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Asymmetrick-Center with Minimum Coverage

Inge Li Gartz

Abstract

In this paper we give approximation algorithms and inappnability results for various asym-
metrick-center with minimum coverage problems. In theenter with minimum coverage problem,
each center is required to serve a minimum number of clidiitase problems have been studied by
Lim et al.[Theor. Comput. Sci. 2005] in the symmetric setting.

In the g-all-coveragek-center problemeach center must serve at legsvertices (including
itself). In the g-coveragek-center problemeach center must serve at legshon-center nodes.
We provideO(log™ n)-approximation algorithms for thesymmetrig;-all-coverage and-coverage
problems in both the unweighted and weighted case. Thistimapwithin a constant factor. Lim
et al. also study thej-coveragek-supplier problemand the priority version of all the mentioned
problems in the symmetric setting. We show that the asymimeitcoveragek-supplier problem
and the priority versions of asymmetejecoveragek-center and asymmetrigall-coveragek-center
are inapproximable.

*IT University of Copenhagen, Rued Langgaards Vej 7, DK-230pebbagen S, Denmark. Fax: +45 72 18 50 01. Email:
i nge@itu.dk



1 Introduction

Imagine you have a delivery service. You want to place yodelivery hubs at locations that minimize
the maximum distance between customers and their nearest hubs. Thiskis€ehéer problem-a
type of clustering problem that is similar to the facility location [18] dnthedian [3] problems. The
motivation for theasymmetrick-center problem, in our example, is that traffic patterns or one-way
streets might cause the travel time from one point to another to differ dieygeod the direction of
travel. In thek-center with minimum coverage problesach center is required to serve a minimum
number of clients. The motivation is to try to balance the workload between ttiersesuch that you
are not wasting resources on e.g. delivery hubs that are almostusaetibecause they are located in
isolated places. This problem has also been addressed by Chetrédldi5]. They studied thé:-center
problem with outliers, where a small subset of costumers may be deniddesetinfortunately, this
problem cannot be approximated in the asymmetric case untessP [10]. Other examples where the
k-center problem with minimum coverage is useful is in planning location ofitedsp Requiring the
hospitals to serve at least a certain number of neighborhoods/patients lloeconomies of scale and
specialization. A small hospital cannot have a specialist in every areaeah a larger hospital can hire
more specialized people and also possibly be more effective. In this papudy asymmetric version
of k-center with minimum coverage problems.

Symmetry is a vital concept in graph approximation algorithms. Recentlyk-tenter problem
was shown to b&)(log* n) hard to approximate [7, 8, 11], even though the symmetric version has a
factor 2 approximation. Facility location an&-median both have constant factor algorithms in the
symmetric case, but are provaliy(logn) hard to approximate without symmetry [1]. The traveling
salesman problem is a little better, in that no super-constant hardnessis,knga without symmetry
no algorithm better thaé logn) [15] has been found either.

Definition 1.1 (k-Center) GivenG = (V, E), a complete graph with nonnegative (but possibly infinite)
edge costs, and a positive intederfind a setS of & vertices, callectcenters with minimum covering
radius. The covering radius of a sgfs the minimum distanc& such that every vertex il is within
distanceR of some vertex irf.

Kariv and Hakimi [16] showed that thecenter problem is NP-hard. Without the triangle inequality
the problem is NP-hard to approximate within any factor (there is a straigiafdrreduction from
the dominating set problem). We henceforth assume that the edge cosistbatisfangle inequality.
Hsu and Nemhauser [14], using the same reduction, showed that the meaider problem cannot
be approximated within a factor @2 — ¢) unless P= NP. In 1985 Hochbaum and Shmoys [12]
provided a (best possible) fact®ralgorithm for the metrici-center problem. In 1996 Panigrahy and
Vishwanathan [19, 21] gave the first approximation algorithm for the asyrioyoblem, with factor
O(log™ n). Archer [2] proposed twd) (log™ k) algorithms based on many of the ideas of Panigrahy and
Vishwanathan. The complementdpylog™ n) hardness result [7, 8, 11] shows that these approximation
algorithms are asymptotically optimal.

1.1 k-Center with Minimum Coverage

A number of variants of thg-center problem have been explored in the context of symmetric graphs [4
6,13,17,20] and in the asymmetric setting [4, 10].

In this paper we give approximation algorithms and inapproximability resulisfious asymmetric
k-center with minimum coverage problems. These problems have been stydiad bt al.[17] in the
symmetric setting. Irk-center with minimum coverage, each center is required to serve a minimum
of clients. This problem is motivated by requirements to balance the workloeginters. Limet al.
studied the following problems:



e Theg-all-coveragek-center problemwhere each center must cover at legsertices (including
itself).

e Theg-coveragek-center problemwhere each center must cover at leasbn-center nodes.

e The g-coveragek-supplier problem HereV is divided into two disjoint subsetS andC. The
object is to find a subséf of S, |U| < k, that minimizesk such thatU coversC' within radiusRk
and each center ii covers at leasj demands irC'.

Furthermore, Limet al. studied both the weighted and the priority versions of these problems. In the
weightedk-center problem instead of a restriction on the number of centers we eaaach vertex has

a weight and we have a buddethat limits the total weight of centers. In the priortycenter problem
each vertex has a priority and the distance we try to minimize is the prioritized cist&iven vertex

and centes the distance from to v is d(s, v) - p,, Wherep, is the priority ofv.

For theg-all-coveragek-center problem Liret al. gave an2-approximation algorithm, and a3
approximation algorithm for the weighted and priority versions of the problewr. the ¢-coverage
k-center problem they gave @approximation algorithm, and attapproximation algorithm for the
weighted and priority versions of the problem. For theoveragek-supplier problem they gave an
3-approximation algorithm for both the basic, the weighted, and the prioriioer

Our Results  We giveO(log™ n)-approximation algorithms for thesymmetrig;-all-coverage and-
coverage problems in both the unweighted and weighted case. Of cthaségorithm for the weighted
case also works for the unweighted case (set all weights = 1), but thetlaig for the unweighted case
is simpler and the hidden constant(rilog™ n) is smaller using this algorithm.

In[10] itis showed that the asymmetric prioritycenter and asymmetriesupplier problems cannot
be approximated within any factor unless-FNP. Since the-all-coveragek-center problem and the
coverk-center problem are generalizations of theenter problem (set = 1 andq = 0, respectively),
the priority version of these problems cannot be approximated within atyrfiaxthe asymmetric case
unless P= NP. Since thej-coveragek-supplier problem is a generalization of thesupplier problem
(¢ = 0), it cannot be approximated within any factor in the asymmetric version uRlesBIP.

2 Definitions

To avoid any uncertainty, we note tHag stands follog, by default, whileln stands fodog,.

Definition 2.1. For every integei > 1, logiac = log(log' ! z), andlog! z = logz. We letlog* «
represent the smallest integesuch thatog' = < 2.

The input to the asymmetrik-center problem is a distance functidnon everyordered pair of
vertices—distances are allowed to be infinite—and a bduod the number of centers. Note that we
assume that the edges dieected

Definition 2.2. Vertexc coversvertexv within r, or ¢ r-coversu, if d., < r. We extend this definition
to a sets so that a sét r-covers a setd if for everya € A there is some € C such thatc coversa
within r. Often we abbreviatel“covers” to “covers”.

Many of the algorithms fok-center and its variants do not, in fact, operate on graphs with edge
costs. Rather, they consider bottleneck graphs [13], in which only #dges with distance lower than
some threshold are included, and they appear in the bottleneck graph ¥ittosin Since the optimal
value of the covering radius must be one of tf{e — 1) distance values, many algorithms essentially
run through a sequence of bottleneck graphs of every possible tfalesldius in ascending order. This



can be thought of aguessinghe optimal radiusRopt. The approach works because the algorithm
either returns a solution, within the specified factor of the current thteéshdius, or it fails, in which
caseRopT Must be greater than the current radius.

Definition 2.3 (Bottleneck GraphG,). Forr > 0, define the bottleneck gragh, of the graphG =
(V, E) to be the graplts, = (V, E,), whereE, = {(i,j) : d;; < r} and all edges have unit cost.

Most of the following definitions apply tbottleneclgraphs.

Definition 2.4 (Power of Graphs) The " power of a graptG = (V, E) is the graphG* = (V, E®)),
t > 1, where E® is the set of ordered pairs of distinct vertices that have a path of at iexiges
between them iid.

Definition 2.5. Fori € N define
If()={ueV|(ueEYu{v}, TI;()={ueV|(uv)eE}ufv},
i.e., in the bottleneck graph there is a path of length at mfsem v to u, respectivelyu to v.

Notice that in a symmetric gragh (v) = I'; (v). We extend this notation to sets so tidt(S) =
{u eV |ueT](v)forsomev € S}, with I'; (S) defined similarly. We usg* (v) andI'~ (v) instead
of T (v) andT'; (v).

Definition 2.6. For: € N define

T,(v) = {u | u e T~ (v) and deg(u) > g},
i.e.,u coversv and has degree at leagst
Note thatYo(v) = I'" (v).

Definition 2.7 (Center Capturing Vertex (CCV))A vertex v is a center capturing verteXCCV,) if
Y,—1(v) € I't(v), .i.e.,v covers every vertex of degree- 1 that covers.

We use CCV instead af'C'V,. To get some intuition about the notion of CCV assume we have an
instance of they-all-coveragek-center problem. In the grapfir,.. the optimum center that covers
must lie inY,(v); fora CCV, v, it lies inI'* (v), hence the name. In symmetric graphs all vertices are
CCVs and this property leads to tBeapproximation for the standakdcenter problem.

The following two problems, related tocenter, are both NP-complete [9].

Definition 2.8 (Dominating Set) Given a graptG = (V, E), and a weight functiom : V' — Q™ on
the vertices, find a minimum weight subdetC V' such that every vertex € V is covered byD, i.e.,
I+(D)=V.

Definition 2.9 (Set Cover) Given a universé/ consisting of» elements, a collectio§ = {51, ..., Sk}
of subsets of{, and a weight functiom : S — Q, find a minimum weight sub-collection df that
includes all elements éf.

3 Asymmetric k-Center Review

In this section we review th@(log* n)-approximation algorithm for the standard asymmetricenter
problem by Panigrahy and Vishwanathan [19]. It forms a basis foapproximation algorithms for the
asymmetridc-center with minimum coverage problems. The algorithm by Panigrahy and &isktvan



has two phases, thHealve phase, sometimes called thelucephase, and thaugmentphase. As de-
scribed above, the algorithm guesdespr, and works in the bottleneck graghz,... In the halve
phase we find a CCV, include it in the set of centers, mark every vertex'in(v) as covered, and
repeat until no CCVs remain unmarked. The CCV property ensures thaach CCV is found and
vertices are marked, the unmarked portion of the graph can be covéhedng fewer center. Hence if
k" CCVs are obtained, the unmarked portion of the graph can be coverel'witlh — k" centers. The
authors then prove that this unmarked portion, CCV-free, can be edweith only%’/2 centers if we
use radius instead ofl. That is to sayk’/2 centers suffice in the grapﬁ%ow.

The k-center problem in the bottleneck graph is identical to the dominating set probldis is
a special case of set cover in which the sets arethéerms. In the augment phase, the algorithm
recursively uses the greedy set cover procedure. Since the opbreluses at modt /2 centers, the
first cover has size at mo&tlog 2.

The centers in this first cover are themselves covered, using the gseedgver procedure, then
the centers in the second cover, and so forth. Afi€log™ n) iterations the algorithm finds a set of at
mostk’ vertices that, together with the CC\U3(log* n)-covers the unmarked portion, since the optimal
solution hast’/2 centers. Combining these with th& CCVs, we have: centers covering the whole
graph withinO(log* n).

We now know that this approximation algorithms is asymptotically optimal [7,8,11].

4 Approximation of g-All-Coverage k-Center

In this section we give & (log* n)-approximation algorithm for the asymmettiall-coverage:-center
problem.

Definition 4.1 (¢-All-Coveragek-Center) GivenG = (V, E), a complete graph with nonnegative (but
possibly infinite) edge costs, and a positive integefind a setS of k vertices, calleccenters with
minimum covering radiug?, such that each center covers at leagertices within radiusk.

Our algorithm is based on Panigrahy and Vishwanathan’s techniquedasymmetrick-center
problem [19]. Just as their algorithm, our algorithm gued3gsT, and works in the bottleneck graph
GRopr-

First we note that if we are in the right bottleneck graph any node eithesadegree at leagt— 1
or is covered by a node with out-degree at least1.

In the halve phase we find a CGV, include it in the set of centers, mark every verteX'ii(v) as
covered, and repeat until no Cg&remain unmarked. The CG¥roperty ensures that, as each GG¥/
found and vertices are marked, the unmarked portion of the graph caveeed with one fewer center.
Hence ifk” CCV,s are obtained, the unmarked portion of the graph can be covered’witht — £”
centers.

We will prove that this unmarked portion, CC\free, can be covered with onkf/2 centers if we
use radius instead ofl. That is to sayk’/2 centers suffice in the grap[h%ow.

Panigrahy and Vishwanathan [19] show the following lemma.

Lemma 4.2 (Panigrahy and Vishwanathan [19))et G = (V, E) be a digraph with unit edge costs.
Then thereis a subsétC V, |S| < |V|/2, such that every vertex with positive indegree is reachable in
at most2 steps from some vertex i

Henceforth call the vertices not yet covered/marketive Using Lemma 4.2 we can show that
after removing the CCVs from the graph, we can cover the active set alitthie weight of an optimum
cover if we are allowed to use distance 5 instead of 1.
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Figure 1: In (a)v is a center. Since € '3 (C1), vis notinCy, and thus € U. In (b) v is not a center.
Sincev ¢ T3 (C1), vis in A, and thusy is covered by a centes € U.

Lemma 4.3. Consider a subseft C V with the following properties: i) A has a cover consisting of
vertices of sizé:;, and each vertex in the cover covers at leastertices. ii) A contains no CG¥.
Assume there exists a 38t such thatC; 3-covers exactly/ \ A, and every vertex i€, 3-covers at
leastq vertices. Then there exists a set of vertiSesf sizek /2 that, together withC, 5-coversA, and
every vertex irb covers at least vertices.

Proof. Let U be a subset of the optimal centers that coverdVe callu € U anearcenter if it can be
reached int steps fromC', and afar center otherwise. Sina€; 5-covers all of the nodes covered by
near centers, it suffices to choaSdo 4-cover the far centers, so thétwill 5-cover all the nodes they
cover. We also need to ensure that any verte% ircovers at leasj vertices.

Define an auxiliary grapl#/ on the (optimal) center§ as follows. There is an edge fromto y
in A if and only if z 2-coversy in G (andx # y). The idea is to show that any far center has positive
indegree inH. As a result, Lemma 4.2 shows there exists a%et U with |S| < k/2 such thatS
2-covers the far centers iff, and thust-covers them inG. SinceS C U andU is the set of optimal
centers, all vertices il§ covers at leasj vertices.

Letu be any far center: note thate A. SinceA contains no CCYs, there exists € T, (u) thatis
not covered by:. Sinceu is a far center: ¢ I'j (C1), and thus) € T'; (C1). Therefore, we have € A,
since everything nat-covered byC; is in A (see also Figure 1). if € U thenw is covered by another
center inU, and thus has positive indegreefih If v is not a center, there exists a vertexc U that
coversv and therefor@-coversu, sincev is covered in the optimal solution. Sineez T'* (u), w # w.
Henceu has positive indegree iAl. O

In the augment phase we use the greedy set cover algorithm, which prasiapation guarantee
1 + In(n/k), wheren is the number of elements akds the optimum number of sets. Only nodes that
have degree at leagt— 1 in the bottleneck grapty; before the removal of CCVs are possible centers.
It is easy to check wether it is possible to cover the graph with only thesesndidhot then we are not
in the right bottleneck graph.

We now show that the tradeoff between the covering radius and the optivex size leads to an
O(log™ n) approximation.

Lemma 4.4. GivenA C V, such that4d has a cover of siz&, where all centers in the cover covers at
leastq vertices, and a set; C V that coversV \ A, where all centers ir’; covers at leasy vertices.
We can then find in polynomial time a set of centers of size at 2kdbiat, together withC'y, coversA
(and hencéd’) within a radius ofO(log™ n), such that all centers cover at leagvertices.

Proof. We will apply the greedy set cover algorithm recursively. The initial $etemterssS, is con-
structed as follows. For any vertexfor which ' (v) N A is non-empty, and which has out-degree at
leastq — 1 construct a set containiigt (v), identified byw.

The greedy algorithm set cover algorithm has approximation guarél{ieg(n/k)), which is less
thanlog, 5(n/k) whenn > 2k. Applying this algorithm thus results in a st of centers (the identifiers
of the sets found by the algorithm) that coverand has size at moat log; (n/k)), assuming. > 2k.
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Figure 2: Example of recursive application of the greedy set coveritign In each step we get fewer
centers. The centers ifis 3-covers everything id.

The setC; coversS; \ A4, so we need only considet; = S; N A. We apply the greedy set cover
algorithm again to obtain a sét of size at most

k- (log15(|41/k)) = k - (logy 5(klogy 5(n/k)/k)) = k - (log, 5(log, 5(n/k))) ,
that covers4d;. We continue this procedure and note that atithéteration we have
|Sil <k -logy 5(]Si-1]/k) -
By induction, afterO(log™ n) iterations the size of our solution sét, is at mostk. O
We can now combine Lemma 4.3 and Lemma 4.4 to get an approximation algorithm.

Theorem 4.5. Theg-all-coveragek-center problem can be approximated within a factogtog™ n)
in polynomial time.

Proof. Guess the optimum radiugopT, and work in the bottleneck graghir,,... Initially, the active
setA is V. Repeat the following as many times as possible: Pick a L& A, addv to our solution
set of centers, and remove the §gt(u) from A. Sincev is covered by an optimum center it (v),
and this optimum center lies in* (v), 'y (v) includes everything covered by it.

Let C; be the centers chosen in this first phase. We know the remainder of fite drdhas a cover
of total sizek’ = k — |C1].

Lemma 4.3 shows that we can cover the remaining uncovered vertices withsak/fib centers
if we use covering radius. Let the active setd be V' \ 1“;(01), and recursively apply the greedy
algorithm as described in the proof of Lemma 4.4 on the gﬁ@@w. As a result, we have a set of size
2(k'/2) = K’ that coversA within radiusO(log™ n). O

5 Approximation of ¢-Coveragek-Center

Definition 5.1 (¢-Coveragek-Center) Given G = (V, E), a complete graph with nonnegative (but
possibly infinite) edge costs, and a positive integefind a setS of k vertices, calleccenters with
minimum covering radiug, such that each cent@&-covers at leasj vertices inV \ S.

We use the algorithm from the previous section to find &saftcenters for théq + 1)-all-coverage
k-center problem. First we note that the centers found in the halve phaswatlat leasy non-centers,
since when we pick a CG); asv a center we marK; (v) as covered and thus none of these at lgast
vertices will later be picked as centers. The potentially problematic centeth@rcenters found in the
augment phase. These centers all cgvegrtices, but they might not covemon-centers.

Lemma 5.2. Let S be a set of centers covering all vertices, such that each centgrdovers at least
q vertices. Then there is a s8t C S of centers2 covering all vertices, such that each centerSh
2-covers at leasy vertices from/ \ S. Moreover,S’ can be found in polynomial time.



Proof. Let P be the set of problematic centers, i.e., centers that do not gavar-centers. To construct
the setS’ repeat the following as long &2 is non-empty: Pick a centerfrom P. Remove all vertices
't (v) N S exceptv from S (and P), and remove all vertices i~ (v) N P from P. WhenP is empty
setS’=S5"US.

Letv be a center ir$’. We need to show that2-covers at least non-center vertices. f was never
in P then clearlyv covers at leasf non-center vertices, & C S. Assumev was initially in P. Then
eitherv was picked or some center It (v) was picked. Ifv was picked, then since covers at least
g vertices and all vertices covered bynow are non-centers, covers at leasg non-centers. If some
centeru € I't(v) was picked then ag covers at least non-centers 2-covers at leasf non-centers.

We must now show that’ 2-covers all vertices. Assume € S was picked. Since all vertices in
'~ (v) are removed fronP, v remains a center and thuse S’. Assumev € S was not picked by the
procedure. Ifv ¢ S’ then it must be the case that some veriex T'~ (v) was picked. As just argued
u € S’. All vertices inT'* (v) are2-covered byu. Therefore S’ 2-covers all vertices covered I8 [

Using Lemma 5.2 together with Theorem 4.5 we getHiog™)-approximation algorithm for the
g-coveragek-center problem.

Theorem 5.3. Theg-coveragek-center problem can be approximated within factdflog™ n) in poly-
nomial time.

Proof. Apply the algorithm from the previous section to find a Sebf centers for the(q + 1)-all-
coverage:-center problem. Let be the actual approximation ratio obtained by e 1)-all-coverage
k-center algorithm on this instance.

Now apply the procedure from Lemma 5.2 8rin the graprG%OPT. This gives us a set of centers
that 2a-covers all the vertices, and all the cent2escovers at leasg non-center vertices. Singe =

O(log™ n) this gives arO(log™ n)-approximation. O

6 Weighted Versions

In [10] anO(log™ n)-approximation algorithm for the asymmetric weighted set cover problemesgiv
The algorithm works on bottleneck graphs and has a halve phase andraera phase as the algorithm
for the standard-center problem. In the halve phase, the algorithm recursively finds\a € @icks
the lightest vertex: in T~ (v) (which might bev itself) as a center, and mark everythinglig (u) as
covered. Itis shown that when there are no more CCVs left the unmaekedes can bd9-covered by
a set of weight at most a quarter of the optimum. In the augment phasedygnecedure for weighted
sets and elements is applied recursiv@ljjog® n) times.

We can approximate the weighted version ofgkedl-coverage:-center problem and thecoverage
k-center problem with a factor @?(log™ n) by adapting our algorithm for the weight&etenter problem
to the approaches in the previous sections.

6.1 Weightedg-all-coveragek-center

The halve phase proceeds as follows: Find a @k the lightest vertex. in T, (v) as a center, and
markl“?f(u) as covered. We will show that we can cover the remaining graph with we@irtore than
a quarter of the optimum if we use distantfinstead ofl. We need the following lemma from [10].

Lemma 6.1([10]). LetG = (V, E) be a digraph with weighted vertices, but unit edge costs. Then there
is a subsetS C V, w(S) < w(V)/2, such that every vertex with positive indegree is reachable in at
most 3 steps from some vertexdn

We can now show a lemma analog to Lemma 4.3. The proof is similar to that of Lemma 4.3.
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Lemma 6.2. Consider a subseft C V with the following properties: i) A has a cover consisting of
vertices of total weight?’, and each vertex in the cover covers at legstertices. ii) A contains no
CCV,s. Assume there exists a gt such thatC; 3-covers exactly/ \ A, and every vertex i, 3-
covers at least vertices. Then there exists a set of vertiesf weight1¥/2 that, together withC1,
7-coversA, and every vertex iy covers at leasq vertices.

We will use the following greedy heuristic for the dominating set problem in teid) graphs to
complete the algorithm: All vertices with outdegree at leastl are potential members of the dominat-
ing set (i.e. centers). Pick the maficientvertex, i.e., the vertex that maximizes A N Tt (v)) /w(v).

In [10] it is shown that this algorithm has an approximation guarant@etofn(w(A)/w*, wherew* is
the weight of an optimum solution. This is less thag, 5(w(A)/w*) whenw(A) > 4w*. We can now
show the following lemma.

Lemma 6.3. GivenA C V, such that4 has a cover of weighti’, where all centers in the cover covers
at leastg vertices, and a sef; C V that covers/\ A, where all centers iit’; covers at leasy vertices.
We can then find in polynomial time a set of centers of total weight at 2gshat, together withC1,
coversA (and hencd’) within a radius ofO(log* n), such that all centers cover at leagtertices.

Proof. We will apply the greedy set cover algorithm recursively. The initial $etemtersS; is con-
structed as follows. For any vertexwith w(v) < W for whichT'* (v) N A is non-empty, and which has
out-degree at leagt— 1 construct a set containinig™ (v). The total weight of these centers is at most
nW . Applying the greedy dominating set algorithm thus results in &s#tat coversd and has weight
at most

nW
w(S1) < Wlogl.s(w) = Wlogy 5n,

assuming: > 4. The set(C; coversS; \ A4, so we need only considet; = S; N A. We continue
this procedure and note that at tiie iteration we haves;| < k - log; 5(|S;—1|/k). By induction, after
O(log™ n) iterations the size of our solution sét, is at mostiV/. O

Combining Lemma 6.2 and Lemma 6.3 we get,

Theorem 6.4. We can approximate the asymmetgiall-coverage weighted@-center problem within
factor O(log™ n) in polynomial time.

Proof. Guess the optimum radiugopT, and work in the bottleneck gragir,... Initially, the active
setA is V. Repeat the following as many times as possible: Pick a C&€M A, add the lightest vertex
win Y~ (v) to our solution set of centers, and remove thel$gtu) from A. Sincewv is covered by an
optimum center i~ (v), u is no heavier than this optimum center. Moreover, since the optimum center
lies inT"*(v), I's (u) includes everything covered by it.

Let C be the centers chosen in this first phase. We know the remainder of fite grenas a cover
of total weightiV’ = W — w(C4), because of our choices based on CCV and weight.

Lemma 6.2 shows that we can cover the remaining uncovered vertices withtweignore than
W’ /2 if we use covering radius. Applying the lemma again, we can cover the remaining vertices with
weightW’ /4 centers if we allow radiug9. So let the active set be V' \ '}, (C1), and recursively apply
the greedy algorithm as described in the proof of Lemma 6.3 on the g}’%ggpq As a result, we have
a set of sizédV”’ that coversA within radiusO(log™ n). O

6.2 Weightedg-coveragek-center

Using Theorem 6.4 and Lemma 5.2 we get the following theorem.

Theorem 6.5. We can approximate the asymmetric weightenbveragek-center problem within factor
O(log™ n) in polynomial time.

The proof is similar to the proof of Theorem 5.3.

9
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