
In Proceedings of 11th international Symposium on Empirical Software Engineering and Measurement (ESEM), Toronto, Canada,
2017

Beyond Continuous Delivery: An Empirical

Investigation of Continuous Deployment Challenges
Mojtaba Shahin a, Muhammad Ali Babar a, Mansooreh Zahedi b, Liming Zhu c

a CREST - The Centre for Research on Engineering Software Technologies, The University of Adelaide, Australia
b CREST - The Centre for Research on Engineering Software Technologies, IT University of Copenhagen, Denmark

c Data61, Commonwealth Scientific and Industrial Research Organisation, Sydney, Australia
mojtaba.shahin@adelaide.edu.au, ali.babar@adelaide.edu.au, mzah@itu.dk, liming.zhu@data61.csiro.au

Abstract— Context: A growing number of software

organizations have been adopting Continuous DElivery (CDE)
and Continuous Deployment (CD) practices. Researchers have
started investing significant efforts in studying different aspects
of CDE and CD. Many studies refer CDE (i.e., where an
application is potentially capable of being deployed) and CD (i.e.,
where an application is automatically deployed on every update)
as synonyms and do not distinguish them from each other.
Despite CDE being successfully adopted by a large number of
organizations, it is not empirically known why organizations still
are unable or demotivated to have automatic and continuous
deployment (i.e., CD practice). Goal: This study aims at
empirically investigating and classifying the factors that may
impact on adopting and implementing CD practice. Method: We
conducted a mixed-method empirical study consisting of
interviewing 21 software practitioners, followed by a survey with
98 respondents. Results: Our study reveals 11 confounding
factors that limit or demotivate software organizations to push
changes automatically and continuously to production. The most
important ones are “lack of automated (user) acceptance test”,
“manual quality check”, “deployment as business decision”,
“insufficient level of automated test coverage”, and “highly
bureaucratic deployment process”. Conclusion: Our findings
highlight several areas for future research and provide
suggestions for practitioners to streamline deployment process.

Keywords— continuous delivery; continuous deployment;
empirical study

I. INTRODUCTION
“We do continuous delivery even to on-premise environments.

Using continuous delivery, we would not be pushing out every day. We
might only push out new release to client site every three months. We
are still using continuous delivery practice to keep software
deployable and releasable. I think it is quite important to distinguish
continuous delivery and continuous deployment” Consultant (P18).

“You can apply continuous delivery and not implement continuous
deployment yet (e.g., because customer has security constrains to
deploy remotely)” Team Lead (R97).

Development and Operations (DevOps) is an approach to
solve a disconnect between development and operations teams by
promoting collaboration, communication, and integration between
them [1]. The increasing need for improvement in the business
competitiveness and performance has compelled many IT

organizations to adopt DevOps [1, 2]. Continuous DElivery (CDE)
and Continuous Deployment (CD) are key DevOps practices to
suitably achieve this goal by enabling IT organizations to
accelerate delivering high-quality value to customers [1]. It should
be noted that there is no consensus on the definitions of CDE and
CD practices in both academic and industry communities as
software organizations may interpret and employ them
interchangeably [3-6]. The main goal of CDE practice is to keep
an application always at deployable state [7]. CD practice is an
extension to CDE, which automatically and continuously releases
the application (changes) to production environment after
successfully passing all automated tests and quality checks. In
contrast to CDE (i.e., a pull-based approach), CD practice (i.e., a
push-based approach) does not have any manual steps or decision
making process for when and what to release: once developers
commit a change, the change is immediately pushed to production
without human intervention [8, 9]. It is argued that CD practice
enables organizations to immediately gain feedback from users
and production use [8, 10].

Whilst several studies have investigated the challenges and
issues for adopting and implementing CDE [11-13] and CD
practices [14-17], they usually use CDE and CD as synonyms [18,
19]. However, there is the other side of the coin. A recently
published SLR on CDE [18] reveals that existing literature uses
the term CD while they actually refer to CDE, because they do not
include or provide fully automatic deployment to production.
Furthermore, the SLR could not find highly relevant scientific
literature on CD implementation. Recently industrial communities
[20-22] have underlined the challenges, experiences, and lessons
learnt in moving from CDE (i.e., where an application is
potentially capable of being deployed) to CD (i.e., where the
application is automatically deployed to production on every
update). In addition, two studies [23, 24] reveal that delivery (i.e.,
CDE) and deployment (i.e., CD) capabilities of software
organizations may be different as for example there might be a
tension between software quality and deployment frequency. In
[23], a new line of research is explicitly sought to explore the
reasons for this difference. To the best of our knowledge, none of
the previously published literature reports this issue and
specifically distinguishes between the challenges of adopting CDE
and CD. This paper aims at empirically investigating and
classifying confounding factors that particularly impact on
adopting and implementing CD practice: despite software
potentially is production-ready (i.e., CDE practice), there are still

factors that limit or demotivate organizations to continuously and
automatically ship code changes from development into
production without human intervention (i.e., CD practice). To help
closing this literature gap, our paper investigates the following
research question:
RQ: What factors do limit or demotivate software organizations
to move from continuous delivery to continuous deployment?

To answer this research question, we conducted a mixed-
method empirical study that collected data from in-depth
interviews with 21 experts from 19 organizations and a survey of
98 software practitioners. Our analysis reveals 11 factors that are
confounders to truly adopt CD practice, including: “lack of fully
automated (user) acceptance test”, “manual quality check”,
“deployment as business decision”, “insufficient level of
automated test coverage”, “highly bureaucratic deployment
process”, “lack of efficient rollback mechanism”, “dependency at
application level”, “demotivated customer”, “customer
environment”, “domain constraints”, and “manual interpretation
of test results”. Our findings have significant differences to the
existing studies [11-17]: (1) our findings come from interviewing
21 experts in CDE and CD and a survey of 98 software
professionals from a wide range of organizations in terms of size,
domain, and the way of working rather than one practitioner’s
own observations [11, 12] or a single case company [13, 16] and
a particular domain [14]. The study [14] focuses only on adopting
DevOps in embedded systems and the studies [11, 12] only
identify the challenges and issues of adopting CDE and CD based
on the experience of authors. (2) This paper discusses the current
state of automation support in software industry to adopt CD,
which has not been reported in the previous work. (3) Our study
reports the first large-scale empirical investigation of the
challenges of having automatic and continuous deployment (i.e.,
CD).

The rest of this paper is organized as follows: Section II
describes the research method. Section III reports our findings.
We present potential threats of this study in Section IV. Section V
reflects a discussion on findings. In Section VI, we summarize
related work. Finally, the paper is concluded in Section VII.

II. RESEARCH METHOD
Considering the exploratory nature of our research question,

we chose to use a mixed-method research approach with
sequential exploratory strategy [25]. We first collected qualitative
data from 21 in-depth, semi-structured interviews and then we
assessed and quantified the findings through surveying 98
software professionals [25, 26]. This section describes the
research protocol that was strictly followed for this study.

A. Interviews
Protocol: For this study, we utilized the data gathered through

interviews with 21 practitioners from 19 organizations based in 9
countries. The interviews were semi-structured with almost 40
open-ended questions. As all of the interviewees were located in
different parts of the world, it was not possible for us to do face-
to-face interview. Hence, all interviews except two (i.e., email-
based interview) were conducted via Skype. To engage the
interviewees in an in-depth discussion and thoroughly gather their
perspectives, we sent the interview questions to them beforehand
[27]. During the interviews, we made some adjustments to some
questions based on the responses and comments of the
interviewees. All of the interviews were conducted by the first
author and were audio-recorded and transcribed for an in-depth
analysis. The relevant parts of the interviews for this study are

described as follows: first part briefed the high level objectives of
the study to the interviewees. In the second part, we precisely
defined CDE and CD terms for the interviewees and explained
what differences exist between them. Next, questions related to
participant’s background were asked (e.g., what is your role and
responsibilities in the project team?). Forth, the participants
explained challenges, their personal experiences and concerns
around moving from CDE to CD, and why they were still unable
or demotivated to have fully automatic deployment to production.
In the last part, questions related to deployment pipeline were
asked (e.g., is your deployment pipeline fully automated or not?
why?). We finished the interviews by asking the interviewees “Is
there any comment or issue you want us to know?”

Participants: We used purposive sampling strategy [28] to
recruit representatives from the organizations that adopted or
were adopting CDE or CD practices or experts who were part of
organizations doing consulting in these areas. We followed three
steps to identify the participants: (i) we identified the potential
participants through personal network, and by exploring the list of
speakers and attendees of industry-driven conferences on
DevOps/CD (e.g., DevOps Enterprise Summit1). (ii) We strictly
analyzed their profiles to understand whether they had the right
kind of experiences and expertise to participate in our study. (iii)
Then, we directly sent an invitation email to them. To maximize
participation, the interviewees were promised to receive a free
copy of a book on DevOps: “DevOps: A Software Architect's
Perspective” [1]. We purposively targeted software professionals
with different levels of seniority, different types of experiences
and holding different roles, from diverse organizations in terms of
domains and sizes. “Snowballing technique” has been used to
expand the number of participants, in which at the end of each
interview we asked the interviewee to introduce potential
interviewees [29].

Data analysis: We employed conceptualized thematic
analysis method in software engineering to analyze interview
transcripts [30]. We supported the qualitative analysis process by
NVivo2 software (i.e., a qualitative data analysis tool). This
allowed a systematic and more convenient analysis and
comparison of emerging themes. Whilst first author carried out
data analysis, the third author assessed all emergent themes to
confirm them and identify any other potential themes. Following
five steps of the conceptualized thematic analysis method, first
we read the interview transcripts line-by-line to extract key points
of each interview and transferred them to NVivo software.
Second, based on the detailed answers to the interviews questions,
we created initial codes for later analysis. Third, the codes
identified in last step were clustered into potential themes. Next
step involved re-evaluating the extracted themes against each
other to merge presumably related themes or exclude the themes
with low evidence support. At the end of this step, we generated a
higher-order model of themes. Last step consisted of assessing
trustworthiness of each core theme and assigning a name to each.

Interviewees Characteristics: In total, 21 practitioners (i.e.,
indicated by P1 to P21) participated in the interviews. All
participants were male. Regarding the interviewees’ experiences
in software development, over 65% have more than 10 years, five
have 6-10 years and two have 1-5 years of experience. 7 out of 21
participants were currently in the role of architect, followed by
consultants (4 out 21, %19). The rest of them were executives

1 events.itrevolution.com
2 http://www.qsrinternational.com/

(e.g., CTO, 2), team leads (2), program managers (2), developer
(1), DevOps engineer (1), operations engineer (1), and software
engineer (1). The interviewees’ organizations were from different
software domains including consulting and IT services (8),
financial (2), telecommunication (2), games (2). 9 interviewees
worked in large organizations (>1000 staff), 7 in medium-sized
(100-1000 staff) and 5 in small ones (<100 staff).

B. Survey
Protocol: We designed an online survey including qualitative

and quantitative questions following the guidelines developed by
Kitchenham and Pfleeger [31]. Based on the themes emerged
from the interviews, we formulated survey questions. The survey
allowed us to assess, complement and generalize the interviews’
findings with larger number of respondents. Similar to the
interviews, the survey began with definition of research
objectives and explaining eligibility criteria for participation. We
precisely defined CDE and CD at beginning of the survey
instrument. The relevant survey questions used for this study
were composed of 4 demographic, 3 five-point Likert-scale, 2
single-choice, 2 multiple-choice and 4 open-ended questions. For
multiple- and single-choice questions, “Other” field was added to
unveil additional perspectives and thoughts [32]. Answering all
questions was mandatory. Likert-scale questions aimed at
collecting the participants’ views on three types of statements: (1)
how they agreed or disagreed with a statement (i.e., from strongly
agree to strongly disagree); (2) how important the challenge
reported in a statement was (i.e., from very important to
unimportant); (3) how they scored a statement (i.e., from 1 to 5).

Participants: We employed three recruitment methods for our
survey. Initially, we publically advertised the survey to social
media, for example DevOps/CD related groups on LinkedIn.
Secondly, an invitation letter was sent to about 4000 GitHub users
via email and invited them to complete the survey. In the email
invitation and survey preamble, the participants were asked to
forward the survey to their colleagues. Despite motivating
practitioners by raffling for five DevOps books (i.e., “DevOps: A
Software Architect's Perspective”), we were not successful in
recruiting practitioners using the first two methods. About 15% of
all responses came from applying the aforementioned methods.
Previous research has also indicated that these methods may fail
to incentivize large number of populations [33]. Hence, we
decided to reach out highly relevant practitioners by applying the
interviewees’ recruitment process: identifying highly relevant
practitioners (e.g., speakers and attendees of industry-driven
conferences on CD), carefully examining their backgrounds and
expertise, and sending an invitation email to them. We directly
contacted 487 software practitioners through email. Our sample
size was not similar to [32, 33], so it was not feasible to calculate
a response rate for our survey. We eventually received 98 survey
responses from the invited participants.

Data Analysis: The data collected from the Likert-scale and
close-ended questions was analyzed using descriptive statistics
[33]. We applied conceptualized thematic method (as discussed in
Section II.A) to analyze the responses to open-ended questions:
first author conducted qualitative analysis and then the third
author assessed all the emergent themes.

Survey Participants Characteristics: We received responses
from 98 participants (i.e. indicated by R1 to R98). Majority of the
survey participants were architects (40), followed by DevOps
engineers (12), consultants (10), and team leads (8). The rest were
developers (7), software engineers (6), executives (e.g., director,
3), operations engineers (3), etc. 75.5% of the survey participants

had more than 10 years of experience in software industry, 14.3%
6-10 years, 7.1% 3-5 years, and 3.1% 1-2 years. 39 practitioners
from large, 31 from medium-sized and 28 from small
organizations completed the survey. Similar to the interviewees,
the survey participants came from very diverse organizations in
terms of domain including consulting and IT services (36),
financial (10), e-commerce (10), and telecommunication (6).

III. FINDINGS
First, we present our findings regarding differences in

practicing CDE and CD in software industry. Next, as automation
is a key component of CD practice, we describe the current state
of automation support in software indusry in this regard. Then,
we report confounding factors in moving from CDE to CD.

A. Practicing CDE vs. CD in Industry
We aimed at understanding the differences in practicing CDE

and CD in software industry and also assessing the maturity of
CDE and CD practices in our participants’ organizations. To this
end [2, 15, 23], both the interviewees and the survey participants
were asked two questions: (1) on average, how often your
applications are in releasable state or production-ready? This
question, to a large extent, indicates how successfully an
organization adopts and implements CDE practice. To measure
CD success in an organization, we asked (2) on average, how
often do you deploy your applications to production
environment? Figure 1 shows that almost 53.7% (64 out of 119
(21+98)) of the participants indicated that on average the
applications in their respective or client organizations were in
deployable-state multiple times a day or daily, indicating they
were successful to truly implement CDE. However, CD success
was lower as in total 43 out of 119 (36.1%) participants indicated
that the application changes were automatically pushed multiple
times a day or daily to production. This finding can have twofold
implications: First, it shows that compared to the organizations
studied in [15, 23], our participants’ organizations were more
successful in implementing CDE and CD practices. That means
our findings came from reliable sources. Second, it reveals that
practicing CDE and CD is quite different in software industry:
despite CDE being successfully adopted by organizations, there
might be factors that limit or demotivate them to have automatic
and continuous deployment to production (i.e., CD practice).
Section IV.C reports theses confounding factors.

Fig. 1: How continuous delivery and deployment are implemented –

aggregated results of interviews and survey

B. Current State of Automation Support in Continuous
Deployment Pipeline
Continuous Deployment Pipeline (CDP) (aka. continuous

delivery pipeline) plays a significant role in helping organizations
to achieve continuous and automatic deployment [34]. This
means that the success of practicing CD in an organization

53

11

31
19

2 3

26
17

31
37

7
1

Multiple
times a day

Once a day A few times a
week

A few times a
month

A few times a
year

N/A

On average, how often your applications are in releasable state?
On average, how often do you deploy your applications to production?

heavily relies on degree of automation support in CDP [35]. A
fully automated CDP enables organizations to automatically
build, test, configure and deploy new features to production.
Therefore, we were interested in understanding how automation is
supported in CDPs in software industry. The survey respondents
were asked to score their CDPs in terms of automation on a 1-5
scale (i.e., from 1-completely manual to 2-completely automated).
The data from Figure 2 shows that over 70% (69 out 98) of the
survey respondents scored their CDPs 4 or 3, which can be
considered as semi-automated CDPs. Surprisingly, only 19 out of
98 the respondents indicated that they had fully automated CDP
to transfer the changes form repository to production.

Fig. 2: Statement 1: How would you grade your continuous deployment

pipeline in terms of automation?

Through a five-point Likert-scale question, we asked the
survey participants to indicate how strongly they agree or
disagree with this statement (S2): “we have the right tools to set
up fully automated continuous deployment pipeline”. From the
Figure 3, we find that whilst 25.5% of the respondents strongly
agreed, 43.4% agreed that there are right tools for this purpose.
Other respondents were divided: 18.3% were neutral, 2% strongly
disagreed and 10.2% disagreed with the statement S2.

Fig. 3: Statement 2: We have the right tools to set up fully automated CDP.

Furthermore, we intended to explore what stages of a CDP
may more or less support automation. Typically, a CDP is
composed of explicit stages (e.g., build) to push code from source
code repository to production [1, 35]. It should be noted that there
is no standard or single pipeline as organizations may design and
implement their own CDPs with different stages and diverse tools
[35]. Through a multiple-choice question, we asked the survey
participants which of the following stages constitutes their CDPs:
“version control”, “build”, “continuous integration”, “artifact
repository management”, “unit/integration testing”, “acceptance
testing”, “production deployment”, “configuration and
provisioning”, “log management and monitoring”, and
“containerization”. We also included “Other” field to collect any
other stages in a CDP. As Figure 4 shows, “version control”,
“build”, “unit/integration testing”, “continuous integration” and
“production deployment” were the most common stages of CDPs
in software industry. However, “containerization” was the least
commonly mentioned stage in CDPs as only 37 survey
participants stated that their CDPs include “containerization”
stage. It should be noted that not all stages are compulsory in a
CDP as only 19 survey participants indicated that the CDP in
their respective organizations include all of the abovementioned
stages. Figure 4 demonstrates that only 5 survey participants
indicated the “Other” field. One respondent pointed out that each
application has its own CDP; therefore, there is high variability
from application to application. Two others referred to
“configuration and provisioning” stage in different ways (e.g.,
“Cloud Management and Self-Service” R80 and “Automated

Provisioning of Environments” R90). Through two open-ended
questions, we asked the survey respondents which of the above-
mentioned stage(s) have the most and the least automation
support respectively. The responses for these questions indicate
that “acceptance testing”, “production deployment”, and
“configuration and provisioning” were the stages that had the
least automation support respectively. In contrast, “build”,
“continuous integration” and “unit/integration testing” stages got
the most automation support. Our analysis has revealed that the
organizations with fully automated CDPs were much more
successful to achieve frequent and automatic deployment than
those with semi-automated CDPs. The responses to these two
open-ended questions were fed into our analysis process, where
applicable, to explore why some CDP’s stages had less
automation support and how lack of fully automated CDP limited
some participants’ organizations to truly adopt CD (See Section
III.C).

Fig. 4: Stages of Continuous Deployment Pipeline

C. Moving from CDE to CD
This section reports the confounding factors in moving from

CDE to CD, which are extracted from the interviews and the
survey open-ended questions. We also assess and quantify these
factors by indicating the number and percentage of the survey
respondents who experienced these factors (See Table I).

TABLE I. Summary of confounding factors in moving from CDE to CD

Confounding Factors # %

F1. Lack of fully automated user acceptance test 43 43.9
F2. Manual quality check 42 42.9
F3. Deployment as business decision 41 41.8
F4. Insufficient level of automated test coverage 34 34.7
F5. Highly bureaucratic deployment process 31 31.6
F6. Lack of efficient rollback mechanism 24 24.5
F7. Dependency at application level 23 23.5
F8. Demotivated customer 19 19.4
F9. Customer environment 16 16.3
F10. Domain constraints 15 15.3
F11. Manual interpretation of test results 11 11.2

1) Lack of fully (user) automated acceptance test
We found that one of the major changes that usually would

happen during transition to CD is to identify reworks and
eliminate their root causes effectively. An often-heard reason for
reworks in software development process was manual testing.
Several interviewees stated that an extensive effort and time in
transition to both CDE and CD practices have been spent on
automating existing manual tests (e.g., “From a technical

2 8 29 40 19

0% 20% 40% 60% 80% 100%
1 (Completely Manual) 2 3 4 5 (Completely Automated)

25 43 18 10 2

0% 20% 40% 60% 80% 100%
Strongly agree Agree Neutral Disagree Strongly disagree

94
95

87
75

89
55

86
66
66

37
5

Version Control
Build

Continuous Integration
Artifact Repository Management

Unit/Integration Testing
Acceptance Testing

Deployment
Configuration and Provisioning

Log Management and Monitoring
Containerization

Other

perspective let’s say since you have to reduce time and move fast, you
have to care about testing. The problem is that you can’t automate
everything because it sounds time consuming” P13). We were
interested in gathering viewpoints of the practitioners in this
regard in a quantifiable scale. Hence, we asked the survey
participants (n=93) to rank how important was the challenge of
“lack of fully test automation” in CD adoption, so because of
which they faced serious challenges in automatic and continuous
deployment. Figure 5 indicates that 78.7% of the survey’s
respondents rated the severity of this challenge as very important
or important.

Fig. 5: Statement 3: How important is “lack of fully test automation” in

adopting CD and put you in trouble to have automatic deployment

The interviewees disclosed that they considerably succeeded
in automating units and integration tests, but automating the tests
occurring at the end of development process such as acceptance
test and performance test remained the main challenge and it took
heavy workloads and time of their own organizations. As P9
commented:
“They [organization] really often have challenges to get [tests
automated] done, for acceptance tests most of time it is not easy to
fully automate” P9.

Our survey’s results were aligned with our interviews’
findings as “lack of fully user acceptance test automation” has
presented the most confounding factor (43 out of 98, 43.9%) for
CD success. The survey participants shared the following reasons
why (user) acceptance tests were or could not be fully automated.
a) Too much effort with low gain

Surprisingly, many survey participants mentioned concerns
about the potential benefits of automating acceptance test at large
scale compared to its associated complexities and costs (e.g., “I'm
guessing it [automating user acceptance test] is seen as high effort
for low gain” R61). That is why in some organizations there is not
enough demand for this purpose. Furthermore, some believed that
acceptance testing should involve human intervention (e.g., for
assessment of results) as it would bring more values and increase
confidence in code quality. As explained by R14 “Acceptance
testing [is manual] due to high frequent UI changes that is more
efficient for manual testing to validate user experience against
requirements”. In this regard, the survey’s participants also
indicated that they experienced significant burden to learning and
changing mindset of customers to support fully automated
acceptance testing. As stated by R40 “Member acceptance test [is
manual]; we cannot dictate customer workflow”.
b) Tools limitations

A few of the survey participants reported that current tools
and technologies are immature to fully automate acceptance tests
(e.g., “Acceptance testing [is manual], because we have lacked the
tools and technology to suitably automate this” R2 or “The tools we
use [for automating acceptance tests] are too crude” R91).
c) Lack of automation skills

Lack of automation skills was another reason for having
manual acceptance testing. R2 explained the reason to adopt
manual acceptance test as “The staff involved in acceptance test

phase are often domain experts with little or no automation
knowledge or development skills”.

2) Manual Quality Check
The analysis of the qualitative data also indicates that

although automation is critical in CD practice, manual tasks are
sometimes unavoidable. For example, the organization that P15
helped to adopt DevOps was always able to deploy working
versions to lower environments (e.g., staging environment) in an
hour, yet the step for getting that version from low level
environment into production involved additional verification and
approval. That is why it was not truly CD, but it was more CDE.
The most common manual task mentioned by the interviewees
was code review. The interviewees’ organizations performed
several manual code reviews before deploying software to
production. This is partially because some organizations may not
have highly skilled developers for truly practicing CD. As
explained by P10:
“That is second code check because first the code reviews done
within team and there is final check by release manager who is one of
the most knowledgeable developers in the organization” P10.

Ideally, Quality Assurance (QA) tasks should be automated
and integrated into CDP [36]. Several interviews’ participants
expressed that using automated testing could have enabled them
to effectively deal with QA team and their tasks as they are not a
severe bottleneck for practicing CD anymore. However, for some
of them it does not mean removing all manual QA tasks from
CDP. One of the interviewees reported on the reason that changes
are not immediately pushed to production in the following words:
“We fully deploy automatically on the test systems. But currently
there is still a second button, required to deploy it out to the customer
side. It is just because of sort of caution around, basically it would
not be hard for us to automate but there is just too much concern
around quality level and having another round of sign off. That is
probably our biggest trouble like I said before how to get the initial
quality to a level that they can be deployed simply with developer
independently” P7.

Many interviewees’ organizations still need to perform many
manual quality checks before each release. Team members still
need to release software (changes) to QA team to get certified.
The QA team basically needs to manually check and confirm the
level of software quality in order to being deployed to production.

According to Table I, the second most mentioned pain by the
survey participants (i.e., 42.8%) for frequent and automatic
deployment was conducting manual check and confirming the
changes before each release. Some of the survey participants also
revealed that their organizations are not willing to automate all
QA tasks in CDP (e.g., due to lack of trust in existing tools) and
believe that manual quality checking brings much more values to
them. As one survey participant stated “Deployments to production
need a human trigger. We feel [it is] safer to look closely to the
metrics during the deployment process” R89.

3) Deployment as Business Decision
Some of the interviewees indicated that in their organizations

the development teams were not able to immediately deploy
every change to production environment, despite passing all the
tests and quality checks. This is mainly because deploying to
production was considered as a business decision, which had to
be made by management or financial sectors. In other words,
development team members have little control over production
deployment. Furthermore, different organizations may adopt
different policies and timeslots for release, which can bring the

48 25 14 3 3

0% 20% 40% 60% 80% 100%

Very important Important Moderately important
Of little importance Unimportant

most value to their customers [3, 37]. As can be seen from the
following quote, despite developers could deploy changes into
lower environments at any point of time, production deployment
occurred every three weeks through a formal process.
“At any point of time, [if] we wanted we could deploy into lower
environments but major release was done every three weeks because
the release process still was quite important for management to have
sign off from the testers …” P15.

We asked the survey participants to determine whether this
factor (i.e., deployment as business decision) impacted their
capability to automatically and continuously deploy the changes
to production. According to the survey responses (see Table I),
this factor was ranked as third most common confounding factor
in this regard, in which out of 98 survey participants, 41 (41.8%)
indicated that production deployment is considered as a business
decision and is out of developers’ control.

4) Insufficient level of automated test coverage
Some interviewees perceived lack of sufficient automated test

coverage as a bottleneck to transition from CDE to CD (e.g., “Of
really large problem was maintaining our automated test coverage”
P17). It is important to note that insufficient level of automated
test coverage reduced the confidence of some interviewees’
organizations in the readiness of their applications for
deployment. Our survey results also confirm this concern as a
large number of the survey respondents (34 out of 98, 34.7%)
indicated this as a CD challenge.

5) Highly bureaucratic deployment process
We found that deployment process in some organizations is

still highly bureaucratic. Our findings characterize a highly
bureaucratic process as the one having a large number of formal
tasks (e.g., getting approvals from various people) to be performed
manually before each release. As one interviewee and one survey
participant highlighted this in the following quotes:
“Solution deployment to customer side involves taking agreement and
acceptance from their backend teams…. So we were given some slots
based on their delivery cycle or their priorities and we had to obey
with those slots” P5.
 “Telecom operators have deployment processes that have formal
bureaucratic check lists prior to deployment due to multiple
integrations in their network. Solutions come from various vendors
and having CD to make eco-systems work across the vendors involve
manual checks” R67

Table I reveals that 31 of the survey respondents (31.6%)
chose that deployment process in their respective organizations or
client organizations was highly bureaucratic.

6) Lack of Efficient Rollback Mechanism
In comparison with CDE practice, CD requires better

monitoring solutions and fully automated rollback mechanisms
[7]. Whilst P17 stated that integrating automated rollback in CDP
increased their confidence to have automatic deployment, our
analysis of qualitative data reveals that lack of having efficient
rollback mechanism, forced a couple of the interviewees’
organizations to decrease the pace of pushing changes to
production. If there is not a very good rollback mechanism and
something goes wrong in deployment process, software
organizations may be at risk of delivering their customers buggy
code. The results from the survey show that 24.5% of the
participants confirmed that lack of efficient and automated
rollback mechanism to quickly recover issues in deployment
process was a reason for having manual deployment. For
example, one survey participant, R43, stated: “Deployment [is

manual], it doesn't support rollback neither has power to provision of
a machine/instance and the roll out could be better (test the released
in production, load tests, micro benchmark, etc.)” R43.

7) Dependency at Application Level
Our study has found that albeit an application might be at

deployable state, dependencies between that application and other
systems may have inhibited some of the participants’
organizations to transition from CDE to CD. It means
organizations need to ensure that there is no integration problem
when deploying an application to production. Deploying software
changes on a continuous basis necessitates continuously
deploying all dependencies (e.g., dependent applications). One
interviewee described this situation vividly:
“The difficulties become visible when you automate deployment for
complex stack… Then you have sometime challenges to get
everything working within one task… To all dependencies of your
deployment, if [you] have legacy applications, then you need to
deploy all these things together and everything should work after
deployment and you always face one or two things more difficult. So
simple automation you do it quite quickly and there are always some
tasks to automate” P9.

As shown in Table I, the survey results moderately confirmed
our interviews’ findings as 23.5% of participants agreed that
dependency at application level was a confounding factor. To
give an example, one survey participant discussed the reason of
manually deploying their application in these words:
“Deployment is a manual process because once an artifact is created,
[in order] to allow coordination with other services; dependencies
must be known in advance and aren't written down” R41.

8) Demotivated customer
Based on our analysis and the interviews’ discussions, we

perceived that the time and pace of deployment to production
greatly depends customers’ cultures, polices and goals. We found
that not all customers are mature enough to accept a continuous
release. A number of the interviewees pointed out that whilst they
were able to give updates as frequently as possible to their client
organizations, the established cultures and policies in the client
organizations did not support fully transition to CD practice.
Therefore, they had to follow pre-defined timeslots (i.e., calendar-
based release) for releasing software.

Our survey participants confirmed this finding as 19 of them
indicated that their customers were not happy or had no need to
receive continuous and automatic release. Two survey
participants explained:
“Upgrading to a new release is expensive and strategic for
customers, they don't want to run the risks of a continuous daily or
weekly delivery, they want to upgrade once a year at most” R78.
 “Moving into production [is manual] because that is not done too
often; and it is a handover to Ops” R13.

Our study shows that compared to CDE, customers need to be
actively involved in continuous and automatic deployment for
truly practicing CD (e.g., “I think our domain and customer are not
yet in position to have continuous deployment” R23).
9) Customer environments

Our findings have revealed that the participants often found
themselves struggling with customer’s environment as a severe
roadblock to CD. It was often stated by the interviewees that lack
of carefully studying and exploring customer environments before
moving to CD led to challenges in continuous and automatic
release. One CDE/CD consultant observed:

“I saw a customer actually who did not take regulation compliance
into consideration and invested huge amount of time and money on
doing microservices and fancy tools and at the end of the way they
couldn’t deliver more often than once in a month, because of
regulations, … that is the rule and that’s the government
stuff……Many things should be taken into considerations for success
of this journey [CD practice]” P14.

Table I displays that 16 out of 98 survey respondents
indicated that the challenges (e.g., manual configuration)
associated to customer environment negatively affected their
capability to automatically and frequently release software
(changes). During our interviews and survey studies, we heard the
following challenges associated with production environments as
confounders to continuous and automatic deployment.
a) Manual configuration of complex software

Anecdotally, several of the interviews’ and survey
participants have said that manual configuration of complex
software, particularly when there is a tight coupling between
software and hardware, and regulatory environments represented
a significant obstacle to CD success. Here are just a few of the
examples indicating the participants struggled with manual
configuration:
“On the customer/onshore side, requirements developed and
additional expertise was brought in to manage and support the
manual delivery due to firewall and legacy processes preventing CD
on the client side” P3.
“This [production deployment] still involves a manual step to move
the release artifact from one environment to another, due to network
separation” R71.
“Configuration and provisioning varies from site to site at customer
location. Hence this involves manual configuration from team” R67.

Besides the complex and error-prone process of configuration
and provisioning in some production environments, we also
noticed several other reasons for having manual configuration and
provisioning: (i) lack of mature tools (e.g., “We do not have a
robust toolset for automating configuration” R49 or “Configuration
is [manual] in Puppet but requires restarting of applications to
bootstrap and load new configurations adding a manual step into the
process. We use load balancing so Puppet can't restart at will” R41);
and (ii) not much value in automating configuration and
provisioning (e.g., “Provisioning [is manual] because we update
instance images only a few times per week” R52).
b) Hard to simulate/access real production

Our analysis highlights that a lack of control on, access, and
simulation of production environment (e.g., on-premise
environment) make it difficult to deploy potentially releasable
software on a continuous basis. When there is no direct and
regular access to customer environments, a software development
team needs more communication with operations team at
customer side to get confirmation and agreement for each release.
The following quote depicts this issue:
“We had a project and we had concrete control through the
infrastructure and choice of technologies. That kind of environment is
pretty simple to kind of get deployment pipeline that you want, you
have tools, and you have kind of practices. But when we are working
with customer that is not used to that model of working, that’s needed
to have a lot of communication, a lot of mentorship and why we need
to do this things” P12.

Several interviewees shared that it is not easy (if possible) to
stimulate production-like environments with realistic data.
Therefore, lack of access to and control on production

environment make it much harder to fully automate deployment
process. One interviewee described this situation perfectly:
“There is always challenge how to keep testing environment in
synchronization with production environment. Because you can’t
have the same testing environment like production environment, for
example network is different” P14.

Due to the above-mentioned issues, there was some debate
about the real benefits of staging environment in software release
process. According to the interviewees, this is mainly because
staging environments do not show how really software works as a
few of them explicitly stated that staging environment can be a
disruptive to successfully adopt CD [20]. One interviewee told us:
“We used to have staging environment because the reason that we
needed to have a place where we integrate all the changes in one
version, we test and then we deploy. But I think when we are going to
more rapid deployment, all the time continuously deploy, then we
started to feel it [staging] doesn’t fit to this pattern because the
problem is that you don’t have the whole data, you don’t have
amount of users in staging. So, you have the risk when you deploy
something in production because staging and production they are not
equal…. So it is like cheating you; … the real life is different” P16.

10) Domain Constraints
During the interviews, we found that domain constraint was a

significant factor that had influenced the applicability of CD
practice. This factor could change the frequency of releasing
software (changes) to production [15]. Whilst CD practice is
more easily applied to web-based applications, it may not be
easily applied to other domains such as embedded systems and
financial systems [9]. One possible reason for this is that such
domains are more conservative to automatic deployment to
customers and require more (manual) verification before each
release [10, 14]. Table I indicates that 15 out of 98 survey
participants confirmed that domain constraints do not allow them
to accelerate release cadence. Whilst the survey participant R40
told us that they are a financial exchange and are not able to
deploy during business hours, another survey participant
described the domain constraints in the following words:
“I deal with Big Data style petabyte state. Large scale state migration
during deployment remains a challenge at this scale due to the cost of
backup and impact of lost state” R46.

11) Manual interpretation of test results
Long running tests and test results’ interpretation were found

as other confounding factors. Long running tests not only
increased the cycle time (i.e., the time required to get code from
code repository into production) in CDP, but also have hindered
developers to getting real-time feedback through CDP. One
interviewee revealed that a large portion of cycle time had been
spent on running regression tests and interpreting the tests results.
Another issue mentioned by a number of the interviewees was the
fact that there was very little automation for regression tests. So it
involves manual efforts and takes huge cycle time. Hence, it
depends on the extent the regression tests can be automated,
software organizations can significantly reduce the overall cycle
time in CDP. It has been mentioned by several interviewees that
with the increasing number of test cases, the interpretation of test
results becomes quite time-consuming and labor-intensive
process. As one interviewee reflected:
“We have some challenges to fully automate deployment process; one
of the challenges is interpretation of test results. There is manual and
intervention between build the test and deploy to interpret the
results” P6.

Only 11 participants in our survey (see Table I) confirmed
that manual interpretation of test results was a confounder in
transition from CDE to CD as one of them stated “Acceptance
testing still requires manual assessment of results” R24.

All of the above-mentioned issues together may lead
organizations to doubt the quality of the code not high enough to
automatically deploying to production on continuous basis.

IV. THREAT TO VALIDITY
Internal validity: There are factors that could have

negatively impacted our data collection and analysis processes. It
was possible to select the practitioners who did not have the right
kind of experience and expertise for taking part in our study. To
address this issue, we applied strict criteria (e.g., seeking for
potential practitioners and rigorously reviewing their public
profiles) for selecting participants for both parts of this study.
Additionally, we added the eligibility requirements of participants
at the survey preamble. In fact, all the interviewees and almost
80% of the survey participants were selected using purposive
sampling. Our results may have been affected by one specific role
bias (e.g., DevOps engineer). We avoided this threat by targeting
the participants holding different roles in software development.
An inherent threat to validity with retrospective studies is memory
bias (i.e., when participants cannot remember all the details) [33].
We reduced this threat as much as possible by encouraging the
participants to share their experiences and lessons learnt from the
last projects or clients and also by sending the interview questions
to the interviewees beforehand. All this enabled them to reflect
and articulate the related stories. There is a risk that participants
try to provide responses that a researcher would like and want
(i.e., social desirability bias) [38]. For both studies, the
participants were ensured that all the collected data would be kept
anonymous under human ethics approval obtained for this study.

Data triangulation (i.e., using different data sources) was
another validity approach to reduce researchers’ bias. If at least
two interviewees discussed one fact, we presented it as an
interview’s finding and used it for formulating the survey
questions. This strategy helped us to alleviate negative impact of
any possible subjective viewpoint of the results. Whilst the first
author has mainly performed qualitative data analysis and
interpretation, we adopted the following method to mitigate
researchers’ bias in this regard: the coded data was evaluated and
verified by other authors through frequent meetings.

Construct validity: Appropriateness and comprehensibility
of the questions and answer options used in both the interviews
and the survey can be another source of threat in our study. In
order to deal with this threat, the first author designed the
interviews’ questions based on a systematic review [39] and
multi-vocal review, with seeking feedback and validation from
the other authors and a few industrial practitioners. The feedback
collected at the end of the interviews and the survey was valuable
as it helped us to fine-tune some questions (e.g., changing
questions wording) that were confusing or unclear. Moreover, the
exact definitions of CDE and CD may differ between
practitioners. To reduce this threat, we carefully defined these
terms to our participants as none of them showed disagreement.
Whilst the interviews’ findings led to the creation of the survey
questions, wherever required we also allowed the participants to
reflect more thoughts and perspectives by including open-ended
questions or “Other” field in the survey questions responses.
Thus, we are confident that our questions covered the important
confounding factors in moving from CDE to CD.

External validity: In order to increase the generalizability of
our results as much as possible, we attempted to purposefully
target as diverse a population as possible in regard to roles,
experiences, expertise, organizations’ size, domain, and
geographical locations. Our sampling technique gives us some
confidence that our results to a large extent are representative.
Additionally, the interviews’ findings were evaluated and
generalized by 98 survey respondents.

V. DISCUSSION
This section first discusses some of the main findings from

our study. Second, we suggest implications for practitioners and
researchers based on the themes that emerged from five-top
reported factors and, analysis of the responses to an open-ended
question: “Given the increasing importance of automation in CD,
in your understanding what are the top four things that you look
for/need/would like to see in automation”.
1) Summary of main findings
Our study indicates that there is a well-understood difference
between practicing Continuous DElivery (CDE) and Continuous
Deployment (CD) in software industry. Specifically, there are
factors because of which organizations may be unable or
demotivated to move from CDE to CD (e.g., having automatic
and continuous deployment). These factors are “lack of fully
automated (user) acceptance test”, “manual quality check”,
“deployment as business decision”, “insufficient level of
automated test coverage”, “highly bureaucratic deployment
process”, “lack of efficient rollback mechanism”, “dependency at
application level”, “demotivated customer”, “customer
environment”, “domain constraints”, and “manual interpretation
of test results”. Moreover, we found that most of the participants’
organizations still have semi-automated CDPs, in which
“acceptance testing”, “production deployment”, and
“configuration and provisioning” stages have least automation
support.
2) Implications for research and practice

Better automated testing: Both the interview and survey
data show a strong need of better support for automated testing, in
particular (user) acceptance testing. Several of the participants
mentioned that the current automated testing tools need
significant improvements in order to harden them for different
environments. The participants thought that (user) acceptance
testing on relative scale have to be run and assessed by a human
as it brings more value and safety. The participants also
mentioned the need to test all types of applications (for example
mobile testing as it is fragile and expensive to automate),
techniques and tools that enable parallelization of automated
testing and infrastructure automation testing.

Integrating automated quality checks: Software quality was
one of the major concerns in the interviewees’ and the survey
participants’ organizations before each release. It was also among
the top priorities for business leaders. Security and performance
were the most frequently reported quality concerns. According to
the participants, attention to security needs to increase and
performance testing should be conducted at production scale.
However, an open question is how to efficiently automate quality
checks inclusive of performance and security and incorporate
them into CDP. For instance, there is a strong need of integrating
performance baselines into CDP.

Management support: Participants perceive “managers” are
hesitant to allow developers immediately push out every change

to production as only business leaders of their organizations are
responsible to make decisions about when and what to be
deployed to production. Our analysis shows that compared to
CDE, successfully adopting CD needs better management
support. This is mainly because deployment on a continuous basis
without human intervention may increase complexity as
organizations need to deal with more components, more people,
more roles, and more concerns. Hence, this can be much more a
business problem or a political problem rather than just an
engineering problem. Management at both customer and vendor
organizations is expected to have a clear understanding of
business drivers of continuous deployment, and get all the
stakeholders on board. Whilst the main business leaders’ concern
is around quality level, our results suggest that integrating
automated quality checks and security test in both development
and operations processes can alleviate this concern and to a large
extent make continuous deployment compelling to business
leaders. To achieve CD, organizations must break down barriers
at production. This is mainly achievable by allowing developers
to be part of deployment decision and more trusting them. By
this, the manual approval process described in Section IV.C.5 will
be significantly reduced.

Easier tools integration: As we discussed in Section IV.B,
CDP is a tool-chain, which a number of open source and/or
commercial tools should be integrated for this purpose. This is
mainly because deploying with one and only tool would make
automatic deployment process more complicated. However, a
commonly mentioned issue was compose-ability of tools.
Software organizations need to spend too much engineering effort
to architect each of distinct tools to interface and integrate with
other tools to make them work seamlessly. We observed that due
to availability of a gamut of tools and lack of standardization
between them, there is too much of chaos in the way each
organization adopts their continuous delivery or deployment
journey. It is highly recommended that tool vendors consider
applying standards that enable an organization to easily stitch
tools together. Such standards would drastically minimize the
difficulty and effort required for tools integration.

Digestible visualization and monitoring: Although there are
lots of monitoring tools available, the survey participants often
expect tools and techniques, which enable them to have full
monitoring coverage. In the meanwhile, having a visual
representation of end-to-end build, test and deployment would
make a huge difference in deployment capability of organizations
to release faster and often. Unfortunately current tools are not
great for this; presumably because they do not do a good job (e.g.,
lack of domain specific monitoring tools) or are exceedingly
complex for the job. Furthermore, scaling CD practice in large
organizations with multiple teams and applications can worsen
this problem as a wide range of stakeholders are needed to be able
to understand what is happening, what has happened, and why in
a real time manner. Hence, there is a need to develop tools that
provide real-time, digestible and customizable monitoring and
alerting for different type of stakeholders [40, 41].

Other needs: There are also serious needs for (1) better tools
to simplify configuration and provisioning of environments and
support automatic setup of distributed environments; (2) tools to
manage, validate and automate schemas upgrades and database
migrations in CDP; and (3) better post deployment checks (e.g.,
automated smoke and reliability testing after deployment.

VI. RELATED WORK
This section places our work in the context of other related

studies. Lwakatare et al. [14] present high level challenges for the
adoption of DevOps in embedded systems domain. The identified
challenges are huge dependency between hardware and software
versions, lack of access to customer environments, and lack of
appropriate technologies to automatically and continuously
deploy software to customer environments. Whilst [11, 12]
present the obstacles and challenges to adopt CDE practice,
adopting CD practice has been evaluated by [15-17]. Claps et al.
[16] report the challenges that a single case software company
faced in transition to CD. The identified challenges are classified
into technical and social ones including team experience,
continuous integration, partner plugins, and changing database
schemas. The study also reveals what solutions (e.g., adopting
social rules and investment in infrastructures) the case company
employed to address those challenges.

Savor et al. [17] investigate the effect of adopting CD practice
on team productivity (i.e., number of added or modified code
lines pushed to production per developer) and product quality
(i.e., number of failures in production) at Facebook and OANDA.
The study reveals that whilst the number of team members and
complexity of code size drastically increased over six years,
practicing CD had no negative impact on team productivity and
quality. The study discusses a number of challenges including
management support and extra effort for understanding updates
that an organization may face in adopting CD. The challenges
identified for adopting CD [11, 12] are almost similar to those
that are found for CDE [15-17]. For example, most of the studies
indicate that manual testing, unsuitable architecture, and
resistance to change are roadblocks to practicing CDE and CD. In
addition to the challenges reported in [12, 15-17], Laukkanen et
al. [13] show that stage-gate process negatively impacts on CDE
success. This is mainly because the attributes (i.e., tight schedule)
of stage-gate process significantly limit the time needed for CDE
adoption. The study argues that it is almost impossible to adopt
CDE in a stage-gate managed organization without changing the
process. Most of the previous studies did consider CDE and CD
as one practice and did not distinguish the challenges associated
with adopting CDE and CD. To the best of our knowledge, our
paper reports the first (large scale) piece of work, which
distinguishes CDE from CD and empirically investigates the
confounding factors that limit or demotivate organizations from
moving towards CD from CDE.

VII. CONCLUSION
This paper has reported an empirical investigation into the

reasons (e.g., manual user acceptance testing) because of which
organizations may be unable or demotivated to automatically
push out every change to production in order to have many
production deployments every day. Our findings came from a
mixed-method study consisting of data collection and analysis
from 21 semi-structured interviews and an online survey
completed by 98 software practitioners. This research reveals the
current state of automation support in software industry to truly
implement continuous deployment. Interestingly, the majority of
the participants’ organizations did not have fully automated
deployment pipelines, with mostly semi-automated or manual
“acceptance testing”, “production deployment”, and
“configuration and provisioning” stages. We have also identified
several future research directions (e.g., better tooling support)
along with a set of recommendations (e.g., management support)
that can help streamline continuous and automatic deployment.

ACKNOWLEDGMENT
The authors would like to thank all participants. This work is

partially supported by Data61, a business unit of CSIRO,
Australia. The first author is supported by Australian Government
Research Training Program Scholarship.

REFERENCES
[1] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect's

Perspective: Addison-Wesley Professional, 2015.
[2] 2015 State of DevOps Report. Available at:

https://puppetlabs.com/2015-devops-report [Last accessed: 5 October
2015]. 2015.

[3] J. Humble. "Continuous Delivery vs Continuous Deployment, Available
at: https://continuousdelivery.com/2010/08/continuous-delivery-vs-
continuous-deployment/ [Last accessed: 1 March 2016].".

[4] M. Fowler. "Continuous Delivery. Available at:
http://martinfowler.com/bliki/ContinuousDelivery.html [Last accessed:
21 October 2015]." 21/10/2015;
http://martinfowler.com/bliki/ContinuousDelivery.html.

[5] B. Fitzgerald, and K.-J. Stol, “Continuous Software Engineering: A
Roadmap and Agenda,” Journal of Systems and Software, vol. 123,
2017.

[6] E. Luke, and S. Prince. "No One Agrees How to Define CI or CD.
Available at: https://blog.snap-ci.com/blog/2016/07/26/continuous-
delivery-integration-devops-research/, [Last accessed: 1 August 2016]."

[7] I. Weber, S. Nepal, and L. Zhu, “Developing Dependable and Secure
Cloud Applications,” IEEE Internet Computing, vol. 20, no. 3, pp. 74-
79, 2016.

[8] T. Dingsøyr, and C. Lassenius, “Emerging themes in agile software
development: Introduction to the special section on continuous value
delivery,” Information and Software Technology, vol. 77, pp. 56-60,
2016.

[9] M. Skelton, and C. O'Dell, Continuous Delivery with Windows and
.NET: O'Reilly 2016.

[10] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the "Stairway to
Heaven" -- A Mulitiple-Case Study Exploring Barriers in the Transition
from Agile Development towards Continuous Deployment of
Software.,” in 38th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), 2012, pp. 392-399.

[11] S. Neely, and S. Stolt, “Continuous Delivery? Easy! Just Change
Everything (Well, Maybe It Is Not That Easy),” in Agile Conference
(AGILE), 2013, pp. 121-128.

[12] C. Lianping, “Continuous Delivery: Huge Benefits, but Challenges
Too,” IEEE Software, vol. 32, no. 2, pp. 50-54, 2015.

[13] E. Laukkanen, T. O. A. Lehtinen, J. Itkonen, M. Paasivaara, and C.
Lassenius, “Bottom-up Adoption of Continuous Delivery in a Stage-
Gate Managed Software Organization,” in 10th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, Ciudad Real, Spain, 2016, pp. 1-10.

[14] L. E. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja, H. H. Olsson, J.
Bosch, and M. Oivo, "Towards DevOps in the Embedded Systems
Domain: Why is It So Hard?," 49th Hawaii International Conference on
System Sciences (HICSS), 2016, pp. 5437-5446.

[15] M. Leppanen, S. Makinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.
Mantyla, and T. Mannisto, “The Highways and Country Roads to
Continuous Deployment,” IEEE Software, vol. 32, no. 2, pp. 64-72,
2015.

[16] G. G. Claps, R. Berntsson Svensson, and A. Aurum, “On the journey to
continuous deployment: Technical and social challenges along the way,”
Information and Software Technology, vol. 57, pp. 21-31, 2015.

[17] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm,
“Continuous deployment at Facebook and OANDA,” in 38th
International Conference on Software Engineering Companion, Austin,
Texas, 2016, pp. 21-30.

[18] E. Laukkanen, J. Itkonen, and C. Lassenius, “Problems, causes and
solutions when adopting continuous delivery—A systematic literature
review,” Information and Software Technology, vol. 82, pp. 55-79, 2//,
2017.

[19] S. G. Yaman, T. Sauvola, L. Riungu-Kalliosaari, L. Hokkanen, P.
Kuvaja, M. Oivo, and T. Männistö, "Customer Involvement in

Continuous Deployment: A Systematic Literature Review,"
Requirements Engineering: Foundation for Software Quality: 22nd
International Working Conference, REFSQ 2016, Gothenburg, Sweden,
March 14-17, 2016, Proceedings, M. Daneva and O. Pastor, eds., pp.
249-265, Cham: Springer International Publishing, 2016.

[20] T. Fitz. "Continuous Deployment: Beyond Continuous Delivery.
Available at: http://www.slideshare.net/TimothyFitz/continuous-
deployment-beyond-continuous-delivery [Last accessed: 21 December
2016].".

[21] L. W. Richter. "Getting from Continuous Delivery to Continuous
Deploymenty. Available at:
https://www.youtube.com/watch?v=PFFifnIn348 [Last accessed: 18
December 2016].".

[22] K. Lankford. "Beyond Continuous Delivery—All the Way to
Continuous Deployment. Available at:
https://www.stickyminds.com/presentation/beyond-continuous-delivery-
all-way-continuous-deployment [Last accessed: 13 January 2017].".

[23] S. Mäkinen, M. Leppänen, T. Kilamo, A.-L. Mattila, E. Laukkanen, M.
Pagels, and T. Männistö, “Improving the delivery cycle: A multiple-case
study of the toolchains in Finnish software intensive enterprises,”
Information and Software Technology, vol. 80, pp. 175-194, 2016.

[24] G. Schermann, J. Cito, P. Leitner, and H. C. Gall, "Towards quality
gates in continuous delivery and deployment." pp. 1-4.

[25] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, "Selecting
Empirical Methods for Software Engineering Research," Guide to
Advanced Empirical Software Engineering, F. Shull, J. Singer and D. I.
K. Sjøberg, eds., pp. 285-311, London: Springer London, 2008.

[26] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method
and tool evaluation,” IEEE Software, vol. 12, no. 4, pp. 52-62, 1995.

[27] S. E. Hove, and B. Anda, "Experiences from conducting semi-structured
interviews in empirical software engineering research." pp. 23-32.

[28] L. A. Palinkas, S. M. Horwitz, C. A. Green, J. P. Wisdom, N. Duan, and
K. Hoagwood, “Purposeful Sampling for Qualitative Data Collection
and Analysis in Mixed Method Implementation Research,”
Administration and Policy in Mental Health and Mental Health Services
Research, vol. 42, no. 5, pp. 533-544, 2015.

[29] L. A. Goodman, “Snowball Sampling,” Annals of Mathematical
Statistics, vol. 32, no. 1, pp. 148-170, 1961.

[30] D. S. Cruzes, and T. Dyba, “Recommended Steps for Thematic
Synthesis in Software Engineering,” in 2011 International Symposium
on Empirical Software Engineering and Measurement (ESEM), 2011,
pp. 275-284.

[31] B. A. Kitchenham, and S. L. Pfleeger, "Personal Opinion Surveys,"
Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer
and D. I. K. Sjøberg, eds., pp. 63-92, London: Springer London, 2008.

[32] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: the contributor's perspective,” in
38th International Conference on Software Engineering, Austin, Texas,
2016, pp. 285-296.

[33] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
Design Space of Bug Fixes and How Developers Navigate It,” IEEE
Transactions on Software Engineering, vol. 41, no. 1, pp. 65-81, 2015.

[34] B. Adams, and S. McIntosh, “Modern Release Engineering in a Nutshell
-- Why Researchers Should Care,” in IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2016, pp. 78-90.

[35] A. Phillips, M. Sens, A. de Jonge, and M. van Holsteijn, The IT
Manager’s Guide to Continuous Delivery: Delivering business value in
hours, not months: XebiaLabs, 2015.

[36] 2016 State of DevOps Report. Available at:
https://puppet.com/resources/whitepaper/2016-state-of-devops-report
[Last accessed: 15 March 2016]. 2016.

[37] M. Mooney. "Continuous Deployment For Practical People,
https://www.airpair.com/continuous-deployment/posts/continuous-
deployment-for-practical-people."

[38] F. Adrian, “Response bias, social desirability and dissimulation,”
Personality and Individual Differences, vol. 7, no. 3, pp. 385-400, 1996.

[39] M. Shahin, M. A. Babar, and L. Zhu, “Continuous Integration, Delivery
and Deployment: A Systematic Review on Approaches, Tools,
Challenges and Practices,” IEEE Access, vol. PP, no. 99, pp. 1-1, 2017.

[40] M. Brandtner, E. Giger, and H. Gall, “SQA-Mashup: A mashup
framework for continuous integration,” Information and Software
Technology, vol. 65, pp. 97-113, 9//, 2015.

[41] D. Ståhl, K. Hallén, and J. Bosch, “Continuous Integration and Delivery
Traceability in Industry: Needs and Practices,” in 42th Euromicro
Conference on Software Engineering and Advanced Applications
(SEAA), 2016, pp. 68-72.

