2(a) identify commits in which the
author’s message relates the commit to specific fea-
tures. Those in Fig. 2(b) identify commits introducing
changes to the (KCONFIG) feature model, the (CPP)

"http://cloc.sourceforge.net/

SThis is computed by find . -name ConfigFiles -exec
egrep ’~(menu)?config ’ {} \; | cut -d’ ’ -f2 | uniq |
we -1, where ConfigFiles is replaced with ’Kconfig*’ and
’Config.*’, for Linux and BusyBox, respectively.
"http://git.kernel.org/
Shttp://git.apache.org/httpd.git
Shttp://git.busybox.net/busybox/

Ohttp://github. com/MarlinFirmware/MarlinDev

feature mapping, or code near an #if conditional. In
our search we exclude merges as such commits do not
carry changes. The selection of keywords was based on
our understanding of the systems, and manual analysis
of code and commit messages to identify what kind
of keywords are used. Linux and BusyBox follow the
pattern of using CONFIG_fid to define feature names
and refer to them in the commit message, while Apache
uses HAVE_fid and HAS_fid. Marlin, however, does not
employ either of the two patterns. At the time of our
study analysis, Marlin used simple feature names with-
out having a well-in-place method for defining them.
We used previous knowledge of the system [51] and grep
to identify unique feature identifiers, and used those in
combination with few regular expressions as explained
next to detect variability-related commits.

2. Selecting bug-fizing commits. We further narrow to
commits that potentially fix bugs and thus, together
with the previous filter, we obtain candidates to vari-
ability bug-fixes. This is achieved by matching regular
expressions of Fig. 3 against the commit message. Ex-
pressions in Fig.3(a) are generic keywords that can
appear in any bug-fixing commit’s message or in any
issue report. At the Linuz Kernel Summit 2013 con-
ference, the convention to add a “Fixes:” footer to
the commit message to identify bug-fixing commits
was established.!’ For instance, the regular expression
fix (case insensitive) will match commits adhering to
this new convention, at least in the case of Linux. We
used an iterative process for finding regular expressions
that can match a diverse sample, based on our under-
standing and examining the systems. For example, we
searched for commit messages that used memory leak
as keyword and identified potential bug-related key-
words. Several Linux commits use the keyword oops to
indicate a possible kernel crash. Expressions in Fig. 3(b)
try to identify bug-fixing commits for specific types of
bugs, such as references to void-pointer dereferences
(void *), undefined symbols (undefined), uninitialized
variables (uninitialized), and a variety of memory
errors (overflow, memory leak, etc.). Different combi-
nations of keywords select different number of commits:
generic keywords may select still thousands of commits
in Linux, while specific keywords may select only a few
hundreds or tens.

3. Manual scrutiny. Finally, we read the commit message
or the issue, and inspect the changes introduced by the
commit to remove false positives. For instance, com-
mit 7518b5890d matches our regular expression from
Fig.2(a), as the commit message refers to CONFIG_OF _-
DYNAMIC, yet once we examined the complete commit
message we understood that it does not fix a bug, but
adds new functionality. Especially in the case of Marlin,
where often commit messages simply refer to an issue
number —e.g. “Fiz #1507, the issue tracking system
contains valuable information for triaging. We down
prioritize very complex commits as these are more dif-
ficult to understand and to extract and examine error
traces. A very complex commit either introduces more

Yhttp://1kml.iu.edu/hypermail/linux/kernel/1310.3/
01046.html

Regular expressions: Regular expressions:

configuration #if

config option #else
(HAS|HAVE) _fid #elif

if fid is (not)’ set #endif
when fid is (mot)’ set select fid
if fid is (en|dis)abled config fid

when fid is (en|dis)abled depends on fid

(CONFIG|ENABLE |FEATURE) _ fid

(a) Message filters. (b) Content filters.

Figure 2: Regular expressions selecting configura-
tion-related commits in: (a) message, (b) content; fid
abbreviates [A-Z0-9_]", matching feature identifiers.

Regular expressions: Regular expressions:

bug unused

fix void *

oops overflow

warn undefined

error double lock

unsafe memory leak

invalid uninitialized

closes \# dangling pointer
violation null dereference

end trace null pointer dereference

kernel panic

(a) Generic bug filters. (b) Specific bug filters.

Figure 3: Regular expressions selecting bug-fixing
commits: (a) generic, (b) problem specific.

than a few changes (we choose a cut-off value of ten),
or affects very complex subsystems (an example from
Linux is the kernel/sched subsystem). The ideal com-
mit has an elaborated message providing some form of
error trace, and introduces few modifications.

3.4 Part 2: Analysis of Bug Candidates

This part of the methodology requires considerable effort in
the sense that, for each variability bug identified, we man-
ually analyze the commit message, the patch fix, and the
actual code to build an understanding of the bug. Aside
from variability, the bugs involve undisciplined #ifdef an-
notations, intraprocedural dataflow, function pointers, and
pointer aliasing. When more context is required, we find
and follow the associated discussion on the repository’s mail-
ing list or issue tracker. Code inspection is supported by
cTAGS 12 and the Unix GREP utility, since we lack feature-
sensitive tool support. This step requires some knowledge of
the system’s internals in order to successfully understand the
bug. Note that we do not focus on a specific way of finding
variability bug candidates, by using only commit message
or only the issue tracking system. We use both available
sources, especially for smaller subjects, where the amount of
the potential bug candidates is smaller. In this step we are
interested in understanding the bug and not on analyzing
the quality of the commit or of the bug report. The commits
helped us finding bugs and understanding the bug’s nature.

1. The semantics of the bug. For each variability bug we
want to understand the cause of the bug, the effect on

2http://ctags.sourceforge.net/

156

the program semantics and the relation between the two.
This often requires understanding the inner workings
of the project, and translating this understanding to
general programming language terms accessible to a
broader audience. As part of this process we try to
identify a relevant runtime execution trace and collect
links to available information about the bug online.

2. Variability related properties. We establish what is the
presence condition of a bug (precondition in terms of
configuration choices) and where it was fixed: in the
code, in the feature model or in the mapping.

3. Simplified version. We condense our understanding in
a simplified version of the bug. This serves to explain
the original bug, and constitutes an easily accessible
benchmark for testing and evaluating tools. In addition,
we generate single-function versions from the simplified
versions of the bugs, intended to help researchers test
intraprocedural analyses for the same problem.

4. Simplified patch. Last but not least, we also provide
a simplified patch of the bug. Seeing how the bug has
been fixed, will help researchers to comprehend the
problem.

We analyzed bugs from the previous step (cf. Sect. 3.3) fol-
lowing this method. We stored the reports from our analyses
in a publicly available database. The detailed content of the
report is explained in Sect. 4.

3.5 Part 3: Data Analysis and Verification

We reflect on the set of collected data in order to find an-
swers to our research questions. This step is supported with
some quantitative data but, importantly, we do not make
any quantitative conclusions about the population of the
variability bugs in our subject systems (such conclusions
would be unsound given the above research method). The
analysis purely characterizes diversity of the data set ob-
tained. It allows us to present the entire collection of bugs
in an aggregated fashion (e.g., see Sect.5). We see this qual-
itative analysis as an important stepping stone towards a
representative analysis about the bugs: any such analysis
requires building tools. The qualitative analysis indicates
which tools should be build.

Finally, in order to reduce bias we confront our method,
findings, and hypotheses in an interview with a full-time
professional Linux kernel developer.

4. DIMENSIONS OF ANALYSIS

We begin by selecting a number of properties of variability
bugs to understand, analyze and document in bug reports.
These are described below and exemplified by data from our
database. We show an example record in Fig. 4, a null-pointer
dereference bug found in a Linux driver, which was traced
back to errors both in the feature model and the mapping.

Type of Bug (type). In order to understand the diversity of
variability bugs we establish the type of bugs according to
the Common Weakness Enumeration (CWE)'®*—a catalog
of numbered software weaknesses and vulnerabilities. We
follow CWE since it had already been applied to the Linux
kernel [50]. However, since CWE is mainly concerned with

Bhttp://cwe.mitre.org/

157

security, we had to extend it with a few additional types of
bugs, including type errors, incorrect uses of Linux APIs,
among others. The types of bugs that we found are listed in
Fig. 8; our additions lack an identifier in the CWE column.

Note that we categorize each bug mostly by its effect as
opposed to its cause. This means that, for example, broken
#ifdef statements or unsatisfiable presence conditions are
not considered as a bug type, but rather a potential cause of
the bug. For instance, Linux commit 66517915e09'* fixed
an undeclared identifier error caused by a wrong presence
condition. The bug types directly indicate what kind of
analysis and program verification techniques can be used
to address the bugs identified in the analyzed systems. For
instance, the category of memory errors (Fig. 8) maps almost
directly to various program analyses: for null pointers [14,
24, 28], buffer overruns [10, 22, 58], memory leaks [14, 24],
etc.

Bug Description (descr). Understanding a bug requires
rephrasing its nature in general software engineering terms,
so that the bug becomes understandable for non-experts. We
obtain such a description by studying the bug in depth, and
following additional available resources (such as mailing list
discussions, available books, commit messages, documenta-
tion and online articles). Whenever use of domain-specific
terminology is unavoidable, we provide links to the neces-
sary background. Obtaining the description is often non-
trivial. For example, one bug in our database (Linux commit
eb91£1d0a53) was fixed with the following commit message:

Fixes the following warning during bootup when compiling with CONFIG_SLAB:

[0.000000] -----=-===-= [cut here J------------

[0.000000] WARNING: at kernel/lockdep.c:2282 lockdep_trace_alloc+0x91/0xb9()
[0.000000] Hardware name: [0.000000] Modules linked in:

[0.000000] Pid: O, comm: swapper Not tainted 2.6.30 #491

[0.000000] Call Trace:

[0.000000] [<ffffffff81087d84>] 7 lockdep_trace_alloc+0x91/0xb9

It is summarized in our database as:

Warning due to a call to kmalloc() with flags __-
GFP_WAIT and interrupts enabled

The SLAB allocator is initialized by start_kernel() with
interrupts disabled. Later in this process, setup_cpu_-
cache() performs the per-CPU kmalloc cache initializa-
tion, and will try to allocate memory for these caches
passing the GFP_KERNEL flags. These flags include __GFP_-
WAIT, which allows the process to sleep while waiting for
memory to be available. Since, interrupts are disabled
during SLAB initialization, this may lead to a deadlock.
Enabling LOCKDEP and other debugging options will de-

tect and report this situation.

We add a one-line header to the description, here shown in
bold, to help identification and listing of bugs.

Program Configurations (config). In order to confirm that
a bug is indeed a variability bug we investigate under what
presence condition it appears. To do so, we do a manual in-
depth analysis for every bug found by looking at the feature
model (e.g., KCONFIG) and the mapping (e.g., Makefile) to
determine which features must be enabled/disabled in order
for the bug to occur. This allows to rule out bugs that
appear unconditionally and enables further investigation of
variability properties of the bug, for example, the number of
features and nature of dependencies that enable the bug.
Our example bug (Fig. 1) is present when DECR is enabled
but INCR is disabled. The Linux bug captured in Fig. 4(b)

“http://vbdb. itu.dk/#bug/linux/6651791

- 6252547b8a7 -
type: Null pointer dereference

descr: Null pointer on !OF_IRQ gets dereferenced if
IRQ_DOMAIN .

In TWL4030 driver, attempt to register an IRQ domain
with a NULL ops structure: ops is de-referenced when
registering an IRQ domain, but this field is only set
to a non-null value when OF_IRQ.

M: TWL4030_CORE && 'OF_IRQ
repo: git://git.kernel.org/pub/.../linux-stable.git
hash: 6252547b8a7acced581b649af4ebf6d65f63a34b
layer: model, mapping

trace:
dyn-call drivers/mfd/twl-core.c:1190:twl_probe()
1235: irq_domain_add(&domain) ;
call kernel/irq/irqdomain.c:20:irq_domain_add()
call include/linux/irqdomain.h:74:irq_domain_to_irq()
ERROR 77: if (d->ops->to_irq)

links:
* [12C] (http://cateee.net/lkddb/web-1kddb/I2C.html)
* [TWL4030] (http://www.ti.com/general/docs/...)
* [IRQ domain] (http://lxr.gwbnsh.net.../IRQ-domain.txt)

(a) Bug record.

#include <stdlib.h>

#ifdef CONFIG_TWL4030_CORE /7 ENABLED
#define CONFIG_IRQ_DOMAIN

#endif

#ifdef CONFIG_IR(_DOMAIN
int irq_domain_simple_ops = 1;

// ENABLED

© 00D U W

10| void irq_domain_add(int *ops) { —(6)
ell int irq = *ops; // ERROR (7)x

12| }

13| #endif

15| #ifdef CONFIG_TWL4030_CORE // ENABLED
16| void twl_probe() { —(3)
17 int *ops = NULL; (4)

21 irq_domain_add(ops); (5)—
22| }
23| #endif

25| int main(void) { =(1)
26 #ifdef CONFIG_TWL4030_CORE // ENABLED 1
27 twl_probe(); (2)—
28 #endif
29 return O;

(b) Simplified version.

Figure 4: An example of a bug record and a simplified version of variability bug 6252547b8a7.

requires enabling TWL4030_CORE, and disabling OF_IRQ, in
order to exhibit the erroneous behavior (see config entry in
the left part).

Bug-Fiz Layer (layer). We analyze the fixing commit to
establish whether the source of the bug is in the code, in
the feature model, or in the mapping. Understanding this
can help direct future research on building diagnostics tools:
are tools needed for analyzing models, mappings, or code?
Where is it best to report an error?

The bug of Fig. 4 has been fixed both in the model and in
the mapping (cf. Fig. 5). The fixing commit asserts that: first,
TWL4030_CORE should not depend on IRQ_DOMAIN (fixed in
the model), and, second, that the assignment of the variable
ops to &irq_domain_simple_ops is part of the IRQ_DOMAIN
code and not of 0F_IRQ (fixed in the mapping). Note that we
put all changes made in the feature model (i.e., KCONFIG)
into the header of the simplified bug version.

Error Trace (trace). We manually analyze the execution
trace that leads to the error state. Slicing tools cannot easily
be used for this purpose, as none of them is able to handle
static preprocessor directives appropriately. Constructing a
trace allows us to understand the nature and complexity of
the bug. A documented failing trace allows other researchers
to understand a bug much faster.

There are two types of entries in our traces: function calls
and statements. Function call entries can be either static
(tagged call), or dynamic (dyn-call) if the function is called
via a function pointer (which is common). A statement entry
highlights relevant changes in the program state. Every
entry starts with a non-empty sequence of dots indicating
the nesting of function calls, followed by the location of the
function definition (file and line) or statement (only the line).

The statement in which the error is manifested is marked
with an ERROR label.

In Fig.4(a) the trace starts in the driver loading func-
tion (twl_probe). This is called from i2c_device_probe at
drivers/i2c/i2c-core.c, the generic loading function for
I2C"5 drivers, through a function pointer (driver->probe).
A call to irq_domain_add passes the globally-declared struct
domain by reference, and the ops field of this struct, now
aliased as *d, is dereferenced (d->ops->to_irq).

The ops field of domain is not explicitly initialized, so it has
been set to null by default (as dictated by the C standard).
Thus the above error trace unambiguously identifies a path
from the loading of the driver to a null-pointer dereference,
when OF_IRQ is disabled. Had OF_IRQ been enabled, the ops
field would have been properly initialized prior to the call to
irq_domain_add.

Simplified Bug. We synthesize a simplified version of the
bug capturing its most essential properties. We write a
small C99 program, independent of the kernel code, that
exhibits the same essential behavior, and the same essential
problem. The obtained simplified bugs are easily accessible
for researchers who would like to try program verification and
analysis tools without integrating with each project’s build
infrastructure, huge header files and dependent libraries, and,
most importantly, without understanding the inner workings
of these projects. Furthermore, the entire set of simplified
bugs constitute an easily accessible benchmark suite derived
from real bugs occurring in four highly configurable systems,
which can be used to evaluate bug finding tools on a smaller
scale.

The simplified bugs are derived systematically from the
error trace. Along this trace, we preserve relevant state-

15 A serial bus protocol used in micro controller applications.

158

0@ -1,8 +1,4 @@
#include <stdlib.h>

-#ifdef CONFIG_TWL4030_CORE
-#define CONFIG_IRQ_DOMAIN
-#endif
#ifdef CONFIG_IRQ_DOMAIN
int irq_domain_simple_ops = 1;
@@ -15,9 +11,9 @@
#ifdef CONFIG_TWL4030_CORE
void twl_probe() {
+ #ifdef CONFIG_IRQ_DOMAIN
int *ops = NULL;
- #ifdef CONFIG_OF_IRQ
ops = &irq_domain_simple_ops;
- #endif
irq_domain_add(ops) ;
+ #endif
}
#endif

Figure 5: Simplified patch for the simplified bug
from Figure 4(b).

ments and control-flow constructs, mapping information and
function calls. We keep the original identifiers for features,
functions and variables. However, we abstract away dynamic
dispatching via function pointers, structure types, void point-
ers, casts, and any project specific type, whenever this is
not relevant for the bug. For this reason, these simplified
versions only represent the original bug from the variability
perspective. In particular, if a tool finds one of our simplified
bugs, that does not imply that it will find the real bug too.
When there exist dependencies between features, we force
valid configurations with #define. This encoding of feature
dependencies has the advantage of making the simplified bug
files self-contained.

Figure 4(b) shows the simplified version of our running ex-
ample bug with null pointer dereference. Lines 4-6 encode a
dependency of TWL4030_CORE on IRQ_DOMAIN, in order to pre-
vent the invalid configuration TWL4030_CORE A —IRQ_DOMAIN.
We encourage the reader to study the execution trace leading
to a crash by starting from main at line 25. This takes a
mere few minutes, as opposed to many hours necessary to
obtain an understanding of a Linux kernel bug normally.
Note that the trace is to be interpreted under the presence
condition from the bug record (enabling/disabling decisions
are specified in comments next to the #if conditionals).

Simplified Patch. For the same reasons that motivated sim-
plified bugs, we create a simplified patch for each simplified
bug that resembles the original bug-fix. A simplified patch
helps to understand a bug by explaining how and where it
has been fixed. A simplified patch is representative of the
real patch when the fix is implemented in the mapping, or
in the model. Fixes in the code are represented as faithfully
as the simplified bug manages to resemble the real bug.
Figure 5 shows the simplified patch for the simplified bug 62-
52547b8a7 (cf. Fig. 4(b)). The patch is given in unified diff
format (diff -U2). To fix the bug, the commit message says
that the feature OF_IRQ, which encompasses ops = &irq_do-
main_simple_ops, should be removed and wrapping the IRQ
domain bits of the driver with TRQ_DOMAIN instead. Besides
that, TWL4030_CORE should not depend on IRQ_DOMAIN.

Single-Function Bug. We also provide single-function versions
of the bugs, which are derived from the already simplified
versions. Figure 6 shows a single-function bug corresponding

159

#include <stdlib.h>

#ifdef CONFIG_TWL4030_CORE // ENABLED
#define CONFIG_IRQ_DOMAIN

#endif

#ifdef CONFIG_IR{_DOMAIN
int irq_domain_simple_ops = 1;
#endif

// ENABLED

© 00~ O Ot W N

[
(=]

ell| int main(void) { =(1)
12 #ifdef CONFIG_TWL4030_CORE // ENABLED
13 int *ops = NULL; (2)

el7 int irq = *ops; // ERROR (3)x
18 #endif

19 return O;

Figure 6: Single-function version of the simplified
bug from Figure 4(b).

to the simplified bug from Fig.4(b). Single-function bugs
are intended to assist the development and evaluation of
intraprocedural analysis tools, but can also be useful while
debugging interprocedural tools. These single-function ver-
sions further help understanding the essence of variability
bugs, especially for bugs with deep function call graphs such
as eb91f1d0ab3.

To generate each intraprocedural version, we simply take
the main method and transitively inline all function calls.
Note that for some bugs related to function-calls, a single-
function version does not make sense as it would abstract
away the bug itself. For instance, bug 7c6048b7c83, which
is an undefined function bug, cannot have a single-function
version as it would not fail to compile as it ought to (i.e., it
would not preserve the error of the original bug).

Traceability Information. We store the URL of the repository,
in which the bug fix is applied, the commit hash, and links
to relevant context information about the bug, in order to
support independent verification of our analysis.

We have put all of the studied bugs along with all the
information recorded for each of them online with a Web
User Interface: http://VBDb.itu.dk/. The raw data is also
available online.'® Figure 7 shows a screenshot of our Web
UI database for our sample bug 6252547b8a7 from Fig. 4.

S. ARE VARIABILITY BUGS LIMITED TO
SPECIFIC TYPE OF BUGS, FEATURES,
OR LOCATIONS (rQ1)?

In the following, we sometimes aggregate data with numbers.
The numbers are used solely to describe the collected sample—
no statistical conclusions about the broader bug population
should be drawn from them. The reader can use these
numbers to get an aggregated characterization of the data in
the variability bugs database. That is, the figures presented
here serve exclusively to characterize population of bugs we
found, not to hint at any representative bug distribution. To
emphasize this limited significance of numbers we typeset
them in gray.

https://bitbucket.org/modelsteam/vbdb/src

ene < lim] vbdb.itu.dk > h a

The Variability Bugs Database

a unix NULL pointer on !OF_IRQ gets
dereferenced if IRQ_DOMAIN

View raw files ~

In TWL4030 driver, attempt to register an IRQ domain with a NULL ops structure; ops is de-referenced when
registering an IRQ domain, but this field is only set when OF_IRQ.

But fixed by commit 6252547b8a7
Parent commit tree here

Related links ~
Type null pointer dereference (CWE 476)
Config TWL4030_CORE && !0F_IRQ (2nd degree)
Fix-in model, mapping
C-features FunctionPointers
Location include/linux/

Simplified bug ~ Simplified patch ~ Single functionbug ~ Trace Discussion
#define NULL (void*)e

#ifdef CONFIG_TWL4@30_CORE

#define CONFIG_IRQ_DOMAIN

#endif

#ifdef CONFIG_IRQ_DOMAIN
int irq_domain_simple_ops = 1;

void irq_domain_add(int *ops)
int irq = *ops; // (4) ERROR

#endif

Figure 7: Screenshot of VBDb (bug from Fig. 4).

We start by presenting the observations that support our
first research question:

CONFIRMED OBSERVATION 1: Variability bugs are
not be limited to any particular type of bug.

Figure 8 lists the type of variability bugs found in the ex-
ploratory study of 43 variability bugs in Linux, along with
occurrence frequencies in Linux (leftmost column, labeled
L for LINUX) and associated CWE number whenever ap-
plicable (third column). We return to the four rightmost
columns shortly. For now, observe that all bug types have
been grouped into eight broad error categories, ranging from
declaration errors to arithmetic errors (and one category, val-
idation errors, not occurring in the Linux bugs). The groups
are shown in gray background with accumulated sub-totals
corresponding to each category. For instance, we can see
that four of the Linux bugs involved null-pointer dereferences
(CWE 476) in the broad category memory errors, harboring
11 of the Linux bugs.

The prior study hypothesized that variability bugs—in
general—span a wide range of qualitatively different types
of bugs [1]. In Figure 8, we see that the variability bugs in
Linux span 21 different kinds of bugs, falling into seven broad
categories.

We now test the hypothesis by considering the results of our
confirmatory case study of three independent systems with
variability. The right columns testify how many times a given
bug type occurs in each of the systems: M for MARLIN, B for
BusyBox, and A for APACHE. We confirm that, in general:
variability bugs are not limited to any particular type of bugs.
Just like for Linux, the variability bugs encountered in these
systems, also fall into qualitatively different categories.

L bug type CWE | M B A| =
7 declaration errors: 4 5 9 | 25
4 undefined function - 2 2 8
2 undeclared identifier - 4 2 7 15
1 multiple function definitions - 1
undefined label — 1 1

10 resource mgmt. errors: 4 5 19
5 uninitialized variable 457 2 1 8
I memory leak 401 1 2 4
1 use after free 416 1 1 3
2 duplicate operation 675 0 2
1 double lock 764 1
file descriptor leak 403 1 1

11 memory errors: 1 2 4 18
4 null pointer dereference 476 2 2 8
3 buffer overflow 120 1 2 6
3 read out of bounds 125 3
1 write on read only — 1
8 logic errors: 2 3 1 14
5 fatal assertion violation 617 5
2 non-fatal assertion violation 617 2
1 behavioral violation 440 2 3 7
4 type errors: 4 1 10
2 incompatible types 843 2 1 1 6
1 wrong number of func. args. 685 2 0 3
1 void pointer dereference — 1
2 dead code: 3 2 7
1 unused variable 563 3 4
1 unused function 561 2 3
1 arithmetic errors: 3 4
1 numeric truncation 197 1
integer overflow 190 3 3
validation errors: [1] 1

OS command injection 078 | 11 1

43 TOTAL - [14 18 23] 98

Figure 8: Types of variability bugs in our study of
Linux [1] and all of VBDb. (L is for Linux, M is for
Marlin, B is for BusyBox and A is for Apache.)

160

L #occurrences of a feature | M B A |)3}
71 occurs in one VBDb bug: | 17 27 24 [139
71 once (1x) | 17 27 24 [139
12 occurs in 2+ VBDb bugs: 2 1 1 16
8 twice (2x) 1 9

4 thrice (3x) 2 6

four times (4x) 0

five times (5x) 1 1

83 TOTAL | 19 28 25 | 155

Figure 9: Features involved in variability bugs in
Linux and all of VBDb.

Considering all bugs in the four systems (the ¥ column), we
see that a staggering 42 of all the variability bugs are caught
by the compiler at build time, if compiled in the appropriate
configuration: 25 declaration errors, 10 type errors, and seven
cases of dead code. Despite the compiler checks, the bugs had
been admitted to the code repositories. Since build errors
cannot easily be ignored, we take this as evidence that the
authors of the commits, and the maintainers that accepted
them, were unaware of the bugs, presumably because they
did not compile the code in configurations that exhibit the
bugs (compiler checks are not family-based).

It appears that conventional automatic code analyzers
targeting individual program configurations are insufficient.
In order to find the variability bugs in VBDb, analyzers that
are able to cope with variability seem to be needed.

CONFIRMED OBSERVATION 2: Variability bugs are
not restricted to any specific error prone feature.

Figure 9 shows the number of times a feature is involved in
the bugs. We see that the Linux bugs involve a total of 83 dif-
ferent features, ranging from debugging options (e.g., QUOTA_-
DEBUG and LOCKDEP), through device drivers (TWL4030_CORE
and ANDROID), and network protocols (VLAN_8021Q and IPV6),
to computer architectures (PARISC and 64BIT). As many as
71 of these features are involved only in a single bug; eight are
involved in two bugs; and only four features occur in three
of the Linux bugs. Thus, there are no obvious particularly
“error-prone features” in Linux.

Let us confront the hypothesis with the three systems in
our confirmatory case study (the columns: M, B, and 4). For
example, for BusyBox, we see only one feature, CLEAN_UP
that is involved in two bugs. In fact, only one feature in
Apache that stands out, namely, APR_HAS_SHARED_MEMORY,
which is implicated in five variability bugs. Investigation,
however, reveals that four of those occurrences are related to
LpAP which, at the time, was an experimental module, thus
temporarily of lower quality than others.

In total, the vast majority of features are involved only in a
single bug in our collection (139 out of 155, see the ¥ column).
Only nine features are involved in two bugs and six features
in three bugs. The consequence of variability bugs not being
concentrated around certain error-prone features, is that
variability analyzers and sampling strategies for testing and
analysis should target system features broadly, not selectively.

CONFIRMED OBSERVATION 3: Variability bugs are
not confined to any specific location (file or sub-
system).

Figure 10(d) shows a visualization of the organization and rel-
ative size of each subsystem in Linux along with the locations
of the bugs in our collection. The size of each subsystem is

161

measured in lines of code (LOC); a square (regardless of color)
represents 25 KLOC. For instance, the kernel/ subsystem
with six squares, has approximately 150 KLOC constituting
about 1% of the Linux code. Superimposed onto the size
visualization, the figure also shows in which directories the
bugs occur. A bug is visualized as a red (darker) square.
With five red (dark) squares, the aforementioned directory
kernel/ thus houses five of our VBDb variability bugs. Note
carefully that there are two units used in the diagram: LOC
represented by the number of squares, and the number of
bugs represented by the number of red squares. This is a
discrete variant of a visualization using two curves of different
units in a single graph, where correlation of their dynamics
is relevant. It allows us to show the number of bugs with
respect to the size of the subsystem in LOC.

We approximate subsystems by existing directory structure.
The figure abstracts away smaller subsystems accounting for
less than 0.1% such as virt/ (8.1k), as well as infrastructure'”
subsystems such as tools/ (133.1k) and scripts/ (48.1k).
None of these directories contained any of our bugs.

We found bugs in ten of the main subsystems in Linux (cf.
Fig. 10(d)), suggesting that variability bugs do not appear
to be confined to any specific subsystem. The bugs occur
in qualitatively different subsystems of Linux ranging from
networking (net/) to device drivers (drivers/, block/), to
filesystems (£s/), or encryption (crypto/). Note that Linux
subsystems are often maintained and developed by different
people, which adds to diversity of our collection.

For testing the hypothesis, we collected the corresponding
data for the other cases (cf. Figures 10(a), 10(b), and 10(c)).
For Marlin, a square visualizes 100 LOC whereas for BusyBox
and Apache a square denotes 500 LOC. For Marlin which
does not have an appropriate directory structure, we use a
logical organization into subsystems. As before, we abstract
away smaller subsystems.

As for Linux, variability bugs in the other systems appear
to not be confined to any particular subsystems. In fact,
only two out of eight subsystems of Marlin do not house any
of our bugs. For BusyBox, only three out of 14 subsystems
are not represented in VBDb. For Apache, only two out of
seven subsystems do not harbor bugs.

The consequence for variability bug hunters, is that there
are no short-cuts with respect to subsystems; the analysis
needs to target the entire code-base broadly.

Conclusion for RQ1

We are now ready to answer RQ1. Based on analyzing four
highly-configurable systems, we conclude that:

Conclusion 1: Variability bugs are not confined
to any particular type of bug, error-prone feature,
or location.

In total, we have found 98 variability bugs falling in 25
different types of error categories, involving 155 distinct
features, and spread out in over 30 different subsystems in
the four systems investigated.

Variability is ubiquitous. There appears to be no specific
nature of variability bugs that could be exploited. If analysis
tools were to focus on particular flavors of variability bug
during family-based analysis, they would thus fail to detect
large classes of errors (the flavors not focussed on). Conse-

17E.g., examples, scripts, documentation, and build infras-
tructure.

main config lcd
SEEEEEEEE

mm u IIIIIIL;I IIIIII.
an 6k (14Y %
8k (10%) (14%) 5k (12%)
10k (24%)
movement cardreader temperature
L] L] L} n EEEEE
mEEE

n n
EEEEN
3k (6%)

L 111}
3k (8%)

(a) Marlin: M (possibly red) = 100 LOC; B = 1 bug.

modules

am include

128k (66%)

(c) Apache: M (possibly red) = 500 LOC; B = 1 bug.

Figure 10: Project structure and relative size of subsystems vs location of bugs in VBDb. Note:

e2fsprogs
IIIIIII:

drivers arch
EEENEENEEEEEEEEEE
L] L]

networking
EEEEEEEE

L1} b =III.. - .("

as : 18k (9%) 17k (3%) 15k (7%)
30k (15%) 29k (14%)
archival coreutils miscutils editors procps
EEEEEN EEEEN EEEE

L] L] EEEE

= L] L L] =III= ;)T(.(-g(y>
LLLL] L L] L] 0 9270
14k (7%) 11k (6%) 11k (5%) 10k (5%)
modutils main sysklogd init
EEE EEE ces T [1]
HH HH 1k (.6%) 1k (.5%)
5k (2%) 5k (2%)

(b) BusyBox: M (possibly red) = 500 LOC; B = 1 bug.

EEEEEEEEE sound
EEEEEE

n
817k (6%) 609k (5%)
m
= s
2.0M (16%) include
L L]

n
EEEE 73k (.6%)
404k (3%)

=IIIII!IIIII

7-5M (59%) crypto mm security block
Hy - um) u ;
69k (.5%) 67k (.5%) 50k (.4%) 24k (.2%)

(d) Linux: M (possibly red) = 25,000 LOC; B = 1 bug.

The

figure serves exclusively to characterise population of bugs (including their locations), not to hint at any

representative bug distribution.

quently, the analysis of variability bugs in highly-configurable
systems needs to be targeted widely at all types of bugs,
all kinds of features, and all subsystems. This conclusion
is also interesting from the point of view of understanding
the reasons for which bugs appear. Appearing everywhere,
variability bugs hint that it is the variability itself that en-
ables or amplifies their introduction (possibly standalone, or
in concert with other aspects of system complexity). Per-
haps this is not so surprising, but now we can confirm these
folkloric hypotheses with evidence in terms of hard data.
Further, the tremendous variation among the bugs in the
VBDb collection itself provides a useful resource for further
research on variability bugs and bug finders. In fact, VBDb
has already been used in a variety of recent publications [39,
29, 2]. (We elaborate on this in Section 9.)

6. IN WHAT WAYS DOES VARIABILITY AF-

FECT BUGS (rQ2)?

We now turn to evidence regarding research question RQ2:

CONFIRMED OBSERVATION 4: Variability bugs may
involve non-locally defined features (i.e., features
defined in another subsystem than where the bug
occurred).

In Linux, we have identified 30 bugs that involve non-locally
defined features. Understanding such bugs involves func-
tionality and features from different subsystems, while most
Linux developers are dedicated to a single subsystem. For
example, bug 6252547b8a7 (Fig.4) occurs in the drivers/
subsystem, but one of the interacting features, IRQ_DOMAIN,

is defined in kernel/. Bug 0dc77b6dabe, which occurs in
the loading function of the extcon-class module (drivers/),
is caused by an improper use of the sysfs virtual filesystem
API—feature SYSFS in fs/. We confirmed with a Linux
developer that cross-cutting features constitute a frequent
source of bugs.

We now use our three replication systems to test the
hypothesis that variability bugs may involve features defined
in “remote” subsystems. However, among the three systems
considered, only BusyBox permits local feature models where
KCONFIG files may be nested to define features that are local
to subsystems. We thus note that not all highly-configurable
systems have a concept of local features.

In BusyBox, we identified seven cases of non-locally defined
features that testify that bugs may involve variability cross-
cutting remote locations in the code. For instance, bug
5cd6461b6fb occurs due to a wrong format parameter to
printf () whenever the feature LFS (large file support) is
enabled. The error occurs in networking/ whereas the LFS
feature is defined in the util-linux/ directory.

For developers of highly-configurable systems, this observa-
tion means that when modifying one subsystem, they cannot
simply ignore features in other subsystems. Feature defini-
tions may be scattered across subsystems. For tools, this
means that they cannot simply zoom in on one subsystem
without taking the features defined in other subsystems into
consideration.

CONFIRMED OBSERVATION 5: The use of a func-
tion, variable, macro, or type may involve implicit

162

// DISABLED ‘
|
|
|
5| #else // ENABLED 4
6| void vlan_hwaccel_do_receive() { —(3)
o7 BUG() ; // ERROR (4) x
8|
9| #endif
10
el1l| void __netif_receive_skb() =(1)
12 vlan_hwaccel_do_receive(); // USAGE (2)—
13| }

Figure 11: Excerpt from bug 0988c4c7fb5 illustrating
a configuration-dependent definition of a function.
In line 12, the function vlan_hwaccel_do_receive is
invoked. The actual code run, however, will depend
on the configuration. If the feature VLAN_8021Q is
enabled, the function is defined in lines 2—4 will run;
otherwise, the function is defined in lines 6—8 will
run (which provokes an assertion violation in line

7).

variability caused by configuration-dependent def-

initions.
We investigated configuration-dependent definitions (func-
tions, variables, macros, and types) that are defined differ-
ently in different configurations, or conditionally defined in
only some configurations whose use in other configurations
provokes an error. Configuration-dependent definitions com-
plicate the identification of variability-related problems as
the variability is implicit, most often hidden in a header file,
or in another translation unit. Even if variability is explicit
in the definition, it is not visible at the usage location.

In Linux, for instance, bug 242f1a34377 involves a condi-
tionally dependent definition; the function crypto_alloc_-
ablkcipher () is only defined whenever CRYPTO_BLKCIPHER
is enabled. The bug occurs due to a function call to crypto_-
alloc_ablkcipher () in another file, leading to an undefined
function error (Fig.8) when CRYPTO_BLKCIPHER is disabled.

For an example of different definitions in different configu-
rations, consider Linux bug 0988c4c7fb5. Figure 11 shows
an exerpt of this bug. Here, the function vlan_hwaccel_-
do_receive() is called if a VLAN-tagged network packed
is received. This function, however, has two different defini-
tions depending on whether feature VLAN_8021Q is present
or not. (In reality, the two alternative functions are defined
in different files.) Variants without VLAN_8021Q support are
compiled with a mockup-implementation of this function
that unconditionally enters an error state. The definition
clearly involves variability. Its use, however, shows no ap-
parent involvement of variability. Deceptively, the definition
of the function itself (in lines 6-8), appears to involve no
variability. However, since the function definition is wrapped
inside a conditional #ifdef annotation, the error will only
occur whenever the feature VLAN_8021Q is disabled.

Another example is bug 0£8£8094d28, where a variability-
dependent macro definition is involved. It can be regarded
as a simple out of bounds access to an array, except that the
length of the array (KMALLOC_SHIFT_HIGH+1) is architecture-
dependent, and only the PowerPC architectures, and only for
a particular virtual page size, are affected. Macro KMALLOC_-
SHIFT_HIGH has alternative definitions at different source
locations.

163

Perhaps an even more subtle example of implicitly variable
code is a conditional if statement with guard on the size of a
type: for instance (sizeof (type) != 0), which introduces
dependency of code execution on a type being defined as non-
empty under some feature condition. Type declarations are
typically made in header files, and they are not immediately
visible in the use place. Such cases are rather difficult to
handle by simple extensions to single-program analyzers, as
variability in the imperative code is mixed with the variability
in the type language of the program (and even worse so
via size properties of types). An example of such implicit
variability can be found in bug 218ad12f42e, involving a
selected field in the structure type rwlock_t.

It turns out that implicit variability likely appears in
Linux’s source code due to internal coding conventions. The
following coding guidelines on #ifdef usage from How to
Get Your Change Into the Linuz Kernel'® advises:

“Code cluttered with ifdefs is difficult to read and
maintain. Don’t do it. Instead, put your ifdefs in
a header, and conditionally define ‘static inline*
functions, or macros, which are used in the code.”

We now consider configuration-dependent definitions involved
in variability bugs in our three independent systems.

In Marlin, bug 831016b, for instance, involves the func-
tion, 1cd_setstatus, which is defined to take two arguments
when the feature ULTRA_LCD is enabled and only one argu-
ment whenever ULTRA_LCD is disabled. However, whenever
SDSUPPORT is enabled and ULTRA_LCD is diabled (2-degree
bug), lcd_setstatus is erroneously invoked with two argu-
ments (instead of one).

In BusyBox, bug bc0ffc0e971 involves a function called
delete_eth_table() that has two different definitions de-
pending on whether feature CLEAN_UP is enabled or not. Vari-
ants without CLEAN_UP are compiled with a mockup imple-
mentation of this function (which, like in Linux, appears to
be common practice). BusyBox bug 5cd6461 involves the use
of a variable total which, depending on whether the feature
LFS is enabled or not, is defined either as a long long or
a long. However, in configurations where LFS is disabled,
when attempting to print the value of the total, printf is
erroneously invoked with the format %1d (long) which ought
to have been %11d (long long).

For developers, configuration-dependent definitions means
that programs may deceptively involve variability even though
they appear not to. For analyzers, this means that variability
tools should make sure to associate definitions with presence
conditions (i.e., keep associations between definitions and
configurations).

CONFIRMED OBSERVATION 6: Variability bugs are
fixed not only in the code; some are fixed in the
mapping, some are fixed in the model, and some
are even fixed in a combination of these layers.

A bug can be fixed in the code, mapping, and model (cf.
Section 2). Since bug fixes often involve multiple locations,
variability bugs can occur in multiple layers. Figure 12 shows
whether the bugs in our sample were fixed in the code, map-
ping, model, or combinations thereof. For our replication
studies, please note that Marlin and Apache have no notion
of feature model (at least, not in the classical sense). Instead,

8https://www.kernel .org/doc/Documentation/
SubmittingPatches

L layer | B Al =
39 single layer: 14 17 23 93
28 code 11 7 14 60

5 mapping 3 9 9 26

6 model 1 7

4 multiple layers: 1 5

2 code & mapping 1 3

1 mapping & model — -~ 1

1 code & mapping & model — — 1
413 TOTAL [14 18 23 | 98

Figure 12: Bug-fixing layers.

these projects capture feature dependencies operationally, as
we do in our simplified bugs (see lines 3-5 of Fig. 4(b)). We
therefore include a dash in the figure for layers involving the
model.

In Linux, commits 472a474c663 and 7c6048b7c83, fix vari-
ability bugs in the mapping and model, respectively. The
former adds a new #ifndef to prevent a double call to APIC_-
init_uniprocessor—which is not idempotent, while the lat-
ter modifies STUB_POULSBO’s KCONFIG entry to prevent a
build error.

Linux bug-fix 6252547b8a7 (Fig.5) removes a feature de-
pendency (TWL4030_CORE no longer depends on IRQ_DOMAIN)
and changes the mapping to initialize the struct field ops
when IRQ_DOMAIN (rather than OF_IRQ) is enabled. An exam-
ple of multiple fix in mapping-and-code is commit 63878ac-
fafb, which removes the mapping of some initialization code
to feature PM (power management), and adds a function stub.
We also found one Linux bug, e68bb91baa0, that was fixed
in all the three layers.

In Figure 12, we see that the variability bugs in Marlin,
BusyBox, and Apache are also not only fixed in the code, but
in various layers. Although, like for Linux, the variability
bugs appear to be fixed predominantly in the code and
mapping layers. In BusyBox, commit 5cd6461b6£b fixes an
incompatible type bug, caused by a wrong format parameter
in a printf () method, in multiple layers, by changing the
code and mapping layers.

In total (the ¥ column), note that, even though we only
documented bugs that manifested themselves in code, 38
bugs in our sample were, in fact, not exclusively fixed in the
code: 26 bugs were fixed exclusively in the mapping, seven
exclusively in the model, and five in multiple layers.

The stratification into code, mapping, and model may
obscure the cause of bugs, because an adequate analysis of a
bug requires understanding these three layers. Further, each
layer involves different languages; in particular, for Linux:
the code is C, the mapping is expressed using both Cpp
and GNU MAKE, and the feature model is specified using
KconriG.

Presumably, this complexity may cause a developer to
fix a bug in the wrong place. For instance, in Linux, the
dependency of TWL4030_CORE on IRQ_DOMAIN removed by
bug-fix 6252547b8a7 was added by commit aeb5032b3£8.
Apparently aeb5032b3£8 introduced this dependency into
the feature model to prevent a build error, so to fix a bug, but
this had undesirable side-effects. According to the message
provided in commit 6252547b8a7, the correct fix to the build
error was to make a variable declaration conditional on the
presence of feature IRQ_DOMAIN.

The realization that bugs in highly-configurable software
might need to be fixed outside the main code, is congruent

L degree | M Al =
8 single-feature bugs: [7 9 17 [41
8 1-degree [7 9 17 | 41
35 feature-interaction bugs: 7 9 6 57
22 2-degree 3 6 4 35
9 3-degree 4 3 1 17
1 4-degree 1
3 5-degree 1 4
43 TOTAL [14 18 23 | 98

Figure 13: Variability degrees.

with the work of Passos and co-authors [48], who observe
that evolution of features in the Linux kernel involves all
the three layers. This should inform research on bug finding
and bug fixing. For instance, it is not sufficient to look at
the feature model in isolation in order to find complex bugs,
yet most of the research on analysis of feature models does
exactly that [6]. Similarly, for bug fixing techniques [25], it is
not sufficient to synthesize patches for C programs—changes
to the preprocessor directives and build scripts (that specify
the mapping), as well as to the feature model should be
considered, too.

CONFIRMED OBSERVATION 7: Many variability bugs
involve multiple features and are hence feature-
interaction bugs.

We define the variability degree of a bug (or just the degree
of a bug), as the number of individual features occurring
in its presence condition. Intuitively, the degree of a bug
indicates the number of features that have to interact so that
the bug occurs. A bug present in any valid configuration
is a bug independent of features, or a 0-degree bug. Bugs
with a degree greater than zero are known as variability bugs,
involving one or more features, thus occur in a non-empty
strict subset of valid configurations. In particular, if the
degree of a bug is strictly greater than one, the bug is caused
by the interaction of two or more features. A software bug
that arises as a result of feature interactions is referred to as
a feature-interaction bug.

Figure 13 summarizes the variability degrees of the bugs
studied; there are 57 of those in our bug collection and 22 of
those involve three features or more.

Our exploratory study of Linux identified 35 so-called
feature-interaction bugs. For instance, Linux bug 62562547b8a7
(cf. Fig.4(b)) is a feature interaction bug. The code slice
containing the bug involves three different features, and rep-
resents four variants (corrected for the feature model), but
only one of the variants presents a bug. The ops pointer is
dereferenced in variants with TWL4030_CORE enabled, but it is
not properly initialized unless OF_IRQ is enabled. A developer
searching for this bug needs to either think of each variant
individually, or consider the combined effect of each feature
on the value of the ops pointer. None of these are easy to
execute systematically even in a simplified scenario [41, 42],
and outright infeasible in practice, as confirmed to us by a
professional Linux developer, whom we interviewed.

Feature interactions can be extremely subtle when vari-
ability affects type definitions. Commit 51fd36f3fad fixes
a bug in the Linux high-resolution timers mechanism due
to a numeric truncation error, that only happens in 32-bit
architectures not supporting the KTIME_SCALAR feature. In
these particular configurations ktime_t is a struct with two
32-bit fields, instead of a single 64-bit field, used to store the

164

remaining number of nanoseconds to execute the timer. The
bug occurs on an attempt to store some large 64-bit value in
one of these 32-bit fields, causing a negative value to be stored
instead. Interestingly, the Linux developer we interviewed
also mentioned the difficulty to optimize for cache-misses
due to variability in the alignment of struct fields.

Linux bug ae249b5fa27, constitutes a 3-degree bug caused
by the interaction of DISCONTIGMEM (efficient handling of
discontinuous physical memory) support in PA-RISC archi-
tectures (feature PARISC), and the ability to monitor mem-
ory utilization through the proc/ virtual filesystem (feature
PROC_PAGE_MONITOR). Linux bug 218ad12f42e is a 4-degree
bug that has a memory leak which occurs when an array of
locks is allocated if SMP or any of two particular debugging
options are enabled; but is not freed if feature NUMA is present.
We also found 5-degree bugs such as commit 221ac329e93,
again in Linux, due to 32-bit PowerPC architectures not
disabling kernel memory write-protection when KPROBES is
enabled—a dynamic debugging feature that requires modify-
ing the kernel code at runtime.

Looking at the data for our replication studies, we see
another 22 feature interaction bugs; seven in Marlin, nine in
BusyBox, and six in Apache. The Linux study revealed 13
bugs with a degree of at least three; the replication study
uncovered another nine such high-degree bugs.

BusyBox bug 95755181082 is a logic error involving three
features interacting with each other: BB_MMU, HTTPD_GZIP,
and HTTPD_BASIC_AUTH. With HTTPD_GZIP enabled, if a re-
quest contained “Accept-Encoding: gzip”, then the HTTP
error response would be incorrectly marked as being gzip
encoded (“Content-Encoding: gzip”) even though it is not.
Marlin bug b8e79dc is a 3-degree bug; it occurs only when-
ever ULTRA_LCD is enabled and ENCODER_RATE_MULTIPLIER
as well as TEMP_SENSOR_O are disabled. In Apache, the bug
c76df14 is also a 3-degree bug that occurs whenever CROSS_-
COMPILE is enabled and either WIN32 or 0S2 are enabled.

It is interesting to note that more than half of the bugs in
our VBDb collection are, in fact, feature-interaction bugs (cf.
the ¥ column in Figure 13). While most feature-interaction
bugs have been identified, documented, and published in
telecommunication domain [15], this study provides a docu-
mented collection of feature-interaction bugs in the context
of a wider collection of highly-configurable systems.

Feature-interaction bugs are inherently more complex to
find and reason about [41] because the number of variants,
that a developer needs to consider, is exponential in the
degree of the bug (number of features involved). This im-
pacts both variability program developers and analyzers that
consequently have to cope with this combinatorial blow up.

CONFIRMED OBSERVATION 8: Presence conditions
for variability bugs may also involve disabled fea-
tures.

In our exploratory study of Linux, we observed that the
precense conditions, under which the bugs occur, often in-
volved disabled features. Figure14 lists and groups the
structure of the presence conditions. Two main classes of
bug presence conditions emerged: some-enabled, where one
or more features have to be enabled for the bug to occur; and
some-enabled-one-disabled, where the bug is present when en-
abling zero or more features and disabling ezactly one feature.
We identified 21 bugs in some-enabled configurations, and
another 20 bugs in some-enabled-one-disabled. Only two con-

165

L precondition | M B A| =
21 some enabled: 9 7 14 | 49
5 a 6 3 7 21
10 aANb 3 3 5 21
5 aAbAc 1 6
1 aAbAcAdAe 1
20 some-enabled-one-disabled: 4 11 10 | 45
3 -a 1 6 10 20
13 a A —b 3 1 20
3 aAbA-c 1 4
1 aAbAcANdA—e 1
2 other configurations: 1 1 4
1 —a A —b 1
aA—-bA-c 1 1

1 aAN=-bA—-cA-dAN—e 1 2
43 TOTAL [14 18 23] 98

Figure 14: Presence conditions under which the
bugs occur.

configuration test strategy
all enabled (mazimal)

one disabled

ezhaustive (all configs.)

sample size benefit
O(1) in practice 50% (49/98)
maximum |F 96% (94/98)
maximum 2"l 100% (98/98)

Figure 15: Effectiveness (cost/benefit) of various
testing strategies if applied to our collection of
bugs.

figurations fell outside these two categories. Please note that
a few of the presence conditions have the form, (a V a’) A b,
but, since it is implied by either a A —=b or a’ A —b, we in-
clude it in the some-enabled-one-disabled class. Similarly,
for presence conditions of the form (a V a’) A b, we classified
as some-enabled. (For this reason, Fig. 13 and Fig. 14 may
appear inconsistent.)

Considering our replication studies, we see the same pat-
tern. A total of 25 bugs in the replication studies fall into
the some-enabled-one-disabled category, involving disabled
features: four in Marlin, eleven in BusyBox, and ten in
Apache. Similarly to Linux, only two bugs fall outside the
two categories (one in Marlin and one in Apache). In total
(the X column), the contents of VBDb amounts to 49 bugs in
some-enabled configurations, and another 45 bugs in some-
enabled-one-disabled. Only four configurations fall outside
the two main categories identified.

Testing of highly-configurable systems is often approached
by testing one or more mazximal configurations, in which
as many features as possible are enabled—in Linux this is
done using the predefined configuration allyesconfig. This
strategy allows to find many bugs with some-enabled presence
conditions simply by testing one single maximal configuration.
But, if negated features occur in practice as often as in our
sample, then testing maximal configurations only, will miss
a significant amount of bugs.

CONFIRMED OBSERVATION 9: A one-disabled test-
ing strategy, with a sample size bounded by the
number of features, would find 96% of bugs in
our collection.

We propose a one-disabled configuration testing strategy,
which considers a maximal configuration and then disables
each of the individual features, one by one.

Figure 15 compares the two strategies, all-enabled (max-
imal) configuration testing and one-disabled configuration
testing. The sample size is the number of configurations

generated by the given formula (an upper bound). For the
all-enabled strategy this number is approximate: in prac-
tice, since feature models are underconstrained [43], a small
number of configurations will suffice for real systems (thus
constant in practice). In the worst case all-enabled degrades
to one-enabled (the dual of one-disabled), but the authors
have yet to see a pathological system like that. For one-
disabled, the size of the sample is always at most |F|, the
maximum occurs if all features can be disabled independently.

The benefit is measured as bug coverage for our sample:
for each strategy we check what percentage of bugs in our
database would be detected by them. We also add an entry
for exhaustive testing of all configurations, serving as a base-
line. For exhaustive testing, the sample size is exponential
in |F|. This is in practice reduced by feature constraints,
but not below the exponential growth due to sparsity of
the constraints, at least not in highly configurable systems
(some software product lines, in contrast, have very small
configuration spaces).

All-enabled (maximal) appears to be a fairly good heuris-
tic intercepting exactly half of the bugs in our sample at
a constant cost (in terms of the number of configurations
considered). 49 out of 98 the bugs could be found this way.
One-disabled configuration testing has a linear cost in F and
thus can scale reasonably well. Remarkably, 96% of the bugs
in VBDb (94 out of 98) could be found by testing the |F| one-
disabled configurations. Note that these configurations also
find the bugs with a some-enabled presence condition (except
for the hypothetical configuration requiring all features to
be enabled).

In practice, we must consider the effect of the feature model
in the testing strategy. Because some features depend on
others to be present, we often cannot disable features individ-
ually. A [Max]SAT solver is required in order to enumerate
the configurations to test, while selecting valid configura-
tions only. We expect that enumerating valid one-disabled
configurations would be tractable, given the scalability of
modern SAT solvers (hundreds of thousands of variables and
clauses), the size of real-world program families (more often
only hundreds of features) and sparsity of their constraint
systems [43].

The proposed one-disabled sampling strategy is related
to other well-established strategies discussed in literature,
including the most popular ¢-wise (also known as combinato-
rial interaction testing [18, 20, 13]), as well as other heuristic
strategies such as all-enabled, all-disabled, code-coverage [53,
54, 52] and random sampling strategies. Medeiros et al. [39]
executed a comparative quantitative study of effectiveness
of various sampling strategies for testing and analysis of
configurable systems, including all the above, one-disabled'’
and its dual version, one-enabled, added for symmetry. Like
suggested above, they use a solver to enumerate (almost
perfectly) one-disabled and one-enabled configurations that
satisfy feature constraints.

For large sampling problems, and in the present of feature
constraints, Medeiros et al. report that one-disabled finds
more bugs than pair-wise testing, and it scales better [39].
In fact, one-disabled is the only non-trivial method that is
able to scale to all of the Linux kernel among those that they
studied. None of the t-wise methods do. Besides one-disabled,

YThe one-disabled strategy was known to them thanks to
personal communication with the authors of the present
paper who proposed the strategy in an earlier version [1].

only the simple sampling strategies scale, but with worse
fault detection rate (one-enabled, all-enabled, all-disabled,
and random sampling). It appears though that classic combi-
natorial interaction testing techniques are a better choice for
small configuration spaces. We refer the reader to the origi-
nal work of Medeiros et al. for a much more comprehensive
discussion, including the delimitation of conclusion threats.

Conclusion for RQ2

Let us answer RQ2 now. It is a well-known fact that an ex-
ponential number of variants makes it difficult for developers
to understand and validate the code, but:

Conclusion 2: In addition to introducing an ex-
ponential number of program variants, variability
increases the complexity of bugs along several
dimensions:

— Bugs occur because the implementation of features
is intermixed, leading to undesired interactions, for
instance, through program variables;

— Interactions occur between features from different sub-
systems, demanding cross-subsystem knowledge from
the developers;

— Variability may be implicit and even hidden in alterna-
tive or conditionally defined function, macro, variable,
and type definitions specified at remote locations;

— Variability bugs are the result of errors in the code, in
the mapping, in the feature model, or any combination
thereof;

Further, each of these layers involves different languages
(e.g., C, Cpp, GNU MAKE and KCONFIG for Linux);

— Not all these bugs will be detected by maximal configu-
ration testing due to interactions with disabled features;

— The existence of compiler errors in committed code
trees shows that conventional feature-insensitive tools
are not enough to find variability bugs.

7. THREATS TO VALIDITY

We now consider first internal, then external validity.
7.1 Internal Validity

Bias due to selection process. As we extract bugs from
commits, our collection is biased towards bugs that were
not only found and reported, but also fixed. Since users
run a small subset of possible configurations, and developers
lack feature-sensitive tools, potentially only a subset of bug
categories and properties is found this way.

Further, our keyword-based search relies on the compe-
tence of developers to properly identify and report variability
in bugs. Note, however, that in our subject systems, vari-
ability is ubiquitous and often “hidden”. For instance, in
Linux the ath3k bluetooth driver module file contains no
explicit variability, yet after variability-preserving prepro-
cessing and macro expansion we can count thousands of
CPP conditionals involving roughly 400 features. It is then
unlikely that developers are always aware of the variability
nature of the bugs they fix. So certain kinds of bugs involv-
ing variability might have been missed, as they were not

166

clearly identified as such by developers. Additionally, note
that we focused on semantic variability errors that have been
confirmed by the developers, minimizing the risk of studying
fictitious problems. Syntactic variability errors consist of a
small percentage of bugs. In fact, researchers have found
that syntactic variability errors are indeed not common [40].
For this reason, we focused on this range that seems most
relevant. Anything beyond that it is out of the scope of the
paper.

In order to further minimize the risk of introducing false
positives, we do not record bugs if we fail to extract a sensible
error trace, or if we cannot make sense of the pointers given
by the commit author. This may introduce bias towards
reproducible and lower complexity bugs.

Because of inherent bias of a detailed qualitative analysis
method, we are not able to make quantitative observations
about bug frequencies and properties of the entire popu-
lation of bugs like representativeness in Marlin, BusyBox,
Apache, and Linux. Note, however, that we are able to make
qualitative observations such as the existential confirmation
of certain kinds of bugs (cf. Sect.5). Since we only make
such observations, we do not need to mitigate this threat
(interestingly though, our collection still exhibits very wide
diversity as shown in Sect. 5).

False positives and overall correctness. The analysis of the
bugs is not run by domain experts, which introduces the
risk of mistaken identification of bugs. This also applies to
determining the presence condition of each bug (under which
configurations the bug does and does not occur). By only
considering variability bugs that have been identified and
fixed by the developers, we mitigate the risk of introduc-
ing false positives. We only take bug-fixing commits from
the subjects repositories, the commits of which have been
reviewed by other developers and, particularly, by a more
experienced maintainer. All of our data have been validated
by at least two researchers.

In addition, our data can be independently verified since it
is publicly available. The risk of introducing false positives
is not zero though, for instance, Linux commit blcc4c55c69
adds a nullity check for a pointer that is guaranteed not to
be null.?° It is tempting to think that the above indicates a
variability bug, while in fact it is just a conservative check
to detect a potential bug.

The manual analysis of a bug to extract an error trace is
also error prone, especially for a language like C and com-
plex systems such as Marlin, BusyBox, Apache, and Linux.
Ideally, we should support our manual analysis with feature-
sensitive program slicing, if it existed. A more automated
approach based on bug-finders would not be satisfactory.
Bug-finders are built for certain classes of errors, so they
can give good statistical coverage for their particular class of
errors, but they would not be able to assess the diversity of
bugs that appear.

We derive simplified bugs based on manual slicing, filtering
out irrelevant statements. We also abstract away C language
features such as structs and dynamic dispatching via function
pointers. While the process is systematic, it is performed
manually and consequently error prone.

7.2 External Validity

*Ohttps://1knl.org/lkml/2010/10/15/30
167

Preprocessors. Our study is dedicated and tailored to a par-
ticular technique for dealing with variability: preprocessors.
Since developers often use preprocessors [23, 33, 37], which
is a well-known technique, mainly in industry, to implement
features in the code level. Generalization to other variability
techniques is not intended.

Number of bugs. The size of our sample speaks against the
generalizability of the observations. However, as we explained
before, we firstly analyzed a diverse set of 42 variability bugs
in an exploratory manner (cf. our previous work [1]). Then,
we took three others highly-configurable systems (Marlin,
BusyBox, and Apache) and analyzed another 55 bugs to
reinforce our observations, following a confirmatory case
study research method. We also added a 43" Linux bug,
which came from an external contributor. The process of
collecting and especially analyzing these 98 bugs cost several
man-months, which makes a study of a much larger number
of bugs infeasible. We hope that our database will continue
to grow, also from third-party contributions, in the future.

Simplicity bias. Since we considered bugs that were already
found, reported, confirmed, and fixed, our collection might
be biased towards simpler rather than more complex bugs.
Presumably, however, this bias mainly applies to bugs that
do not manifest themselves with clear symptoms. Bugs
causing real problems obviously stand a higher chance of
being caught by the developers. We wanted to study a wider
range of bugs occuring in real systems; for this reason, we
adopted a manual strategy rather than studying a narrower
set of errors for which bug finders happen to exist (and
scale to Linux). Note regarding external validity that even if
we had compiled a bug collection based on errors reported
by automated bug detection tools, we would still have had
a similar bias towards simplicity. After all, simpler bugs
are easier to find, not only for humans, but also for tools.
In addition, tools would introduce the additional risks of
studying fictitious problems disguised as false positive errors
reported by the tools.

Subject studies. We used four open-source highly-configurable
systems in our study: Marlin, BusyBox, Apache, and Linux.
These are qualitatively different systems in terms of size,
purpose, variability and complexity. Besides that, all have
different architectures and developers, which allows us to
draw slightly broader conclusions. However, we acknowledge
that our claims might not generalize to all other highly-
configurable systems, especially commercial ones, which re-
quire further investigation.

Usability of the data for other studies. All future studies using
this data should very carefully consider the threats described
above, following from the collection (for instance drawing
statistical conclusions solely based on this data is not sound).
Example good applications of this data are qualitative: one
can use it to extract new hypotheses, learn about properties
of problems, or pre-test hypotheses. Any actual statistical
hypotheses should be cross-checked on random samples of
bugs (this one is not random). Our main intention for use of
this data, is to scaffold tool development. Simplified bugs can
be used to build the tools faster and to experiment earlier.
The evaluation of the tools on our simplified bugs can show
feasibility of solving problems. Scalability should be tested
on the original (not simplified bugs). Precision and recall

should be measured on representative samples (this one is
not).

8. RELATED WORK

This paper extends previous work [1]. Beyond 42 bugs in
Linux, this paper confirms our previous hypotheses by consid-
ering 55 variability bugs from three other highly configurable
systems: Marlin, BusyBox, and Apache. In terms of the
database, we added simplified patches and single-function
versions of all bugs.

We have divided this section into work on bug databases,
mining variability bugs, and methodologically related work.

8.1 Bug Databases

ClabureDB is a database of bug-reports for the Linux kernel
with similar purpose to ours [50], albeit ignoring variability.
Unlike ClabureDB, we provide a record with information
enabling non experts to rapidly understand the bugs and
benchmark their analyses. This includes a simplified C99
version of each bug were irrelevant details are abstracted
away, along with explanations and references intended for re-
searchers with limited kernel experience. The main strength
of ClabureDB is its size—the database is automatically pop-
ulated using existing bug finders. Our database is small. We
populated it manually, as no suitable bug finders handling
variability exist (which also means that none of our bugs is
covered in ClabureDB adequately).

Palix et al. reproduced an old analysis (from 2001) on
Linux to reevaluate and investigate the evolution of bugs in
Linux over the last decade [47]. The results are available
in a public archive.?’ This study has identified a series of
bugs and rule violations such as “do not use floating point
in the Linux kernel”. However, variability was not in their
focus. We in turn focus on qualitatively understanding the
complexity and nature of variability bugs. In addition, we
consider four qualitatively different open-source software
systems.

Do et al. provided an infrastructure to help the execution of
controlled experiments related to software testing techniques
[21]. The idea is to support reproducible experimentation
and minimize certain challenges when performing a new
study, such as the high costs when gathering proper artifacts
for the controlled experiment. To do so, the infrastructure
provides elements to execute test cases (e.g., oracles, test
classes, stubs, etc) and inputs to reveal faults. Similarly,
VBDb can also contribute to future studies and experiments,
but it is a more specific data infrastructure, since we focus
only on bugs related to variability. In this context, future
research can benefit, for example, from the simplified bugs
(which can reduce effort when compared to understanding the
actual bugs) and from the inputs, including configurations,
that reveal them. In addition, the database might be used
to conduct an empirical study to better understand how
developers introduce variability bugs in highly-configurable
systems. The work that introduces the infrastructure [21]
also includes a list of research already using and benefiting
from it. VBDb has also already been used in a variety of
recent publications [39, 29, 2].

8.2 Mining Variability Bugs

2nttp://faultlinux.1ip6.fr/

Nadi et al. mined the Linux repository to study wvariability
anomalies [45]. An anomaly is a mapping error, which can be
detected by checking satisfiability of Boolean formulas over
features, such as mapping code to an invalid configuration.
While we conduct our study in a similar way, we focus on a
broader class of semantic errors in code, including data- and
control-flow bugs.

Apel and coauthors use a model-checker to find feature in-
teractions in a simple email client [5], using a technique known
as variability encoding (configuration lifting [49]). Features
are encoded as Boolean variables and conditional compilation
directives are transformed into conditional statements. We
focus on understanding the nature of variability bugs widely.
This cannot be done with a model-checker searching for a
particular class of interactions. Understanding variability
bugs should lead to building scalable bug finders, enabling
studies like [5] to be run for Linux in the future.

Medeiros et al. have studied syntactic variability errors [40].
They used a variability-aware C parser [34] to automate their
bug finding and exhaustively find all syntax errors. They
found only few tens of errors in 41 families, suggesting that
syntactic variability errors are rare in committed code. We
focus on the wider category of more complex semantic errors.

Nadi et al. mine feature dependencies in preprocessor-based
program families to support synthesis of variability models
for existing codebases [44]. They infer dependencies from
nesting of preprocessor directives and from parse-, type-, and
link-errors, assuming that a configuration that fails to build
is invalid. Again, we consider a much wider class of errors
than can be detected automatically so far.

8.3 Methodologically Related Work

Tian et al. studied the problem of distinguishing bug fix-
ing commits in the Linux repository [57]. They use semi-
supervised learning to classify commits according to tokens
in the commit log and code metrics extracted from the patch
contents. They significantly improve recall (without lower-
ing precision) over the prior, keyword-based, methods. In
contrast, we use the keyword-based method for pragmatic
reasons. First, our main emphasis was on analyzing commits,
whereas finding them was secondary and not difficult for our
study. That is, in our study most of the time was invested
in analyzing commits, and not in using a precise method
with a high recall of finding potential bugs. Second, this
is a straightforward method to apply in any project that
stores historical information on changes. Thus, we found the
keyword-based method sufficient for our purpose.

Yin et al. collect hundreds of errors caused by misconfig-
urations in open source and commercial software [59] to build
a representative set of large-scale software systems errors.
They consider systems in which parameters are read from
configuration files, as opposed to systems configured stati-
cally. More importantly, they document errors from the user
perspective, as opposed to (our) programmer perspective.

Padioleau et al. studied collateral evolution of the Linux
kernel, following a method close to ours [46]. Collateral evo-
lution occurs when existing code is adapted to changes in
the kernel interfaces. They identified potential collateral
evolution candidates by analyzing patch fixes, and then man-
ually selected 72 for a more careful analysis. Similarly, they
classify and perform an in-depth analysis of their data.

9. CONCLUSION
168

Previously, we have conducted an exploratory case study of
variability bugs in Linux which led to nine testable hypothe-
ses [1]. We subsequently performed a confirmatory case study
involving three independent replications: Apache, BusyBox,
and Marlin. The study confirmed all hypotheses.

In total, we studied 98 variability bugs in four highly-
configurable systems. For each of the bugs, we analyzed
relevant variability properties and condensed our understand-
ing of each of these bugs into a self-contained C99 program
with the same variability properties. These simplified bugs
aid understanding the real bug and constitute a publicly
available benchmark for analysis tools. Also, we created
simplified patches, and single-function versions of the bugs
for evaluation of prototype and intraprocedural analyses.

We conclude that variability bugs are not confined to
any particular type of bugs, error-prone features, or specific
locations (see Section 5). Hence, analysis tools aiming to
find variability bugs in highly-configurable systems need to
be targeted widely at all types of bugs, all kinds of features,
and all subsystems.

We also characterize in what ways variability affects bugs
(see Section 6). In addition to introducing an exponential
number of program variants, variability increases the com-
plexity of bugs along several dimensions:

— Variability bugs may involve undesired feature-interactions

(e.g., via program variables);

— Feature-interactions may span multiple subsystems (de-
manding cross-subsystem knowledge);

— Variability may be implicitly hidden in configuration-
dependent definitions;

— Variability bugs may occur in multiple layers (code,
mapping, and/or model)

— These layers involve different languages (e.g., C, Cpp,
GNU MAKE and KCONFIG for Linux);

— Variability bugs may involve disabled features (thus
not all variability bugs will be detected by maximal
configuration testing); and

— The existence of compiler errors in committed code
trees shows that conventional feature-insensitive tools
are not enough to find variability bugs.

A natural direction to continue this work would be to design
quantitative studies to confirm our qualitative observations.
Such studies can be designed in two directions: either by
building suitable tools and applying them massively to the
available historical source code, or by designing controlled
experiments when programmers are observed during pro-
gramming, with attention to bug finding and bug fixing
tasks. Observing bug introduction however is very difficult
in a quantitative manner, and would have to be done quali-
tatively.

Some of these observations may lead to better sampling
strategies for configurable systems, or optimizations for
family-based analysis, which is our main envisioned direc-
tion for the future. This work has already influenced a
quantitative study on the effectiveness of sampling strate-
gies for configurable systems [39]. Additionally, Tosif-Lazar
et al.[29] used our dataset to evaluate their variability-
related transformations, which translate program families

169

into single programs by replacing compile-time variability
with run-time variability. Al-Hajjaji et al. [2] also used our
database to derive a set of mutation operators for software
with preprocessor-based variability. We thus hope that our
variability bugs database will continue being useful to the
variability research community, especially to designers of
program analysis and bug finding tools. At the same time,
we also hope that the community can contribute to the use-
fullness of this data by providing new bug reports and new
simplified bugs. The VBDb project allows contributions as
pull requests against its bitbucket repository and as discus-
sion comments in the online website.

Acknowledgments

We thank Linux kernel developers, Jesper Brouer and Ma-
tias Bjgrling. Nicolas Dintzner pointed us to an interesting
commit that became the 43rd Linux bug in our database.
This work has been supported by The Danish Council for
Independent Research under a Sapere Aude project, VARI-
ETE. Jean Melo is funded by the Brazilian program Science
without Borders, grant no.249020/2013-0.

10. REFERENCES

[1] I. Abal, C. Brabrand, and A. Wasowski. 42 variability
bugs in the linux kernel: A qualitative analysis. In
Proceedings of the 29th IEEE/ACM International
Conference on Automated Software Engineering, ASE
’14, 2014.

[2] M. Al-Hajjaji, F. Benduhn, T. Thiim, T. Leich, and
G. Saake. Mutation operators for preprocessor-based
variability. In Proceedings of the Tenth International
Workshop on Variability Modelling of
Software-intensive Systems, VaMoS 16, pages 81-88,
New York, NY, USA, 2016. ACM.

[3] S. Apel, D. Batory, C. Késtner, and G. Saake.
Feature-Oriented Software Product Lines.
Springer-Verlag, 2013.

[4] S. Apel, C. Kistner, A. Grosslinger, and C. Lengauer.
Type safety for feature-oriented product lines.
Automated Software Engineering, 17, 2010.

[5] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and

D. Beyer. Detection of feature interactions using

feature-aware verification. In Proceedings of the 26th

IEEE/ACM International Conference on Automated

Software Engineering (ASE’11), Lawrence, USA, 2011.

IEEE Computer Society.

D. Benavides, S. Segura, and A. R. Cortés. Automated

analysis of feature models 20 years later: A literature

review. Inf. Syst., 35(6):615-636, 2010.

[7] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,

K. Czarnecki, and A. Wasowski. A survey of variability

modeling in industrial practice. In S. Gnesi, P. Collet,

and K. Schmid, editors, VaMoS. ACM, 2013.

T. Berger, S. She, R. Lotufo, A. Wasowski, and

K. Czarnecki. A study of variability models and

languages in the systems software domain. IEEE Trans.

Software Eng., 39(12).

[9] E. Bodden, T. Tolédo, M. Ribeiro, C. Brabrand,

P. Borba, and M. Mezini. SPL*FT _ statically
analyzing software product lines in minutes instead of
years. In PLDI’13, 2013.

[6

8

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

24]

[25]

E. Bounimova, P. Godefroid, and D. Molnar. Billions
and billions of constraints: Whitebox fuzz testing in
production. In Proceedings of the 2018 International
Conference on Software Engineering, ICSE ’13,
Piscataway, NJ, USA, 2013. IEEE Press.

D. Bovet and M. Cesati. Understanding the Linux
Kernel. O’Reilly Media, 2005.

C. Brabrand, M. Ribeiro, T. Tolédo, J. Winther, and
P. Borba. Intraprocedural dataflow analysis for
software product lines. Transactions on
Aspect-Oriented Software Development, 10, 2013.

K. Burr and W. Young. Combinatorial test tech-
niques: Table-based automation, test generation and
code coverage. In In Proc. of the Intl. Conf. on
Software Testing Analysis € Review, 1998.

W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for finding dynamic programming errors.
Softw. Pract. Exper., 30(7), June 2000.

M. Calder, M. Kolberg, E. H. Magill, and

S. Reiff-Marganiec. Feature interaction: A critical
review and considered forecast. Comput. Netw., 41(1),
2003.

A. Classen, P. Heymans, P.-Y. Schobbens, and

A. Legay. Symbolic model checking of software product
lines. In ICSE, 2011.

A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model checking lots of systems:
efficient verification of temporal properties in software
product lines. In ICSE’10, Cape Town, South Africa,
2010. ACM.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437-444, 1997.

K. Czarnecki and K. Pietroszek. Verifying
feature-based model templates against well-formedness
OCL constraints. In Proceedings of the 5th
international conference on Generative programming
and component engineering, GPCE 06, New York, NY,
USA, 2006. ACM.

S. R. Dalal, A. J. N. Karunanithi, J. M. L. Leaton,
G. C. P. Patton, and B. M. Horowitz. Model-based
testing in practice. In Proc. of the Intl. Conf. on

Software Engineering (ICSE ’99), pages 285-294, 1999.

H. Do, S. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical
Software Engineering: An International Journal,
10:405-435, 2005.

N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a
Realistic Tool for Statically Detecting All Buffer
Overflows in C. SIGPLAN Not., 38(5), 2003.

M. D. Ernst, G. J. Badros, and D. Notkin. An empirical
analysis of ¢ preprocessor use. [IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, 28(12):2002, 2002.
D. Evans. Static detection of dynamic memory errors.
SIGPLAN Not., 31(5), 1996.

C. L. Goues, S. Forrest, and W. Weimer. Current
challenges in automatic software repair. Software
Quality Journal, 21(3):421-443, 2013.

(26]

27]

(28]

29]

(30]

[37

(38]

39]

A. Gruler, M. Leucker, and K. D. Scheidemann.
Modeling and model checking software product lines. In
FMOODS, 2008.

G. Holl, M. Vierhauser, W. Heider, P. Griinbacher, and
R. Rabiser. Product line bundles for tool support in
multi product lines. In VaMoS, 2011.

D. Hovemeyer and W. Pugh. Finding more null pointer
bugs, but not too many. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE 07, New
York, NY, USA, 2007. ACM.

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand,
and A. Wasowski. Effective analysis of C programs by
rewriting variability. CoRR, abs/1701.08114, 2017.

K. Kang, S. Cohen, J. Hess, W. Nowak, and

S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Tech. Rep. CMU/SEI-90-TR-21,
CMU-SEI, 1990.

C. Késtner. Virtual Separation of Concerns: Toward
Preprocessors 2.0. PhD thesis, Marburg, Germany,
2010.

C. Késtner and S. Apel. Type-checking software
product lines - a formal approach. In Proceedings of the
23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE’08), L’ Aquila,
Ttaly, 2008.

C. Kastner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, pages 311-320, New York, NY, USA, 2008.
ACM.

A. Kenner, C. Késtner, S. Haase, and T. Leich.
Typechef: Toward type checking #ifdef variability in c.
In Proceedings of the 2Nd International Workshop on
Feature-Oriented Software Development, FOSD 10,
New York, NY, USA, 2010. ACM.

C. H. P. Kim, E. Bodden, D. Batory, and S. Khurshid.
Reducing configurations to monitor in a software
product line. In Ist International Conference on
Runtime Verification (RV), volume 6418 of LNCS,
Malta, 2010. Springer.

K. Lauenroth, K. Pohl, and S. Toehning. Model
checking of domain artifacts in product line engineering.
In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE
’09, pages 269-280, Washington, DC, USA, 2009. IEEE
Computer Society.

J. Liebig, S. Apel, C. Lengauer, C. Késtner, and

M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In
Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE
’10, pages 105-114, New York, NY, USA, 2010. ACM.
R. Love. Linux Kernel Development. Developer’s
Library. Pearson Education, 2010.

F. Medeiros, C. Késtner, M. Ribeiro, R. Gheyi, and

S. Apel. A comparison of 10 sampling algorithms for
configurable systems. In Proceedings of the 38th
International Conference on Software Engineering,
ICSE 16, pages 643-654, New York, NY, USA, 2016.
ACM.

170

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating
preprocessor-based syntax errors. In Proceedings of the
12th International Conference on Generative
Programming: Concepts & Experiences, GPCE 13,
New York, NY, USA, 2013. ACM.

J. Melo, C. Brabrand, and A. Wasowski. How does the
degree of variability affect bug finding? In Proceedings
of the 38th International Conference on Software
Engineering, ICSE 16, pages 679-690, New York, NY,
USA, 2016. ACM.

J. Melo, F. B. Narcizo, D. W. Hansen, C. Brabrand,
and A. Wasowski. Variability through the eyes of the
programmer. In Proceedings of the 25th International
Conference on Program Comprehension, ICPC 17,
pages 34-44, Piscataway, NJ, USA, 2017. IEEE Press.
M. Mendonga, A. Wasowski, and K. Czarnecki.
Sat-based analysis of feature models is easy. In

D. Muthig and J. D. McGregor, editors, Software
Product Lines, 13th International Conference, SPLC
2009, San Francisco, California, USA, August 24-28,
2009, Proceedings, volume 446 of ACM International
Conference Proceeding Series, pages 231-240. ACM,
2009.

S. Nadi, T. Berger, C. Késtner, and K. Czarnecki.
Mining configuration constraints: Static analyses and
empirical results. In 36th International Conference on
Software Engineering (ICSE’14), 2014.

S. Nadi, C. Dietrich, R. Tartler, R. C. Holt, and

D. Lohmann. Linux variability anomalies: what causes
them and how do they get fixed? In T. Zimmermann,
M. D. Penta, and S. Kim, editors, MSR. IEEE / ACM,
2013.

Y. Padioleau, J. L. Lawall, and G. Muller.
Understanding collateral evolution in linux device
drivers. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer

Systems 2006, EuroSys 06, New York, NY, USA, 2006.

ACM.

N. Palix, G. Thomas, S. Saha, C. Calves, J. Lawall, and
G. Muller. Faults in linux: Ten years later. SIGARCH
Comput. Archit. News, 39(1):305-318, Mar. 2011.

L. Passos, L. Teixeira, D. Nicolas, S. Apel,

A. Wasowski, K. Czarnecki, P. Borba, and J. Guo.
Coevolution of variability models and related software
artifacts: A fresh look at evolution patterns in the linux
kernel. Empirical Software Engineering, Springer, To
appear 2015.

H. Post and C. Sinz. Configuration lifting: Verification
meets software configuration. In Proceedings of the 23rd
IEEE/ACM International Conference on Automated
Software Engineering (ASE’08), L Aquila, Italy, 2008.
IEEE Computer Society.

J. Slaby, J. Strejcek, and M. Trtik. ClabureDB:
Classified Bug-Reports Database. In R. Giacobazzi,

J. Berdine, and I. Mastroeni, editors, Verification,
Model Checking, and Abstract Interpretation, volume
7737 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013.

S. Stanciulescu, S. Schulze, and A. Wasowski. Forked
and Integrated Variants in an Open-Source Firmware
Project. In 31st International Conference on Software
Maintenance and Evolution, ICSME’15, 2015.

17

[52]

(53]

[54]

55

[56]

[57]

(58]

[59]

R. Tartler. Finding and burying Configuration Defects
in Linux with the undertaker. 2011.

R. Tartler, C. Dietrich, J. Sincero,

W. Schréder-Preikschat, and D. Lohmann. Static
analysis of variability in system software: The 90, 000
#ifdefs issue. In G. Gibson and N. Zeldovich, editors,
2014 USENIX Annual Technical Conference, USENIX
ATC 14, Philadelphia, PA, USA, June 19-20, 2014.,
pages 421-432. USENIX Association, 2014.

R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and

J. Sincero. Configuration coverage in the analysis of
large-scale system software. Operating Systems Review,
45(3):10-14, 2011.

The Institute of Electrical and Eletronics Engineers.
IEEE Standard Glossary of Software Engineering
Terminology. IEEE Standard, 1990.

T. Thiim, S. Apel, C. Késtner, I. Schaefer, and

G. Saake. A classification and survey of analysis
strategies for software product lines. ACM Computing
Surveys, 2014.

Y. Tian, J. Lawall, and D. Lo. Identifying linux bug
fixing patches. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012,
Piscataway, NJ, USA, 2012. IEEE Press.

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A
first step towards automated detection of buffer overrun
vulnerabilities. In NDSS. The Internet Society, 2000.
Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N.
Bairavasundaram, and S. Pasupathy. An empirical
study on configuration errors in commercial and open
source systems. In Proc. of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP 11,
New York, NY, USA, 2011. ACM.

A Quantitative Analysis of Variability
Warnings in Linux (Paper 2B)

A Quantitative Analysis of Variability Warnings in Linux

Jean Melo, Elvis Flesborg, Claus Brabrand, Andrzej Wasowski
IT University of Copenhagen, Denmark
{jeanmelo,efle,brabrand,wasowski}@itu.dk

ABSTRACT

In order to get insight into challenges with quality in highly-
configurable software, we analyze one of the largest open
source projects, the LINUX kernel, and quantify basic prop-
erties of configuration-related warnings. We automatically
analyze more than 20 thousand valid and distinct random
configurations, in a computation that lasted more than a
month. We count and classify a total of 400,000 warnings to
get an insight in the distribution of warning types, and the
location of the warnings. We run both on a stable and unsta-
ble version of the LINUX kernel. The results show that LINUX
contains a significant amount of configuration-dependent
warnings, including many that appear harmful. In fact, it ap-
pears that there are no configuration-independent warnings
in the kernel at all, adding to our knowledge about relevance
of family-based analyses.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors

General Terms

Experimentation

Keywords

Variability Warnings, Linux, Quantitative Analysis, Highly-
Configurable Systems, Preprocessors

1. INTRODUCTION

Modern highly-configurable systems include both large in-
dustrial product lines [6, 16, 3, 2] and open-source systems
of various sizes, up to the LINUX kernel with more than
twelve million lines of code and 15 thousand configuration
options (features) [4]. Features are used to tailor functional
and non-functional requirements of a system to the needs of
a particular customer. Features combined with a suitable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

VaMoS 16, January 27-29, 2016, Salvador, Brazil
© 2016 ACM. ISBN 978-1-4503-4019-9/16/01...$15.00
DOI: http://dx.doi.org/10.1145/2866614.2866615

reuse-oriented architecture and software development pro-
cesses, allow to increase adaptability while maintaining low
per-variant cost.

A multitude of technologies can be used to implement con-
figurable systems: object-oriented patterns, aspects, domain-
specific languages and code generation, plugin mechanisms,
and so on. Among these, the conditional compilation direc-
tives of the C preprocessor (CPP) are one of the oldest, the
simplest, and the most popular [7, 11, 8] mechanisms in use,
especially in the systems domain. Preprocessor directives,
like #ifdef and #endif, enclose the variable code that can
be included or excluded for different selections of features
(configurations).

It is commonly assumed that developing highly-configurable
systems—being a form of meta-programming—is more dif-
ficult than developing single-variant software. A clear chal-
lenge is that highly-configurable software can only be handled
one variant at a time by conventional software development
tools (static analyzers, compilers, testing tools, etc). Using
preprocessor just adds to this difficulty. Despite widespread
adoption, preprocessors obfuscate the source code, reduce
comprehensibility and increase error-proneness [17, 9].

In this short paper, we report on a simple, but extensive
experiment that investigates main properties of compilation
warnings appearing in different configurations (and two dif-
ferent trees) of the LINUX kernel project. We use sampling
[18] across many configurations to investigate what kind of
compilation warnings are most common, and configuration-
dependent, to see in which subsystems they appear, and
whether they are more likely to appear in unstable source
trees, than in stable releases.

We use warnings as a proxy for unintended quality issues.
Warnings are undesirable in mature code; it is a common
practice to disallow code with compilation errors from being
committed. Maintainers see warnings as a heuristic indica-
tion of low-quality code. Unfortunately, eliminating warnings
from highly-configurable code is difficult, because compil-
ers only report them for one configuration at a time. Also,
warnings are often produced using the same, or very similar,
static analysis techniques as used for detecting errors. Quan-
titative characteristics of warnings are thus interesting for
tool builders, who work on family-based static analysis tools.
First, they show that evaluating analysis tools on systems
of the size of the LINUX kernel using sampling is feasible.
Second, they show what kind of warnings appear frequently,
which allows to scope and prioritize work on lifted analyses
for these warnings (so that sampling is not necessary, and
warnings can be produced with higher reliability).

174

Warning statistics can be efficiently collected for a large
number of configurations. The very small number of compi-
lation errors, especially in stable releases, makes designing
quantitative studies difficult. Frequency of warnings is higher
than of errors. Moreover, compilation errors are often caused
not by mistakes, but by deficiencies of the build environment
(for instance absence of configuration-dependent dependen-
cies). Since classifying the cause of error cannot be done
automatically, collecting error distribution data automati-
cally is difficult, while it is entirely feasible for warnings.

Our study reveals that the most common warnings in-
volve dead code (warnings: unused-function and unused-
variable) and uninitializations. Interestingly, it appears
that no warnings are configuration independent in LINUX.
All warnings that survive the development process, and are
committed to the repositories, even in stable releases, are
configuration dependent. We also find that the drivers/ and
include/ subsystems contain most warnings, whereas there
is much less warnings in core subsystems kernel/ and secu-
rity/ of LiNUX. Additionally, we observe that the unstable
version contains more warnings than the stable version, indi-
cating that the LINUX process for preparing stable releases
does help to reduce configuration-dependent warnings.

We hope that indication of which areas are hot in warnings
can be useful for researchers working on bug finding in LINUX,
showing which subsystems are good candidates as analysis
subjects. Also the study seems to confirm the, commonly held
but rarely followed, recommendation to focus bug-finding
studies (especially, studies on building bug-finders) on unsta-
ble trees of LINUX, as opposed to stable. Moreover, our study
shows that the errors survive all the way to the stable ver-
sion, so the variability-aware tools could help to substantially
decrease the bug density in LINUX.

The paper is structured as follows. Section 2 describes the
study goal and methodology. Section 3 presents the data
and findings, followed by discussion of threats to validity in
Section 4. We summarize the related work in Section 5 and
conclude in Section 6.

2. OBJECTIVE AND METHOD

Our objective is to quantitatively analyze configuration-
dependent warnings in the LINUX kernel by checking a large
number of randomly generated configurations. This includes
addressing the following research questions:

RQ1: Are configuration-dependent warnings frequent
in the LINUX kernel? What are the most common
configuration-dependent warnings in LINUX?

RQ2: In which sub-systems of the LINUX kernel do most
configuration-dependent warnings occur?

RQ3: What are the differences regarding configuration-
dependent warnings between an in-development
version and a stable version of LINUX?

RQ1 allows us to assess quantitatively at a large scale whether
configuration-dependent problems are rare or common in the
Linux kernel project. RQ2 allows to see whether configuration-
dependent problems are more common in some areas than
others. RQ3 sheds light on choosing subjects for empiri-
cal studies of bugs, bug finding and evaluation of analysis
tools for the LINUX kernel. In this perspective this study is
exploratory: it informs selection of subject data for future
research on bug finding in the kernel and similar projects.

175

We follow a three-step method: First, we generate random
configurations. Second, we collect the warning messages re-
turned by a compilation. Third, we reflect on the aggregated
data to answer our research questions. We discuss details of
these steps below.

Generation of Random Configurations. We generate random
configurations using randconfig, a built-in facility of the
LiNuX kernel build system. It produces a file with configu-
ration (so called .config file), with values for all features
decided. This file is an input for the build system.

To the best of our knowledge, generating uniformly dis-
tributed solutions to a constraint system over 15 thousand
variables is not feasible with state of the art PSAT tools,
which leaves randconfig as a viable approximation. While
(possibly) not uniformly distributed, randconfig is a repro-
ducible mechanism. The randconfig mechanism guarantees
generating valid configurations, and thus so very efficiently
(within seconds).

Compiling and Data Collection. We compile each generated
configuration using the make all command with the Gcc
compiler, activating all warnings (the -Wall option), which
is a common and recommended practice in open source
development in C. We collect the warning messages. A
warning output contains a bug type, a filename, line number,
and a message describing the warning.

We repeat the experiment for two different versions of the
LINUX kernel: a latest stable, v4.1.1, and a two months old
in-development from the linux-next tree.® The random con-
figurations are selected from the x86 architecture of the Linux
kernel, which decreases the amount of technical problems
with building them on a single machine.

Data Analysis. After collecting all the data, we analyzed
the warning messages, classifying them by type and location
(sub-system).

Operation. The experiment has been carried out on two
machines, a 32 core, 2.8MHz, 128GB RAM server (average
time to generate and compile one configuration of around
1 minute and 35 seconds) and a conventional laptop with
a 4 core, 2.5 MHz CPU and 4 GB of RAM. We ran the
experiment for a month on these two machines which allowed
to compile 42,060 kernels of LINUX. Half of the compilations
were carried out on a stable version of LINUX, the other half
(in the same configurations) on an in-development version
of LINUX. In other words, we analyzed 21,030 valid and
distinct configurations in two different versions of the LINUX
kernel: a stable version and an unstable one, resulting in
42,060 compilations in total.

3. DATA ANALYSIS AND RESULTS

We now present the results of compiling 42,060 kernels (21K
in a stable version and 21K in an unstable version) of LINUX
using GCC with all warnings enabled. All compilations pro-
duced a total of 400,000 warnings (i.e., an average of about
ten warnings per compilation). The highest number of warn-
ings produced by a single compilation was 111 (warnings) and
226 configurations compiled without warnings. Obviously,
many of the same warnings are found over and over because
the same code base in which they occur is included in many
different configurations.

! next-20150402-22
https://git.kernel.org/cgit/linux/kernel /git/next/linux- next.git

| Warning [Percent
1 [unused-function 59 %
2 | maybe-uninitialized 45 %
3 | unused-variable 29 %
4 | uninitialized 19 %
5 | pointer-to-int-cast 17 %
6 | frame-larger-than= 14 %
7 | array-bounds 11 %
8 | return-type 8 %
9 | int-to-pointer-cast 8 %

10 | overflow 7%

11 | implicit-function-decl 6 %

12 | unused-label 5%

13 | deprecated-declarations 5 %

Figure 1: Most common warnings in the stable LINUX Kernel
(according to how many percent of configurations produce
the given kinds of warnings, when compiled).

The experiment materials are available online at https:
//github.com/elvios/quantify_linux_errors (including scripts,
notes, and reports).

RQ1: Most Common Warnings

Figure 1 shows the most common warnings occuring in the
stable version of LINUX. A warning is said to occur in a con-
figuration of LINUX, if a corresponding warning message ap-
pears as a result of compiling the configuration of LINUX. We
see that the most abundant warning is unused-functions;
functions that are declared, but not used. Such functions
are technically dead code, but do occupy memory. Gcc does,
in fact, not remove dead code such as unused functions and
unused variables.? To remove dead code, the GCC compiler
needs to be invoked with options -fdata-sections and -
ffunction-sections in order to keep data and functions in
separate sections; subsequently, the linker needs the -gc-
sections flag to be able to finally remove unused sections.
Interestingly, the removal of such dead code is not available
among the optimizations commonly employed in the LINUX
kernel; it is included in neither -00 (optimization level zero),
-01 (one), nor -02 (two). Note that LINUX ubiquitously runs
on many small embedded devices such as TiVo and similar
DVR devices, network routers, and smartwatches —even
credit-card sized single-computer boards such as Raspberry
Pi—where memory is a limited resource.

The second most common warning, maybe-uninitialized,
occurs in 45% of configurations; it occurs whenever GCC
determines the existence of an execution path from a vari-
able declaration to a usage without prior initialization. If
the uninitialization occurs along all paths, the warning is
strengthened to a (definitely) uninitialized which happens
in 19% of configurations. Such warnings are quite serious.
The third most common warning is unused-variable (oc-
curing in 29% of configurations); variables that are declared,
but not used. Such variables constitute dead code and will
take up space on the heap or stack and may thus translate
to wasted memory. In total, Figure 1 details the frequencies
of thirteen types of warnings commonly occuring in LINUX.

We are now ready to answer our first research question
with the observation that:

OBSERVATION 1A: The most common warnings in
the stable LINUX kernel involve dead code (warn-
ings: unused-function and unused-variable)

2 https://gcc.gnu.org/ml/gcc-help/2003-08/msg00128.html

| Subsystem | Absolute | Relative Warning
Directory Size Size | Percentage

1 | drivers/ 7,713 59 % 64 %

2 | include/ 423 3% 40 %

3 | crypto/ 69 1% 17 %

4 | fs/ 831 6 % 14 %

5 | net/ 631 5% 10 %

6 | arch/x86/ 235 2% 9 %

7 | lib/ 74 1% 9%

8 | mm/ 68 1% 8 %

9 | kernel/ 155 1% 6 %

10 | sound/ 659 5% 4%
11 | block/ 24 0 % 1%
12 | security/ 50 0 % 0 %

Figure 2: Rank of subsystems in the stable LINUX Kernel
(according to how many percent of configurations produce
warnings, when compiled). Size is given in KLOC.

and uninitializations (warnings: uninitialized
and maybe uninitialized).

In terms of variability, it is interesting to note that none
of the warnings are at 100% which would be the case for
configuration-independent warnings. We notice from Figure 1
that all warnings in the stable LINUX seem dependent on
configurations (choice of enabled/disabled features). Hence:

OBSERVATION 1B: All warnings in LINUX appear
to be configuration-dependent (i.e., warnings that
occur in some configurations and not in others).

Finally, we observe that:

OBSERVATION 1¢: Most configurations appear to
contain warnings.

In fact, among our 21,030 configurations compiled in the
stable version, only 226 did not produce warnings. Even
though the LINUX kernel developers try to improve code
quality® —making sure that the code follows the coding style,
and eliminating the static code checker errors and warnings—
, it seems that dealing with variability (i.e., maintaining
thousands of features and their interactions) is complicated.

RQ2: Subsystems with Most Warnings

Figure 2 shows the frequency of warnings in the stable version
of LINUX, according to the subsystems in which they occur.
(Note that we use directories as proxies for subsystems.) We
present both absolute and relative size for each subsystem,
in which we normalize the subsystem size by dividing it by
the total size (= 13 MLOC). A warning is said to occur in
a subsystem, if a corresponding warning message appears
designating a location within the given subsystem. In the fol-
lowing, we disregard smaller subsystems below ten thousand
lines of code: virt/ (6.8 KLOC), ipc/ (6.4k), init/ (2.0k),
and usr/ (0.6k). We also disregard LINUX infrastructure such
as tools/ (102k), scripts/ (44k), and samples/ (2.1k).

The subsystem most frequently producing warnings is also
the largest subsystem of LINUX with 7 MLOC: drivers/.
This subsystem produces warnings in more than half (64%)
of configurations. The subsystem include/ (a directory
with header files) causes warnings in almost half (40%) of
configurations.

3 https://www.kernel.org/doc/Documentation/SubmittingPatches

176

Warning [Stable | In-Dev.
unused-variable 29 % 51 %
int-to-pointer-cast 8 % 25 %
implicit-function-decl 6 % 23 %
frame-larger-than= 14 % 8 %

(a) Kinds of warnings.

Subsystem [Size | Stable [In-Dev.

arch/x86/ 235 9% 14 %
mm/ 68 8 % 13 %
kernel/ 155 6 % 3%
sound/ 659 4 % 2%

(b) Subsystems with most warnings.

Figure 3: Significant differences in warnings in the stable vs.
in-development version of LINUX.

Based on this data, we formulate our second observation,
related to our second research question:

OBSERVATION 2: The drivers/ subsystem and
include/ header files produce warnings in around
half of all configurations; whereas core subsystems
such as kernel/ and security/ rarely produce
warnings.

In particular, this means that sampling using randconfig
is likely to hit warnings in drivers/ and include/, but
unlikely to hit warnings in core subsystems such as kernel/
and security/. In case of using another sampling technique,
the result is still unclear (as the probability distribution of
randconfig is hard to describe).

RQ3: Stable vs. In-Development Version

Figure 3 shows a comparison of differences in warnings in
the stable versus the in-development version of LINUX.

Figure 3a charters significant differences in frequencies
of warning kinds in the two version. We see that variables
declared, but not used (unused-variables) proliferate in
the in-development version, occurring in twice as many con-
figurations as that of the stable version. Presumably, the
lack of rigorous testing that the stable version undergoes
before “release” does not reveal such superfluous declarations.
Also, (integer to pointer) type casts and implicit function
declarations seems to occur more frequently in configurations
in the (un-stable) development version. Only one kind of
warning, frame-larger-than=N, occurs less frequently in
the in-development version. This kind of warning is reported
when a function seems to require allocation of more mem-
ory on the stack than a compile-time given constant, N.
The remaining kinds of warnings do not spawn significant
differences between the two versions.

Figure 3b shows differences in the locations of warning
among the two versions of LINUX. The subsystems that has
a percentage point differnce lower than 2% are not shown.
We see warnings occur more frequently in the arch/x86/
and mm/ (memory management) subsystems. For subsystems,
kernel/ and sound/, we see a decline in the frequency of
warning-configurations.

Related to our third and final research question, we observe,
not surprisingly, that:

OBSERVATION 3: There appear to be more warn-
ings in the in-development version than the stable

177

version of LINUX (especially, unused variables,
type casts, and implicit function declarations).

This is interesting for two reasons. First, it shows that devel-
opers do fix many problems before the code becomes stable,
and if they had the right tools, this process could possibly be
speeded up. In fact, official LINUX kernel patch submission
guidelines encourage removing warnings to avoid clutter of
messages from the compiler.? The LINUX foundation also
urges the developers to heed the warnings produced by the
compiler:®

“Contemporary versions of gcc can detect (and
warn about) a large number of potential errors.
Quite often, these warnings point to real problems.
Code submitted for review should, as a rule, not
produce any compiler warnings. When silencing
warnings, take care to understand the real cause
and try to avoid “fizes” which make the warning
go away without addressing its cause.”

Second, it also shows that the errors survive all the way to
the stable version, so the variability-aware tools that would
be more precise or more accurate than the developers, could
help to substantially decrease the bug density in LINUX.
Overall, it seems that LINUX developers are good at fixing
issues in in-development versions for stable version releases.

4. THREATS TO VALIDITY

We now discuss internal and external threats to validity of
our experiment.

Internal Validity. Randomization? The built-in random
configuration generator that comes with LINUX, randconfig,
does not provide a perfect uniform distribution over the
entire space of valid configurations. Sequentially, for each
feature (according to the order in the KCONFIG files), a
coin toss will decide whether a feature should be enabled
or disabled (provided choices for previous features have not
already determined a unique choice). Hence, it is biased
towards features higher up in the feature model tree. We use
randconfig because it is the official randomized configuration
strategy LINUX developers use randconfig, in practice, to
generate valid random configurations.

Feature differences? In the in-development LINUX version,
there are 20 features more than in the stable version. For
this reason, we create configurations for the in-development
version, and then re-use those for the stable version. This
might result in some unknown feature being set on the stable
version, but there will be no code corresponding to the
features, so no harm is done.

Error filtering? Finally, we filtered out erroneous configu-
rations (17% of all generated configurations). As previously
mentioned, errors were dominated by build errors caused by
our hardware and installation environment. Hence, we dis-
card errors and focus on warnings as indicators of quality. In
particular, when building certain firmware drivers in LINUX,
external proprietary drivers are needed before they can be
built. This firmware is not in the kernel code, but must be
downloaded from the hardware vendors homepages. In this

4 https://www.kernel.org/doc/Documentation/SubmittingPatches

https://www.linuxfoundation.org/content/
how- participate-linux-community-0

study, we did not include these firmware drivers, since they
are in a sense not a part of the open source LINUX kernel
and hence beyond the scope of this paper.

External Validity. Only 86 Architecture? We ran the
experiment only on the x86 architecture. In total, there are
more than 20 different architectures supported. The size of
arch/x86/ is 12% of that of arch/ (235 out of 2,025 thousand
lines of code). To run on all of the other architectures, we
would need to rig the build system with a cross-compiler
for every architecture and hardware, which is cumbersome
and error-prone. Obviously, this limits the generalizability
of our experiment with respect to architectures. Still, there
are more than 10 thousand features in the x86 architecture.

Other versions of Linuz? In 2008, based on randconfig,
LiNnuX developers started systematic sampling-based testing
by compiling (and booting) thousands of random configura-
tions of LINUX (on different hardware), every day [5]. From
this, bug reports are automatically compiled and sent to rel-
evant developers (code authors). We thus expect significant
differences in occurences of warnings (and errors) before that
(i.e., before version 2.6.24)

Other systems? We decided to focus exclusively on LINUX,
so our findings do not automatically generalize to other
highly-configurable systems. The significance of the LINUX
kernel project itself justifies investigation, even at the cost
of limiting generalizability.

Warnings vs. real bugs? We do not know whether all
warnings constitute real bugs. For instance, the warning
maybe-uninitialized may be caused by an infeasible path
that the analyzer of the GcC compiler considers due to over
approximation. Similarly, a pointer-to-int-cast might be
legal, as encoding pointers as integers (or as void pointers)
is a pattern to implement generic data structures in LINUX.
Some other problems, like unused variables, might not be
immediate problems at all (unless memory consumption is
an issue in a particular piece of code). However, warnings
such as uninitialized, array-bounds and overflow may
represent real bugs. For example, an uninitialized warn-
ing occurs when the analyzer of the GCC compiler finds an
uninitialization that occurs along all paths, leading to a real
bug. Such warnings are quite serious. We found that 19% of
configurations contain an uninitialized warning.

S. RELATED WORK

Many studies have investigated errors in highly-configurable
systems, including LiNux [17, 10, 14, 15, 12, 1].

Abal et al. [1] have qualitatively identified 42 variability
bugs in the LINUX kernel. They observe that variability
bugs are not confined to any particular type of bug, (error-
prone) feature, or source code location. Our experiment
confirms these qualitative insights and complements them
with quantitative data.

Medeiros et al.[12] investigated syntactic errors in pre-
processor-based systems. They observed that developers
introduce syntax errors when changing existing code and
adding preprocessor directives. In this paper, rather than
syntactic errors, we study a variety of 33 warnings enabled
by the Gcc -Wall flag, including undeclared and unused
identifiers.

Medeiros et al. [13] have also conducted an empirical study
on configuration-related issues, specifically, investigating un-
declared and unused identifiers. They found 39 configuration-

related issues, including 14 (36%) undeclared functions, 2
(5%) undeclared variables, 7 (18%) unused functions, and
23 (41%) unused variables. In other words, they noticed
that 59% of the issues are related to unused functions and
variables. We complement this finding by generating ran-
domly thousands of configurations from the LINUX kernel, in
which we observed that the most abundant warning is unused
function and the third most is unused variable. Besides that,
we ranked both warnings and subsystems, e.g., the drivers/
subsystem and include/ header files produced warnings in
around half of all configurations we compiled; whereas core
subsystems such as kernel/ and security/ rarely produced
warnings.

Nadi et al. [15] mined the LINUX repository to study vari-
ability anomalies. An anomaly is a mapping error, which can
be detected by checking satisfiability of Boolean formulas
over features, such as mapping code to an invalid configura-
tion. We, in turn, focus on variability warnings in the LINUX
kernel from a quantitative perspective.

6. CONCLUSION

We have presented an experiment quantifying basic properties
of configuration-related warnings in the LINUX kernel. We
have automatically analyzed more than 20 thousand valid
and distinct random configurations.

We observe 13 different types of warnings appearing in
the LINUX kernel. The majority of these are regarding dead
code (e.g., unused variable) and uninitializations. We also
find that the drivers/ and include/ subsystems contain
warnings in about half of all configurations, whereas much
fewer warnings originate from the core subsystems kernel/
and security/. Additionally, we observe that there are
generally more warnings in the in-development version of
LiNUX than in the stable version.

Finally, we hope that indication of which areas are hot in
warnings can be useful for further research on bug finding
in LINUX, showing which subsystems are good candidates
as analysis subjects. Also, this study seems to confirm the,
commonly held but rarely followed, recommendation to focus
bug-finding studies on unstable trees of LINUX, as opposed
to stable. Moreover, our study shows that the errors survive
all the way to the stable version, so the variability-aware
tools could help to substantially decrease the bug density in
LiNux.

As future work, we aim to evaluate whether the current
results hold for another technique that generates random
configurations instead of randconfig (as the probability
distribution of randconfig is not thoroughly representative).

Acknowledgments. We thank Rene Rydhof Hansen for feed-
back and encouraging us to pursue publication of these re-
sults. Melo is funded by Brazilian Science without Borders
Programme, CNPq grant no. 249020/2013-0.

7. REFERENCES

[1] I. Abal, C. Brabrand, and A. Wasowski. 42 Variability
Bugs in the Linux Kernel: A Qualitative Analysis. In
Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE
14, pages 421-432, New York, NY, USA, 2014. ACM.

[2] T. Berger, D. Nair, R. Rublack, J. M. Atlee,
K. Czarnecki, and A. Wasowski. Three cases of
feature-based variability modeling in industry. In

178

[10]

[11]

[12]

[13]

[14]

ACM/IEEE 17th International Conference on Model
Driven Engineering Languages and Systems
(MODELS), 2014.

T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. Wasowski. A survey of variability
modeling in industrial practice. In Proceedings of the
Seventh International Workshop on Variability
Modelling of Software-intensive Systems, VaMoS 13,
pages 7:1-7:8, New York, NY, USA, 2013. ACM.

T. Berger, S. She, R. Lotufo, A. Wasowski, and

K. Czarnecki. A study of variability models and
languages in the systems software domain. Software
Engineering, IEEE Transactions on, 39(12):1611-1640,
Dec 2013.

Y. Chen, F. Wu, K. Yu, L. Zhang, Y. Chen, Y. Yang,
and J. Mao. Instant bug testing service for linux kernel.
In High Performance Computing and Communications
2013 IEEE International Conference on Embedded and
Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th
International Conference on, pages 1860-1865, Nov
2013.

P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

M. D. Ernst, G. J. Badros, and D. Notkin. An empirical
analysis of C preprocessor use. IEEE Transactions on
Software Engineering, 28:1146-1170, 2002.

C. Kastner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the 30th
International Conference on Software Engineering
(ICSE), pages 311-320. ACM, 2008.

M. Krone and G. Snelting. On the inference of
configuration structures from source code. In
Proceedings of the 16th International Conference on
Software Engineering (ICSE), pages 49-57. IEEE
Computer Society Press, 1994.

D. Le, E. Walkingshaw, and M. Erwig. #ifdef
confirmed harmful: Promoting understandable software
variation. In IEEE International Symposium on Visual
Languages and Human-Centric Computing (VL/HCC),
pages 143-150, 2011.

J. Liebig, S. Apel, C. Lengauer, C. Késtner, and

M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE), pages
105-114. ACM, 2010.

F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating
preprocessor-based syntax errors. In Proceedings of the
12th International Conference on Generative
Programming: Concepts & Experiences, GPCE, pages
75-84. ACM, 2013.

F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and
R. Gheyi. An empirical study on configuration-related
issues: Investigating undeclared and unused identifiers.
In Proceedings of the 2015 ACM SIGPLAN
International Conference on Generative Programming:
Concepts and Ezxperiences, GPCE 2015, pages 35-44,
New York, NY, USA, 2015. ACM.

J. Melo and P. Borba. Improving modular reasoning on
preprocessor-based systems. In Software Components
Architectures and Reuse (SBCARS), Seventh Brazilian
Symposium on, pages 11-19, 2013.

179

(15]

(16]

(17]

(18]

S. Nadi, C. Dietrich, R. Tartler, R. Holt, and

D. Lohmann. Linux variability anomalies: What causes
them and how do they get fixed? In Mining Software
Repositories (MSR), 2013 10th IEEE Working
Conference on, pages 111-120, May 2013.

K. Pohl, G. Bockle, and F. J. van der Linden. Software
Product Line Engineering. Springer, 2005.

H. Spencer and G. Collyer. #ifdef considered harmful,
or portability experience with C news. In Proceedings
of the Usenixz Summer Technical Conference, pages
185-198. Usenix Association, 1992.

T. Thiim, S. Apel, C. Késtner, 1. Schaefer, and

G. Saake. A classification and survey of analysis
strategies for software product lines. ACM Comput.
Surv., 47(1):6:1-6:45, June 2014.

Effective Analysis of C Programs by
Rewriting Variability (Paper 3A)

Effective Analysis of C Programs by Rewriting Variability

Alexandru F. Iosif-Lazar?, Jean Melo?, Aleksandar S. Dimovski?, Claus
Brabrand?, and Andrzej Wasowski®

a IT University of Copenhagen, Denmark

Abstract Context. Variability-intensive programs (program families) appear in many application areas and
for many reasons today. Different family members, called variants, are derived by switching statically config-
urable options (features) on and off, while reuse of the common code is maximized.

Inquiry. Verification of program families is challenging since the number of variants is exponential in the
number of features. Existing single-program analysis and verification tools cannot be applied directly to pro-
gram families, and designing and implementing the corresponding variability-aware versions is tedious and
laborious.

Approach. In this work, we propose a range of variability-related transformations for translating program fam-
ilies into single programs by replacing compile-time variability with run-time variability (non-determinism).
The obtained transformed programs can be subsequently analyzed using the conventional off-the-shelf single-
program analysis tools such as type checkers, symbolic executors, model checkers, and static analyzers.
Knowledge. Our variability-related transformations are outcome-preserving, which means that the relation
between the outcomes in the transformed single program and the union of outcomes of all variants derived
from the original program family is equality.

Grounding. We present our transformation rules and their correctness with respect to a minimal core im-
perative language IMP. Then, we discuss our experience of implementing and using the transformations for
efficient and effective analysis and verification of real-world C program families.

Importance. We report some interesting variability-related bugs that we discovered using various state-of-the-
art single-program C verification tools, such as FrRama-C, CLaNG, LLBMC.

ACM CCS 2012

= Software and its engineering - Software creation and management Software verification and validation;
Software notations and tools Formal language definitions;

Keywords Program Families, Variability-related Transformations, Verification, Static Analysis

The Art, Science, and Engineering of Programming

Submitted September 1, 2016
Published January 27, 2017

pol 10.22152/programming—journal.org/zig 1/1
© Alexandru F. Iosif-Lazar, Jean Mélo, Aleksandar S. Dimovski, Claus Brabrand, and An-

® drzej Wasowski
@ This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 1, no. 1, 2017, article 1; 25 pages.

Effective Analysis of C Programs by Rewriting Variability

EJ Introduction

Many software systems today are variability intensive. They permit users to derive
a custom variant by choosing suitable configuration options (features) depending
on their requirements. There are different strategies for implementing variational
systems (program families) [11]. Still, many popular industrial program families
from system software (e.g. Linux kernel) and embedded software (e.g. cars, phones,
avionics) domains are implemented using annotative approaches such as conditional
compilation. For example, #ifdef annotations from the C-preprocessor are used to
specify under which conditions, parts of the code should be included or excluded
from a variant.

Due to the increasing popularity of program families, formal verification techniques
for proving their correctness are widely studied (see [35] for a survey). Analyzing
program families is challenging [29]. From only a few compile-time configuration
options, exponentially many variants can be derived. Thus, for large variability-
intensive software systems, any brute-force approach that derives and analyzes all
variants individually one by one using existing single-program analysis tools is very inef-
ficient or even infeasible. Recently, many dedicated family-based (variability-aware)
analysis tools have been developed, which operate directly on program families. They
produce results for all variants at once in a single run by exploiting the similarities
between the variants. Examples of successful family-based analysis tools are applied to
syntax checking [25, 20], type checking [24, 8], static analysis [7, 6], model checking
[10, 14], etc. Although they are more efficient than the brute-force approach, still their
design and implementation for each particular analysis and language is tedious and
error prone. Often, these family-based tools are research prototypes implemented
from scratch. So it is very difficult to re-implement all optimization algorithms in them
that already exist for their single-program industrial-strength counterparts, which
have been under development for several decades.

Another approach for efficient variability-aware verification would be to replace
compile-time variability with run-time variability (or non-determinism) [37]. In
particular, in this work we consider a class of variability-related transformations that
transform a program family into a single program, whose outcomes are equal to the
union of all outcomes of individual variants. We call the corresponding transformations
outcome-preserving. Subsequently, existing single-program analysis tools (verification
oracles) that can handle non-determinism (run-time variability) can be used to analyze
the generated single program. Finally, the obtained results are interpreted back on
the individual variants. The overview of this approach is given in Figure 1. Instead of
using specialized variability-aware tools to analyze program families (which would
be tedious and labor intensive), our transformation-based approach allows us to use
the standard off-the-shelf single-program analysis tools to achieve the same goal.
Nevertheless, the limitation of our approach is that we may not obtain the most
precise conclusive results for all individual variants. Of course, this depends on the
particular analysis and tool that we use.

To demonstrate correctness of our transformation-based approach, we define the
transformations formally using IMP, a small imperative language. To model compile-

183

1-2

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

Variability-aware transform Single program

program
5 S
S . Sl
Iy X i‘i
~ ~
1k e
CER | S
gv 5
§ @
Variability-aware interpret results Single-program
results results

B Figure1 The overview of our transformation-based approach for verification of program
families. The single-program analyzer can be any verification oracle for single
programs, such as: symbolic executor, type checker, static analyzer, model checker.

time variability, we extend IMP with an “#ifdef” construct for encoding multiple
variants, which we call IMP language. To encode run-time variability, we extend IMP
with an “or” construct for encoding non-determinism, which we call IMPor language.
We define transformations that translate any given IMP program into a corresponding
IMPor program. Furthermore, for each transformation we show the relation between
the semantics of the input and output programs.

Finally, we report on our experience with implementing and applying our trans-
formations for a full-fledged language, C. The tool, called C RECONFIGURATOR, USes
variability-aware parser SUPERC [20] for parsing C code with preprocessor anno-
tations, then applies our variability rewrites thus producing a single C program as
output. We evaluate our approach on real-world variability intensive C programs with
real bugs. We show how some known off-the-shelf single-program analysis tools can
be used for efficient and effective verification of such programs.

In summary, this work makes the following contributions:

= A stand-alone variability-related transformation, which transforms a program fam-
ily into a single program by replacing compile-time variability with non-determinism.

= Correctness of the proposed transformation, which shows that the set of outcomes
of the transformed program is equal to the union of sets of outcomes of variants
from the input family.

= A prototype tool, C RECONFIGURATOR, which implements the above variability-
related transformation for the C language.

= An evaluation of the effectiveness of our transformation-based approach for finding
real variability bugs in large variability intensive C software systems.

EJ Motivating Example

We begin by showing how our variability transformations work on C program families.
Consider a preprocessor-based family of C programs shown in Figure 2 (left column),
which uses two (Boolean) features A and B. Our two features give rise to a family of
four variants defined by the set of configurations K = {AA B,AA -B,—AAB,—AA —B}.

184

Effective Analysis of C Programs by Rewriting Variability

intA:=rand()%?2;
int foo() { int B:=rand()%2;
int x:=1; int foo() {
#if (A) x:= x+1#endif; intx :=1;
#if (B) x:= x-1#tendif; if (A) x:= x+1;
return 2/x; if (B) x:= x-1;
} return 2/x; }

B Figure2 Before (left column) and after (right column) our transformations

For each configuration a different variant (single program) can be generated by
appropriately resolving #if statements. For example, the variant for AA B will have
both features A and B enabled (set to true), thus yielding the following body of foo():
intx:= 1;x:= x+1;x:= x-1; return 2/x. The variant for ~AA —B is: intx := 1;return 2/x.
In such program families, errors (also known as variability bugs [1]) can occur in some
variants (configurations) but not in others. In our example program family in Figure 2,
the variant —A A B will crash at the return statement when we attempt to divide by
zero. On the other hand, the other variants do not contain the division-by-zero error
since the value of x at the return statement is: 1 for variants AA B and "AA —B, and 2
for AN —B.

In Figure 2, we show a single program (right column) obtained by applying our
variability-related transformation on the family shown in the left column. All features
are first declared as ordinary global variables and non-deterministically initialized to o
or 1, then all #if statements are transformed into ordinary if-s with the same conditions.
Thus, the division-by-zero error is present in this single program and corresponds to
a trace when A is initialized to o and B to 1. The set of outcomes of the transformed
program (Figure 2, right column) is equal to the union of outcomes of all individual
variants from the family (Figure 2, left column). Therefore, the division-by-zero error
is present in the transformed program.

In general, the transformed program that we obtain from the original program
family can be analyzed by various single-program verification tools, in order to find
variability errors or to confirm the absence of errors in the given program family.

[E} AFormal Model for Transformations
We now introduce the IMP language that we use to demonstrate our transformations
and their proofs of correctness. We describe two extensions of IMP: IMPor used to

represent run-time variability (non-determinism), and IMP used to represent compile-
time variability.

185

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

3a IMP

We use a simple imperative language, called IMP [32, 34], which represents a regular
general-purpose programming language, aimed at the development of single programs.
IMP is a well established minimal language, which is used only for presentational
purposes here.

Syntax. IMP is an imperative language with two syntactic categories: expressions and
statements. Expressions include integer constants, variables, and binary operations.
Statements include a “do-nothing” statement skip, assignments, statement sequences,
conditional statements, while loops, and local variable declarations. Its abstract syntax
is summarized using the following grammar:

e = n| x| e®e
s = skip|x:=el|sq; s;]|if e then sy else s; |while e do s|var x:=e in's

In the above, n stands for an integer constant, x stands for a variable name, and &
stands for any binary arithmetic operator. We denote by Stm and Exp the set of all
statements, s, and expressions, e, generated by the above grammar.

Semantics. A state of a program is a store mapping variables to values (integer
numbers), Val = Z. We write Store = Var — Val to denote the set of all possible stores.
Expressions are computed in a given store, denoted by o. A function & : Exp x Store —
Val defined below by induction on e, maps an expression and a store to a single value,
thereby formalizing evaluation of expressions.

&n,c)=n, E(x,0) = o(x), E(eg®eq,0)=8(ep,0)®&E(eq,0)

Figure 3 presents the inference rules for a small-step operational semantics for IMP
[32, 34]. The notation o[x — n] denotes the state that maps x into n and all other
variables y into o(y). Following the convention popularized by C, we model Boolean
values as integers, with zero interpreted as false and everything else as true (see rules
If2 and Wha, respectively, Ift and Whi). Note that for variable declarations (see rules
Var1 or Var2) we need to restore the declared variable, x, to its earlier global value
assigned to x before the declaration, when the scope of declaration has completed.
That is why the statement s’ in intermediate configurations (rule Varr) is prefixed
with variable declarations whose initializations store the local values of x. We can
use the inference rules in Figure 3 to define the transition relation: (s, o) — y, where
y is either of the form (s’,0’) or of the form ¢’. If y is of the form (s’,o’) then the
execution of s is not completed and the complex statement s is rewritten into simpler
one s’, possibly updating the store ¢ into ¢’ (for instance, Seqr or Seq2). If y is of the
form o’ then the execution of s from o has terminated and the final state is o’ (for
instance, Skip or Wh2).

A derivation sequence of s starting in store o can be either a finite sequence (s,o) —
(s1,07) = ... > ¢’ (means: s is run in o and terminates successfully transforming o
to o’ in the process), or an infinite sequence (s,o) — (s;,0,) — ... (means: s diverges

186

1-5

Effective Analysis of C Programs by Rewriting Variability

n= é”(e, O') (SOr U) - ('56, OJ)
Skip - Asgn qr - y
(skip,o) > o (x:=e,0) > o[x—n] (s0351,0) = (s};51,07)
(500} = 0 &(e,0) #0
Sq2 Ift—
(sg351,0) = (s1,07) (if e then s, else s;,0) — (sq,0)
&le,0)=0 &le,0)#0
If2— Whi - -
(if e then s, else s;,0) — {(s1,0) {(while e dos,o) — (s;while e dos,o)
&(e,0)=0 n=2~&(e,0) (s,olx—n])— (s, 0')
Wha2 - Varzt - -
(while e dos,0) = o (var x:=e in s,0)—=(var x:=0”(x) in s’, o’ [x— o (x)])

n=¢&(,0) (s,o[x—n])—>o’
Var2

{(var x=e ins, o) = o’[x— o(x)]

B Figure3 Small-step operational semantics for IMP

when run in o). We write [[s]]o for the final store ¢’ that can be derived from (s, o)
(if the derivation is finite), i.e. (s,0) —* o', otherwise if the derivation is infinite
[s]lo is undefined (empty). In general, we define:

[[sI1= L.chGStore'”it [sllo

where Store'™* denotes the set of initial input stores on which s is executed.
3.2 IMPor

Syntax The language IMPor is obtained by extending IMP with a non-deterministic
choice operator ‘or’ which can non-deterministically choose to evaluate either of its
arguments.

e n= .| eyore

Semantics. Since we have non-deterministic construct ‘or’, it is possible for an ex-
pression to evaluate to a set of different values in a given store. Therefore, now we
have & : Exp x Store — & (Val) defined as follows:
g(n) O-) = {n}) é’(x, O-) = {O-(X)}) g(eo oreq, O-) = 60(60, O-) U g(el; O.)
E(eg®e1,0) ={vo @ vy | vy € E(ey,0),v1 € 8(ey,0)}
The small-step operational semantics rules for IMPor are those of IMP given in Figure 3,
but now they take into account the non-determinism of &(e, o). For example, we have:
neé&le,oc) n#0 0e&(e,0)

Wh
(while e do s, o) — (s;while e do s, o) ’ (while e dos,0) —» o

For IMPor, we write [[sJlo for the set of final stores ¢’ that can be derived from (s, o),
i.e. (s,0) »* o’. Note that since IMPor is a non-deterministic language [[s]Joc may
contain more than one final store. Finally, [s]] = |, cgoremit[sTlO

3.3 IMP

A finite set of Boolean variables F = {A;,...,A,} describes the set of available features
in the program family. Each feature may be enabled or disabled in a particular variant.

187

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

A configuration k is a truth assignment or a valuation which gives a truth value to
each feature, i.e. k is a mapping from F to {true, false}. If a feature A € I is enabled
for the configuration k then k(A) = true, otherwise k(A) = false. Any configuration
k can also be encoded as a conjunction of literals: k(A;)-A; A--- Ak(A,) - A,, where
true - A = A and false - A = —-A. We write K for the set of all valid configurations
defined over F for a family. The set of valid configurations is typically described
by a feature model [23], but in this work we disregard syntactic representations of
the set K. Note that |K| < 2/¥l, since, in general, not every combination of features
yields a valid configuration. We define feature expressions, denoted FeatExp, as the
set of well-formed propositional logic formulas over F generated using the grammar:

¢ i=true|A€F |- |p1 Apa| P71V Ps.

Syntax. The programming language IMP is our two-stage extension of IMP (thus,
IMP does not contain the ‘or’ construct). Its abstract syntax includes the same ex-
pression and statement productions as IMP, but we add the new compile-time con-
ditional statements for encoding multiple variants of a program. The new state-
ments “tif (¢) s #endif” and “#if (¢) var x:=n in #endif s” contain a feature expression
¢ € FeatExp as a presence condition, such that only if ¢ is satisfied by a configuration
k € K then the code between #if and #endif will be included in the variant for k.

s u=...| #if (¢) s #endif | #if (¢) var x:=n in #endif s

Note that only statements and local variable declarations can be compile-time con-
ditionally defined in IMP. However, in general “#if” constructs defined on arbitrary
language elements could be translated into constructs that respect the appropriate
syntactic structure of the language by code duplication [19]. Also note that the C
preprocessor uses the following keywords: #if, #ifdef, and #ifndef to start a conditional
construct; #elif and #else to create additional branches; and #endif to end a construct.
Any of such preprocessor conditional constructs can be desugared and represented
only by #if construct we use in this work, e.g. #ifdef (¢) s, #else s; #endif is translated
into #if (¢) so #tendif ; #if (—¢) s; #endif.

Semantics. The semantics of IMP has two stages: first, given a configuration k € K
compute an IMP single program without #if-s; second, evaluate the obtained variant
using the standard IMP semantics. The first stage is a simple preprocessor specified
by the projection function 7, mapping an IMP program family into an IMP single
program corresponding to the configuration k € K. The projection 7; copies all basic
statements of IMP that are also in IMP, and recursively pre-processes all sub-statements
of compound statements. For example, 7, (skip) = skip and 7, (sg;s1) = mr(s0); i (s1)-
The interesting case is “#if (¢) s #tendif” (resp., #if (¢) var x:=n in #endif s) statement,

188

Effective Analysis of C Programs by Rewriting Variability

where the statement s (resp., the local variable declaration var x:=n in) is included in
the resulting variant iff k |= ¢ | otherwise it is removed. We have:

.) ifkEd
. (#if (¢) s #tendif) = {skip K ¢

. . o ~_ | mlvar xi=nins) ifk=¢
T (#if (¢p) var x:=n in #endif s) = {nk(s) ik I o

Note that since any configuration k € K has only one satisfying truth assignment
(values of all features are fixed in k), either k |= ¢ or k [~ ¢ for any ¢ € FeatExp.

Variability-related Transformations

Our aim is to transform an input IMP program family 5 with sets of features F and
configurations K into an output IMPor program s

In a pre-transformation phase, we first convert each feature A € F into the variable
A, which is non-deterministically initialized to o or 1 (meaning to false or true). Let
F = {A,,...,A,} be the set of available features in the family s, then we have the
following initialization fragment in the resulting pre-transformed program pre-t(s):

pre-t(s)=var A;:=0orlin...varA,:=0o0rlins

Note that in the initialization we consider all possible combination of values for
features (in total 2/F1). We will take into account the specific set of configurations K
(K| < 2/ later on, in the transformation phase.

In the following, rewrite rules have the form:

Y ks s

meaning that: if the current program family being transformed matches any abstract
syntax tree (AST) node of the shape s nested under #if-s with the resulting presence
condition that implies v € FeatExp (i.e. in context v) then replace s by s’. Formally, if
we apply the rule ¢ F sws’ to a family:

W Hif () L. #if (@) .. .5s;.. . #endif. .. endif. ..
where ¢, A...A¢p, = 1, then we obtain the transformed program:
L HIT(Pp) .. H#IF (@) ...;87;. .. #endif... #endif. ..

We write Rewrite(s,ip + s s’) for the final transformed program s’ obtained by
repeatedly applying the rule ¢ F s~»s’ ons and its transformed versions until we
reach a point where this rule can not be applied (a fixed point of the rule). Note

" Here |= denotes the standard satisfaction relation of propositional logic.

189

1-8

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

that rules of the form: true F s~»s’, are the most general and can be applied to any
statement s no matter whether s is a top-level statement not nested within some #if
or s is nested somewhere deep within #if-s. This is due to the fact that any “s” can be
written as: “#if (true) s #endif” in the earlier case when s is a top-level statement, and
¢ = true for any ¢ € FeatExp in the latter case when s is nested within #if-s with
presence condition ¢.

We start with three rules for eliminating configurable variable declarations. They
involve duplicating code and variable renaming. The most straightforward way to
handle renaming of variables in different contexts is by adding an environment &
as a parameter to the statements being transformed. We define an environment
6 : Var x FeatExp — Var as a function mapping a given pair of a variable and a feature
expression to a variable name. We write 5™(x) C FeatExp for the set of all feature
expressions ¢ such that 5(x, ¢) is defined, i.e. §™(x) = {¢ € FeatExp | (x, ¢) € dom(5)}.
We write (s, 6) to denote the result of simultaneously substituting 6(x, ¢) for each
occurrence of any variable x in s in the context (presence condition) that implies ¢.

Conditional variable declaration. This rule transforms a local variable conditionally
declared within a given context v € FeatExp:

Y F (#if (¢) var x:=n in #endifs, 5) ~ var X,,,:=n in (s, 6[(X, §) — Xpew) ()

where x,,,, is a fresh variable name that does not occur as a free variable in s and
range(o).

Conditional variable use. The second rule handles the case when a local variable is
used within a context ¢ € FeatExp. There are three cases to consider here.

P F (y=e[x],8) w (y:=e[6(x, ¢)],6) (2.1)

if there exists an unique ¢ € 5%(x), such that 1) |= ¢. Here e[x] means that the
variable x occurs free in the expression e. The second case is when there are several

$1,...¢, € 5©(x), such that sat(¢p;A), ..., sat(¢,Ay):

Y F (y:=e[x], 8) w (#if (¢p1) v:=e[6(x, ¢p1)] #tendif;. .. #if (¢,,) y:i=e[6(X, ¢p,)] #endif, 5)
(2.2)

Otherwise, meaning that for all ¢ € 5™(x) it follows that unsat(¢ A1p), we have:
Y F (y:=e[x],6) - (y:=e[x], 5) (2.3)

Conditional variable define. The third rule applies when a local variable is assigned
to within a context 1) € FeatExp. There are three cases to consider here as well.

Y F (x=e,6) ~ (6(x,¢)=e),6 (3.0
when there exists an unique ¢ € 5*(x), such that y |=¢.

Y F (x=e,0) ~w (#if (1) 6(x, ¢pp):=e ttendif;... #if (¢,) 6(x, ¢,):=e #endif),d (3.2)
190

1-9

Effective Analysis of C Programs by Rewriting Variability

when there are ¢,... ¢, € §®(x), such that sat(¢;AY),...,sat(¢p,Av). Otherwise,
Y F (x=e,8) ~ (x=e,6) (3.3)

After applying the above three rules, all local variable declarations that are condi-
tionally defined (#if (¢) var x:=n in #endifs) are resolved. The transformed program
contains only #if-s where statements are conditionally defined.

Conditional statement elimination. The set of valid configurations K can be equated
to a propositional formula [4], say k € FeatExp, such that k = Vjcxk. The last rule
simply replaces #if-s with ordinary if-s whose guards are strengthen with the feature
model x, thus taking into account only valid configurations K of a family.

Y F #if (¢) s #endif ~ if (¢p Ax) then s else skip (4)

Note that we omit to write the environment 6 in rules that do not use it explicitly (e.g.
rules (4), (5)). Let 6, =[] be the empty environment. Let RewriteP™**"¢(pre-t(s), 5,)
be the final transformed program s’ obtained from the pre-transformed program
pre-t(s) by applying the rules (1)-(3), and then the rule (4). The following result
shows that the set of final answers from terminating computations of s’ coincides with
the union of final answers from terminating computations of all variants from s.

Theorem 1. Let s’ = RewriteP®™"e(pre-t(s), 5,). We have: [[s']] = Urex L)1

Proof. First, we show that RewriteP™®*™¢(pre-t(s),) terminates. This is due to the
fact the number of if-s in pre-t(s is finite, and by iteratively applying rules (1)-(3) we
eliminate all #if (¢) var x:=n in #endifs; whereas by applying rule (4) afterwards we
eliminate all #if (¢) s #endif. Subsequently, for each rule (1)-(3) and (4), the above
result can be proved by structural induction. O

We now present an optimization rule, which is applied before the rules (1)-(4) for
eliminating if-s. The correctness of our transformation does not depend on it, but we
can use it for achieving faster convergence and smaller transformed programs. In our
implementation, we use many such optimization rules.

Guard inlining. This rule collapses two sequentially composed #if-s with mutually
exclusive presence conditions ¢, and ¢, (i.e. ¢y A ¢; = false) that conditionally
enable the same statement s into one #if that conditionally enables s:

Y b #if (¢pg) s tendif; #if (¢p,) s tendif ~ #if (P V ¢;) s #endif (5)

Example 2. We present the transformation rules on a program family with F = {A, B}
and K={AAB,AAN-B,-AAB,-AA-B}.

(#if (A) var x:=2 in #endiftif (—A) var x:=5 in #endif #if (B) y:=x #endif, 60)
92 var x,:=2 in (#if (=A) var x:=5 in #endifttif (B) y:=x #endif,[(x,A) — xl])
(Mlg var x,:=2 in var x,:=5 in (#if (B) y:=x #endif, [(x,A) — xq, (x,7A) — xz])

2.2
@ var xq:=2 in var x,:=5 in #if (B) #if (A) y:=xq; #endifttif (—A) y:=x, #tendif #endif

4
(w3 var x,:=2 in var x5:=5 in if (B)thenif (A) then y:=x; else sRip;

) if (mA) then y:=x, else sRip; elseskip

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

[} Implementation

We have developed a tool, called C RECONFIGURATOR, which implements variability-
related transformations for the C language. All transformations are implemented using
Xtend ? . The C RECONFIGURATOR tool is available from: https://github.com/models-
team/c-reconfigurator. It calls variability-aware parser SUPERC [20] to parse code with
preprocessor annotations, which uses Binary Decision Diagrams (BDD’s) for encoding
feature expressions and for decisions during the parsing process. SUPERC returns an
AST with variability, in which variability is reflected with choice nodes over feature
expressions. In particular, a choice node is a node with two children, such that the
left child of the choice node is included in the result of those configurations for which
the given feature expression is satisfied; otherwise the right child of the choice node
is included in the parsing result when the feature expression is not satisfied. We apply
our variability-related transformation rules as described in Section 4 on AST’s with
variability obtaining an ordinary AST, which is subsequently translated into a single
C program. Since IMP is a subset of C, all rewritings described in Section 4 transfer
directly to C. We now discuss how a selection of other interesting C constructs, which
are not present in IMP, are handled by our tool.

Variables declared with optional types are very common in C. For example, we have
x-bit integers on x-bit machines. We handle them in a similar way as configurable
variable declarations in rules (1)—(3). First, we rename and duplicate the variable
declaration, then at each point where the variable is used we transform the code such
that the used variable refers to the correct configuration name. For example,

#if (A) int #else float #endif x=0;
X = X+1;

will be transformed into:
int x; = 0; float x, = 0;

#if (A) x; = x;+1; #else x5 = Xy +1; #Hendif

Note that if optional local variables are initialized by non-constant expressions, then we
split their transformation into two parts: declaration which is performed by renaming
and duplication, followed by initialization where all optional variables refer to the
correct configuration.

Optional (configurable defined) functions are important since all statements in C
are inside some function. If conditionally defined code occurs in the function body,
then it will be transformed using the corresponding rules. For example,

int f (int x) {return #if (A) x++#else O #endif; }
will be transformed into:
int f (int x) {return A? x++:0;}

2 http:/ /www.eclipse.org/xtend/.
192

1-11

Effective Analysis of C Programs by Rewriting Variability

If the function signature is configurable, then we use renaming plus duplication
as in rules (1)-(3) for handling configurable variable declarations. For example, the
code:

int f (#if (A) int #else float #endif x) {...}
...f(5)...

will be transformed into:

intf,(intx){...}
int f5(float x) {...}
... #if(A) f1(5) #telse f,(5) #endif ...

Arrays with optional size are also possible in real-world C programs. They usually
emerge via constant macros with conditional definitions. For example, the code

int a[#if (A) 10 #else 15 #endif];
a[5]=0;

will be transformed into:

int a;[10]; int a,[15];
#if (A) a;[5] = 0; ttelse a,[5] = 0; #endif

All other variability patterns that we met in our examples, such as configurable
fields in struct-s and pointers, are also handled similarly: first by using renaming and
duplication, then by modifying all references to the given pattern such that the use
always refers to the correct definition. Consider the following code with pointers:

inta=10; intx p= &a; #if(A) p = null; #endif (xp)++
will be transformed into:
inta=10; intx p=&a; if(4) p =null; (xp)++
Hence, we obtain a variability bug whenever the feature A is enabled.

Remark. We can see that most of the variability patterns are handled using renaming
plus duplication. In the worst case, this may cause exponential growth of the trans-
formed program in the number of used features. However, in practice this does not
happen often (see Table 3 for some data from real files). Namely, variability patterns
usually depend on a few features, so only a few new definitions are used. Also we apply
several optimization rules, which eliminate all definitions that do not correspond to a
valid configuration. Finally, the evaluation results in Section 6 show that the analysis
time for such transformed programs is comparable to single programs. This is due to
the fact that transformed programs are not increased significantly and the analysis
tools we use (FrRama-C, CLANG, LLBMC) are very optimized and mature.

193

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

K3 Evaluation

We evaluate our reconfiguration technique based on variability transformations and
single-program verification oracles on several real-world C case studies. The evaluation
aims to show that we can use state-of-the-art single-program verification tools to
verify realistic C program families using variability-related transformations. To do so,
we ask the following research questions:

= How precise is our technique? (RQ1)

= How efficient is the verification oracle to identify variability bugs after transforming
the code using our technique? (RQ2)

In particular, we want to reproduce the variability bugs reported in [1, 28] using various
verification oracles applied on transformed programs, which are obtained using our
tool. We use Frama-C [27], CLaNG [9] and LLBMC [30] as our verification oracles.
Frama-C is a framework for modular static (dataflow) analysis of C programs. The
CLANG project includes the Clang compiler front-end and the Clang static analyzer for
several programming languages, including C. LLBMC (the low-level bounded model
checker) is a software model checking tool for finding bugs in C programs.

6.1 Subject Files and Experimental Setup

All transformations are applied using the C RECONFIGURATOR tool as described in
Section 5. We investigate precision and performance in finding real variability bugs
extracted from three benchmarks: Linux, BusyBox and Libssh. In particular, we use
simplified bugs from the VDBb 3 database that are found in the Linux kernel files [1]
and in BusyBox. Abal et al. [1] created a simplified version of a program for each
bug they found by capturing the same essential behavior (and the same problem)
as in the original bug. Simplified bugs are independent of the kernel code and the
corresponding programs were derived systematically from the error trace. In addition,
we use real variability bugs from Libssh provided by Medeiros et al. [28].

Table 1 presents the characteristics of the subject files we analyzed in our empirical
study. We list: the file id, bug type, number of features (|F|), number of valid configu-
rations (|K|), lines of code, the size in KB of the files before (with #ifdef-s) and after
(without #ifdef-s) our transformations, and commit hash (clickable) for each project.
This collection consists of a diverse set of bug types such as null pointer dereferences,
buffer overflow, and uninitialized variable. In total, we have 11 distinct kinds of bugs.
The number of features per file varies from one to seven. In addition, the number of
lines of code ranges from 12 to 165 for the simplified files (from VBDb), and from 1404
to 2959 for real files (from Libssh). After the transformation, the biggest increase in
size of almost 8 times can be observed for FILE 1D 7. This is due to the fact that this
file has seven different features and several variability patterns that depend on them.
In most of the other cases the size increase is not very big.

3 http://VBDb.itu.dk.
194

1-13

Effective Analysis of C Programs by Rewriting Variability

FILE BuG TYPE |F| | IK| | LOC Size KB Hasu
D before l after

VBDB LINUX FILES
I null pointer deref. 5 24 165 2.9 4.3 76baeeb
2 null pointer deref. 3 6 112 1.9 2.5 f7abgbg
3 null pointer deref. 4 8 55 0.9 1.0 eesf3qe
4 null pointer deref. 3 6 34 0.5 0.6 6252547
5 buffer overflow I 2 58 1.0 1.2 8c82962
6 buffer overflow 1 2 33 0.6 0.7 60€e233a
7 read out of bounds 7 63 69 I.I 8.4 of8f809
8 uninitialized var. 2 4 54 0.8 1.0 7acfécd
9 uninitialized var. 1 2 54 1.0 I.I bc8ceco
10 uninitialized var. 1 2 53 0.8 1.0 30€0532
11 uninitialized var. 2 4 38 0.9 1.2 1cr7e4d
12 uninitialized var. 2 4 26 0.3 0.5 e39363a
13 undefined symbol 4 14 25 0.4 0.6 | 7c6048b
14 undefined symbol 2 4 20 0.3 0.5 2fo2c1s
15 undefined symbol 2 4 20 0.3 0.5 6515€48
16 undefined symbol 2 4 19 0.3 0.5 242f1a3
17 undeclared identifier | 3 8 37 0.6 1.0 6651791
18 undeclared identifier | 2 4 20 0.3 0.4 f48ecid
19 wrong # of args 1 2 12 0.2 0.4 e67bcest
20 multiple funct. defs 2 4 21 0.3 0.8 | e68bbor
21 dead code I 2 19 0.2 0.3 | 809e660
22 incompatible type 2 4 27 0.4 0.7 dé6cyerr
23 assertion violation 2 4 79 1.5 1.8 63878ac
24 assertion violation 2 4 75 1.I 1.2 657€964
25 assertion violation 2 4 41 0.6 0.7 0988c4c

VBDB BusyBox FILES
26 null pointer deref. 1 2 28 0.4 0.7 199501f
27 null pointer deref. 2 4 24 0.4 0.6 1b487ea
28 uninitialized var. 2 4 28 0.4 0.7 | b273d66
29 undefined symbol I 2 42 0.8 0.9 cfifoac
30 undefined symbol 2 4 27 0.4 0.6 | ebeezor
3I undeclared identifier 1 2 35 0.5 0.8 5275b1e
32 undeclared identifier | 1 2 19 0.3 0.4 | byebcér
33 incompatible type 3 8 46 0.9 1.5 5cd6461

REAL LIBSSH FILES
34 null pointer deref. 6 48 | 1404 | 34.8 | 32.6 | oageal9
35 null pointer deref. 4 4 1428 44.1 31.9 | fadbe8o
36 uninitialized var. 3 4 2959 72.4 77.6 | 2a10019

B Table1 Characteristics of the benchmark files.

195

1-14

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

ID

O O U1 A~ W N H

H H H = H = H H = A
O ON Ul A W N H O

20
2I

26
27
28
29
30
31
32

Frama-C
IBUGGY VARIANTIRECONFIGURED| ALL
y/n time |y/n time |time
[VBDB LINUX FILES
[t][v 218 [v 235 [s5602
v 220 |V 225 [1394
NG 215 X 236 |1918
v 218 |V 224 |1379
N4 218 N 227 | 488
v 213 N 227 | 463
v 28 |V 225 [14381
v 241 V' 250 |918
NG 224 v’ 230 | 462
NG 216 |inc 224 |460
v 234 |V 224 |917
NG 216 |inc 227 914
v 239 |V 248 |3194
v 237 |V 244 |905
v 224 |V 248 |906
NG 213 N 222 910
v 216 |V 230 |3823
v’ 210 | Vv 224 |o9o01
v 210 |V 224 | 452
v 213 X 228 | 907
v 239 X 240 | 458
[VBDB BuUsyBOX FILES |
26|[v 230 |V 234 |484
Vo224 |V 234 |959
v’ 237 |inc 237 | 957
v’ 230 |V 236 |481
v o 231 |V 228 |968
v 220 |V 228 |486
v o216 |V 224 | 477

(a) VBDB FILES using FrRama-C.

ID

22
23
24
25

CLANG/LLBMC

[yes/no time

BUGGY VARIANT]

yes/no time

RECONFIGURED

ALL
time

[VBDB LINUX FILES

Vv 21 N 23 | 91
N 4 Vv 10 | 10
N 3 N 7 |11
v 3 v 5 8
[VBDB BuUsyBOX FILES |
B3| v 27 | v 31 [222]

(b) VBDB FILES using CLANG (files 22 and
33) and LLBMC (files 23, 24, and 25).

[] CLANG/LLBMC
ID|[BUGGY VARIANTRECONFIGURED| ALL
lyes/no time [yes/no time | time
B4l v 1526] v 1702 17029
35| v 1591| V' 1804|5917
36| v 112 | Vv 144 | 448

(c) LiessH files using CraNG (file 36) and
LLBMC (files 34 and 35).

B Table2 Verification results for the benchmark files. Times in milliseconds (ms).

All experiments were executed on a Kubuntu VM (64bit, 4 CPUs), Intel®Core™ i7-
3720QM CPU running at 2.6GHz with 12GB RAM memory. The performance numbers
reported constitute the median runtime of fifty independent executions.

6.2 Results

We now present the results of our empirical study and discuss the implications.
All experiment materials are available online at https://github.com/models-team/c-
reconfigurator-test. Before we proceed, we stress that we only evaluate bugs that are
detectable by the verification tools on the erroneous variant code.

196

1-15

Effective Analysis of C Programs by Rewriting Variability

Simplified files. Table 2a shows the results of verifying our benchmark files which
contain known bugs by using FrRama-C. The table has three main columns: Bucgy
VARIANT, RECONFIGURED, and ALL that depict the tool results on the buggy variant
code, on the reconfigured program family code, and on all valid variants from K
analyzed one by one (in a brute force fashion), respectively. Each checkmark (v')
means that the same bug was found in both the buggy variant and reconfigured
program by the verification tool. Otherwise, the result is either x—bug not found
in the reconfigured program, or inc—inconclusive which means that FRama-C was
able to detect a bug in the reconfigured program that is different from the bug in the
product variant. In the case of brute force approach (ALL), we consider the analyses
times of all valid variants regardless of whether they contain a bug or not.

In terms of precision, our C RECONFIGURATOR tool transforms the family code by
preserving the erroneous traces from the buggy variant in most cases. For instance,
FramA-C could detect 22 (78%) bugs from the simplified benchmark files (28 in total)
after reconfiguring the files using our tool. Besides that, the C RECONFIGURATOR
preserves a variety of bug types such as buffer overflow and uninitialized variable.
Still, for different types of bugs the success rate depends on the tool which may or
may not detect them. For example, our technique is able to transform a file containing
a memory leak error, but FRAMA-C does not have any analysis to identify it.

In three specific cases (cf. FILE 1Ds 10, 12 and 28), FRAMA-C did not report the
original bug as an error, but it did detect that some variable might be uninitialized
in some conditions. This happens because FRamA-C performs a may value analysis
for finding uninitialized variables. A may analysis describes information that may
possibly be true along one path to the given program point and, thus in our case,
computes a superset of all uninitialized variables in all variants. So the reported
variable may not match with the one in the buggy variant. We marked these three
cases as inc—inconclusive in the table. Still the verification oracle reports that there
might be an error in the reconfigured code.

In addition, the verification tool could not identify the required bug in the recon-
figured file in three cases (cf. FILE 1Ds 3, 20 and 21). For example, file 21 contains
dead code, which is a function (do_sect_fault()) that is never called when feature
ARM is enabled (see the code snippet in Fig. 4, left column). The C RECONFIGURATOR
transforms the code by changing the #ifdef into ordinary if condition, making the
function available for the transformed single program (i.e., the function is not dead
any more), as shown in the code snippet in Fig. 4 (right column). The other two cases
are similar to this one in the sense that the C RECONFIGURATOR makes feature code
explicit to the entire program family.

Generally speaking, if one variant does not use a variable/function, but another
does, then the reconfigured code will use the variable/function and the error will be
hidden (like in the example above). This happens due to the limitations of variability
encoding, especially because we cannot preprocess the reconfigured code to filter out
the irrelevant features for a particular variant. In a reconfigured code, all variants are
encoded as a single program (see Section 6.4 for more discussion).

We now consider the remaining simplified files. We use CLanGg and LLBMC to
analyze only the other types of bugs (incompatible type and assertion violation) that

197

1-16

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

int do_sect_fault(){ | int do_sect_fault(){
return o; return o;

} }

int main(){
#tifndef ARM int main(){

do_sect_fault(); if (' ARM)

#endif do_sect_fault();
return o; return o;

} }

B Figure 4 File 21 - Before (left) and after (right) our transformations

FraMA-C cannot handle. We treat CLANG/LLBMC as one verification oracle, since we
first need to compile and emit llvim code with CLANG in order to analyze it using
LLBMC. So, we do not make difference in reporting whether the bug was found by
CLANG during the compilation or afterwards by LLBMC.

Table 2b, similarly to Table 2a, shows the results of verifying both the buggy variant
and the reconfigured code using CrLanG and LLBMC. We also report the analysis
time of the brute force approach in the column ALL. As we can see, all bugs were
found by CLaNG/LLBMC in the reconfigured version. We can thus confirm that our C
RECONFIGURATOR tool transforms the family code by preserving the erroneous traces
from the buggy variant. We are now ready to answer RQ1 on the precision of our
technique. Based on analyzing 33 simplified variability bugs from Linux and BusyBox,
we find that:

ANSWER RQ1 (PRECISION). The C RECONFIGURATOR enables single-program

verification tools such as FRamA-C, CLANG, and LLBMC to successfully detect
most of the simplified variability bugs on the reconfigured code, obtained
from the Linux and BusyBox benchmark files.

We now turn to evidence regarding research question RQ2 (performance). We evaluate
performance of the verification tools to identify the given variability bugs. Tables 2a
and 2b show time needed for the verification tools to analyze the buggy variant code
(BUGGY VARIANT column) and the reconfigured program family code (RECONFIGURED
column). We can see that the analysis times in both cases are similar although
reconfigured code is bigger in size. In fact, FRAMA-C takes less than half a second to
analyze each file regardless whether it is a variant or a reconfigured file. For instance,
FraMA-C analyzes file 1 in 218 and 235 milliseconds on the variant code and on the
reconfigured program family code, respectively. Recall that file 1 contains a null pointer
dereference and has five features. If we apply the brute force approach (aLL column),
which analyzes all variants individually one by one, to this file using FrRama-C it takes
5,602 ms, since the number of configurations is 24. In this way, we obtain significant
speed-up to verify the program family using our approach. We also obtain similar
results in terms of performance using CLANG/LLBMC (see Tables 2b and 2¢). In general,
the performance of analyzing a reconfigured code is similar to analyzing only one
variant, which gives us a speed-up proportional to the number of valid variants of a

198

1-17

Effective Analysis of C Programs by Rewriting Variability

program family. Overall, we answer the second research question (RQ2) by observing
that:

ANSWER RQ2 (PERFORMANCE). The C RECONFIGURATOR speeds-up the family-
based analysis via single-program verification tools, so that we can efficiently
detect simplified variability bugs on the reconfigured code, obtained from
the VBDb benchmark.

Real files. We now consider real files to confirm our previous observations with
respect to precision and performance. Table 2c presents the results of analyzing three
real files from the Libssh project using CLanG and LLBMC.# These files contain two
types of bugs: null pointer dereference and uninitialized variable. Each file has at
least three distinct features.

We can see that our C RECONFIGURATOR transforms the family code by preserving
the erroneous traces from the buggy variant even for complex and large files. In fact,
the verification tool (CLANG/LLBMC) found the same bug (from the buggy variant
code) on the reconfigured code in all three cases. From this preliminary evidence,
we thus confirm that our technique enables single-program verification oracles to
successfully detect variability bugs on the reconfigured code, obtained from complex
and real files.

Regarding performance, we can still see the similarity in verifying a variant code
and a reconfigured one. For example, CLANG/LLBMC took 1,5 sec to analyze file 34 in
the single variant version, whereas in the reconfigured version, the tool analyzed it
in 1,7 sec. We can also observe a speed-up of the family-based analysis using the C
RECONFIGURATOR and single-program verification tools by a factor of the number of
valid variants compared to the brute force approach. We conclude that:
SuMmMARy. All single-program verification tools (FrRama-C, CLANG, LLBMC)
detect successfully and efficiently most of the variability bugs on the recon-
figured code as well as on the single variant code.

6.3 Threats to Validity

Internal validity. Verifying semantics preservation in a complex transformation is a
very hard problem [22, 2]. We manually verified the correctness of the C RECONFIGU-
RATOR on the simplified VBDb files by comparing the original and the reconfigured
files side-by-side, which leaves space for human error. For the larger real files we were
not able to determine if the C RECONFIGURATOR preserved semantics for all variants
on the entire file due to the complex configuration space, but instead we focused on
the functions involved in producing/reproducing the bug. We mitigate this threat by
relying on the results of our evaluation which show the effectiveness of conventional
single-program analysis tools to identify the same bugs in the reconfigured code
version as in the buggy single varaints.

4We do not report results from FRama-C on the real files because FRama-C could not handle
them.

199

1-18

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

External validity. From our preliminary evaluation, we show that our technique
transforms the program family code by preserving the erroneous traces from the
buggy variant. However, we acknowledge that our transformations were not tested
under the entirety of the C language, but only on the subset used in the VBDb and
Libssh files presented here. The C RECONFIGURATOR though can be extended with
extra rules to deal with other cases that we did not face in our benchmark files. Worst
case exponential growth of transformed programs can happen, even though we have
not observed it in our subject files.

6.4 Discussion

The main limitation of our transformation based approach is that we may not obtain
conclusive results for all individual variants, thus losing some precision. This is due to
the fact that our transformed program contains all possible paths that may occur in
any variant. However, the precision loss depends on the particular analysis we use.

Consider the case of model checking. Since (single-system) model checkers stop
once a single counter-example is found in the model, we can use our approach to find
a variability bug which occurs in some subset of valid variants but we will not be able
to report conclusive results (whether the given property is satisfied or not) for the
rest of the valid variants. To overcome this issue, we may repeat our technique on
the remaining variants for which no conclusive results were reported in the previous
iteration.

Consider the case of must dataflow analysis (e.g., available expressions, very busy
expressions). In this case, the result in a given program point contains only the
common results found on all execution paths to that point. Thus, the analysis result
for the transformed program will contain only the results that occur in all variants. For
example, for available expressions analysis we may obtain less available expressions
than there are in any single variant. The available expression analysis determines
which expressions must have already been computed, and not later modified, on all
paths to a program point [32]. This information can be used to avoid re-computation
of an expression. Consider the program family:

X := a+ b;while (y> a+ b) do {#ifdef (A) y := y—1 #else a := a + 1 #endif}

The expression a + b is available at the guard of the while loop for variants satisfying
A, so it needs not be re-computed for them. However, in the transformed program we
have paths from all variants, so the expression a + b is modified by the assignment
a := a+ 1 in a path coming from variants —A. Therefore, the analyzer will not report
this expression as available at the guard of the loop for the transformed program.
Consider the case of may dataflow analysis (e.g., reaching definitions, live variables,
uninitialized variables). In this case, the result in a given program point contains the
results found on at least one execution path to that point. Thus, the analysis result
for the transformed program will contain all results that occur in at least one variant.
For example, for live variables analysis, we may obtain more live variables than there
are in any single variant. The live variables analysis determines which variables may
be live at a program point, that is there is a path from the program point to a use of

200

1-19

Effective Analysis of C Programs by Rewriting Variability

the variable that does not redefine it [32]. This information can be used as a basis for
dead code elimination. If a variable is not live at the exit from an assignment to the
variable, then that assignment can be eliminated. Consider the program family:

X := 5;y:= 1; #ifdef (A) x := 1 #else x := x+ 1 #endif

The variable x is not live at the exit from the first assignment x := 5 for variants
satisfying A. Therefore, the assignment x := 5 is redundant for those variants. However,
x is live for —A variants, so it will be live after the first assignment for the transformed
program as well. Thus, we cannot eliminate this assignment in the transformed
program. This is also the reason why Frama-C does not identify the variability bug
for files 3, 20 and 21.

Related work

Recently, formal analysis and verification of program families have been a topic of
considerable research. The challenge is to develop efficient techniques that work at
the level of program families, rather than the level of single programs. There are two
main approaches to address this issue: (1) to develop dedicated variability-aware
(family-based) techniques and tools; (2) to use specific simulators and encodings
which transform program families into single programs that can be analyzed by
the standard single-program verification tools. The two approaches have different
strengths and weaknesses. The advantage of (1) is that precise (conclusive) results
are reported for every variant, but the disadvantage is that their implementation
can be tedious and labor intensive. On the other hand, the approaches based on (2)
re-use existing tools from single-program world, but some precision may be lost when
interpreting the obtained results.

Specifically designed variability-aware techniques. Various lifted techniques have been
proposed which lift existing single-program verification techniques to work on the
level of program families. This includes lifted syntax checking [25, 20], lifted type
checking [24, 8], lifted static analysis [7, 6, 31], lifted model checking [10, 14], etc.
TyPECHEF [25] and SUPERC [20] are variability-aware parsers, which can parse lan-
guages with preprocessor annotations. The results are ASTs with variability nodes. The
difference between these two approaches is that feature expressions are represented
as formulae in TyPECHEF, and as BDD’s in SUPERC. TyPECHEF has also implemented
some variability-aware dataflow analyses. Several approaches have been proposed
for type checking program families directly. In particular, lifted type checking for
Featherweight Java was presented in [24], whereas variational lambda calculus was
studied in [8]. Lifted model checking for verifying variability intensive systems has
been introduced in [10]. SNIP, a specifically designed family-based model checker,
is implemented for efficient verification of temporal properties of such systems. The
input language to SNIP is FPROMELA, which represents a variability-aware extension
of the known PRoMELA language for the (single-system) SPIN model checker [21].
FPROMELA uses an #ifdef-like statement for encoding multiple variants, which rep-

201

1-20

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

resents a nondeterministic “if” statement guarded by features expressions that are
used to specify what system parts are included (resp., excluded) for which variants.
An approach for lifted software model checking using game semantics has been
introduced in [14]. It verifies safety of #ifdef-based second-order program families
containing undefined components, which are compactly represented using symbolic
game semantics models [13, 12]. Brabrand et al. [7] and Midtgaard et al. [31] show
how to lift any single-program dataflow analysis from the monotone framework to
work on the level of program families. The obtained lifted dataflow analyses are much
faster than ones based on the naive variant-by-variant approach that generates and
analyzes all variants one by one. Another efficient implementation of lifted analysis
formulated within the IFDS framework for inter-procedural distributive environments
has been proposed in SPLYFT [6]. In order to speed-up the lifted verification tech-
niques, variability abstractions have been introduced in [17, 18, 15, 16]. They tame the
exponential blowup caused by the large number of features and variants in a program
family. In this way, variability abstractions enable deliberate trading of precision for
speed in the context of lifted (monotone) data-flow analysis [17, 18] and lifted model
checking [15, 16].

Lifting by simulation. Variability encoding [37] and configuration lifting [33] are
based on generating a product-line simulator which simulates the behaviour of all
products in the product line. Then, an existing off-the-shelf single-program analyzer is
used to verify the generated product-line simulator, which represents a single program.
The work in [37] defines variability encoding on the top of TyPECHEF parser for C and
Java program families. They have applied the results of variability encoding to testing
[26], model checking [3], and deductive verification [36]. Compared to [37], our
approach has the following distinguished characteristics. C RECONFIGURATOR is aimed
at transforming C program families and uses SUPERC as a back-end tool. We show
transformation rules and their correctness with respect to a minimal C-like imperative
(state-based) language, whereas in [37] the rules and their correctness is shown
with respect to Featherweight Java. C is a language much wider used in industry for
variability than (Featherweight)Java. Also, we do not have to rely on object-oriented
encodings to make the variability-transformations work. We evaluate our approach
with several state-of-the-art single-program verification tools for finding real variability
bugs on real-world C programs (both on large and sanitized files). The academic
examples (e-mail, elevator, mine-pump) considered by Apel et al. [3] are considerably
smaller than those presented here; and they are focussed on verifying specific class of
bugs: undesired feature interactions (using CPACHECKER [5]), whereas we consider
here various types of more severe bugs that occur in practice. In this way, the external
validity of our experiments is considerably broader. Yet another difference is that the
work in [3] considers product lines implemented using compositional approaches,
where all features are modeled as separate and composable units. In contrast, we
consider here annotative product lines based on #ifdef-s, which is a common way of
implementing variability in industry.

202

Effective Analysis of C Programs by Rewriting Variability

Conclusion

We have proposed variability-related transformations to translate program families
into single programs without variability. The transformed programs can then be ef-
fectively analyzed using various single-program analyzers. The evaluation confirms
that some interesting variability bugs can be found in real-world C programs in this
way. As a future work, we plan to extend our evaluation and consider more verification
oracles as well as different practical case studies. We derive several observations from
the attempt to verify, analyze, and find bugs in realistic C programs. We hope that
our technique will be useful for future builders of analysis tools.

References

[1]

[2]

[3]

(4]

(5]

(6]

[7]

(8]

[9]

Iago Abal, Claus Brabrand, and Andrzej Wasowski. 42 variability bugs in the
linux kernel: a qualitative analysis. In ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages 421—-432. ACM, 2014. URL: http:
//doi.acm.org/10.1145/2642937.2642990, doi:10.1145/2642937.2642990.
Ahmad Salim Al-Sibahi, Aleksandar S. Dimovski, and Andrzej Wasowski. Sym-
bolic execution of high-level transformations. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2016,
pages 207—220. ACM, 2016.
Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Gréf3linger, and Dirk
Beyer. Strategies for product-line verification: case studies and experiments. In
35th Intern. Conference on Software Engineering, ICSE ’13, pages 482—491, 2013.
Don Batory. Feature models, grammars, and propositional formulas. In oth
International Software Product Lines Conference, SPLC ’05, volume 3714 of LNCS,
pages 7—20. Springer-Verlag, 2005.
Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for configurable software
verification. In Computer Aided Verification - 23rd International Conference,
CAV 2011. Proceedings, volume 6806 of LNCS, pages 184-190, 2011. URL: http:
[/ /dx.doi.org/10.1007/978-3-642-22110-1_16, d0i:10.1007/978-3-642-22110-1_16.
Eric Bodden, Térsis Tolédo, Mércio Ribeiro, Claus Brabrand, Paulo Borba, and
Mira Mezini. Splhft: Statically analyzing software product lines in minutes
instead of years. In ACM SIGPLAN Conference on PLDI 13, pages 355—364, 2013.
Claus Brabrand, Marcio Ribeiro, Tarsis Tolédo, Johnni Winther, and Paulo Borba.
Intraprocedural dataflow analysis for software product lines. Transactions on
Aspect-Oriented Software Development, 10:73-108, 2013.
Sheng Chen, Martin Erwig, and Eric Walkingshaw. An error-tolerant type system
for variational lambda calculus. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’12, pages 29—40, 2012. URL: http://doi.acm.org/10.
1145/2364527.2364535, doi:10.1145/2364527.2364535.
Clang. Clang static analyzer. Clang: a C language family frontend for LLVM.
URL: http://clang-analyzer.llvm.org/.

203

1-22

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-Francois Raskin. Featured transition systems: Foundations
for verifying variability-intensive systems and their application to LTL model
checking. IEEE Trans. Software Eng., 39(8):1069-1089, 2013. URL: http://doi.
ieeecomputersociety.org/10.1109/TSE.2012.86, d0i:10.1109/TSE.2012.86.

Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001.

Aleksandar Dimovski and Ranko Lazic. Compositional software verification
based on game semantics and process algebra. STTT, 9(1):37-51, 2007. URL:
http://dx.doi.org/10.1007/s10009-006-0005-y, doi:10.1007/510009-006-0005-y.
Aleksandar S. Dimovski. Program verification using symbolic game semantics.
Theor. Comput. Sci., 560:364—379, 2014. URL: http://dx.doi.org/10.1016/j.tcs.2014.
01.016, doi:10.1016/j.tcs.2014.01.016.

Aleksandar S. Dimovski. Symbolic game semantics for model checking program
families. In Model Checking Software - 23nd International Symposium, SPIN 2016,
Proceedings, volume 9641 of LNCS, pages 19—37. Springer, 2016.

Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej
Wasowski. Family-based model checking without a family-based model checker.
In 22nd International SPIN Workshop on Model Checking of Software, SPIN 15,
volume 9232 of LNCS, pages 282—299. Springer, 2015.

Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej
Wasowski. Efficient family-based model checking via variability abstractions.
STTT, 2016. doi:10.1007/s10009-016-0425-2.

Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Variability
abstractions: Trading precision for speed in family-based analyses. In 29th
European Conference on Object-Oriented Programming, ECOOP ’15, volume 37 of
LIPIcs, pages 247—270. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Finding suitable
variability abstractions for family-based analysis. In FM 2016: Formal Methods -
21st International Symposium, Proceedings, volume 9995 of LNCS, pages 217-234,
2016. URL: http://dx.doi.org/10.1007/978-3-319-48989-6_14, d0i:10.1007/978-3-319-
48989-6_14.

Alejandra Garrido and Ralph E. Johnson. Refactoring C with conditional compi-
lation. In 18th IEEE International Conference on Automated Software Engineering
(ASE 2003), pages 323-326. IEEE Computer Society, 2003. URL: http://doi.
ieeecomputersociety.org/10.1109/ASE.2003.1240330, d0i:10.1109/ASE.2003.1240330.
Paul Gazzillo and Robert Grimm. Superc: parsing all of C by taming the
preprocessor. In ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’12, 2012, pages 323-334, 2012. URL: http:
/ /doi.acm.org/10.1145/2254064.2254103, doi:10.1145/2254064.2254103.

Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

204

1-23

Effective Analysis of C Programs by Rewriting Variability

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Alexandru F. Iosif-Lazar, Ahmad Salim Al-Sibahi, Aleksandar S. Dimovski,
Juha Erik Savolainen, Krzysztof Sierszecki, and Andrzej Wasowski. Experi-
ences from designing and validating a software modernization transformation
(E). In 30th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2015, pages 597-607, 2015. URL: http://dx.doi.org/10.1109/ASE.2015.84,
doi:10.1109/ASE.2015.84.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) feasibility study. Technical
report, Carnegie-Mellon University Software Engineering Institute, November
1990.

Christian Késtner, Sven Apel, Thomas Thiim, and Gunter Saake. Type checking
annotation-based product lines. ACM Trans. Softw. Eng. Methodol., 21(3):14, 2012.

Christian Késtner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. Variability-aware parsing in the presence of
lexical macros and conditional compilation. In OOPSLA’11, pages 805-824. ACM,
2011.

Christian Kastner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven
Apel, Tillmann Rendel, and Klaus Ostermann. Toward variability-aware testing.
In FOSD ’12, pages 1-8, 2012.

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-c: A software analysis perspective. Formal Asp. Comput.,
27(3):573-609, 2015. URL: http://dx.doi.org/10.1007/s00165-014-0326-7, doi:10.
1007/500165-014-0326-7.

Flavio Medeiros, Marcio Ribeiro, Rohit Gheyi, Christian Késtner, and Sven Apel.
An empirical study on configuration-related bugs. Submitted for publication at
IEEE TSE, 2016.

Jean Melo, Claus Brabrand, and Andrzej Wasowski. How does the degree of
variability affect bug finding? In Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pages 679—690, New York, NY, USA, 2016. ACM.
URL: http://doi.acm.org/10.1145/2884781.2884831, d0i:10.1145/2884781.2884831.

Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: bounded model checking
of C and C+ + programs using a compiler IR. In Verified Software: Theories, Tools,
Experiments - 4th International Conference, VSTTE 2012, Proceedings, volume 7152
of LNCS, pages 146-161. Springer, 2012. URL: http://dx.doi.org/10.1007/978-3-642-
27705-4_12, d0i:10.1007/978-3-642-27705-4_12.

Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski.
Systematic derivation of correct variability-aware program analyses. Sci. Comput.
Program., 105:145-170, 2015. URL: http://dx.d0i:10.1016/j.scic0.2015.04.005, doi:
10.1016/j.s€ic0.2014.10.002.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag, Secaucus, USA, 1999.

H. Post and C. Sinz. Configuration lifting: Verification meets software configura-
tion. In ASE’08, pages 347—350, LAquila, Italy, 2008. IEEE Computer Society.

205

[34]

[35]

[36]

[37]

A. F. losif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski

John C. Reynolds. Theories of Programming Languages. Cambridge University
Press, 1998.

Thomas Thiim, Sven Apel, Christian Kastner, Ina Schaefer, and Gunter Saake. A
classification and survey of analysis strategies for software product lines. ACM
Comput. Surv., 47(1):6, 2014.

Thomas Thiim, Ina Schaefer, Martin Hentschel, and Sven Apel. Family-based
deductive verification of software product lines. In Generative Programming and
Component Engineering, GPCE’12, pages 11—20. ACM, 2012. URL: http://doi.acm.
org/10.1145/2371401.2371404, do0i:10.1145/2371401.2371404.

Alexander von Rhein, Thomas Thiim, Ina Schaefer, Jorg Liebig, and Sven Apel.
Variability encoding: From compile-time to load-time variability. J. Log. Algebr.
Meth. Program., 85(1):125-145, 2016. URL: http://dx.doi.org/10.1016/j.jlamp.2015.
06.007, doi:10.1016/].jlamp.2015.06.007.

206

1-25

	Contents
	Introduction
	Context
	Contributions
	List of Publications
	Outline

	Problem Definition
	Research Questions and Goals
	Theses

	Variability Challenges for Programmers
	How Does the Degree of Variability Affect Bug Finding? (Paper 1A)
	Variability through the Eyes of the Programmer (Paper 1B)

	Variability Challenges for Programs
	Variability Bugs in Highly-Configurable Systems (Paper 2A)
	A Quantitative Analysis of Variability Warnings in Linux (Paper 2B)

	Variability-Aware Solution for Lifting Single-Program Analysis
	Effective Analysis of C Programs by Rewriting Variability (Paper 3A)

	Related Work
	Empirical Studies of Programmers Debugging Programs
	Empirical Studies of Software Bugs
	Techniques for Finding Variability Bugs

	Discussion: Variability Skeleton for Understanding the Impact of Changes
	Motivating Scenario
	Variability-Aware Program Slicing

	Conclusion and Future Work
	Bibliography
	How Does the Degree of Variability Affect Bug Finding? (Paper 1A)
	Variability through the Eyes of the Programmer (Paper 1B)
	Variability Bugs in Highly-Configurable Systems: A Qualitative Analysis (Paper 2A)
	A Quantitative Analysis of Variability Warnings in Linux (Paper 2B)
	Effective Analysis of C Programs by Rewriting Variability (Paper 3A)

