
On Designing Applied DSLs for Non-programming
Experts in Evolving Domains

Holger Stadel Borum
Department of Computer Science

IT University of Copenhagen
Copenhagen, Denmark

hstb@itu.dk

Henning Niss
Edlund A/S

Copenhagen, Denmark
henning.niss@edlund.dk

Peter Sestoft
Department of Computer Science

IT University of Copenhagen
Copenhagen, Denmark

sestoft@itu.dk

Abstract—Domain-specific languages (DSLs) have emerged as
a plausible way for non-programming experts to efficiently
express their domain knowledge. Recent DSL research has taken
a technical perspective on how and why to create DSLs, result-
ing in a wealth of innovative tools, frameworks and technical
approaches. Less attention has been paid to the design process.
Namely, how can it ensure that the created DSL realises the
expected benefits? This paper seeks to answer this question when
designing DSLs for highly specialised domains subject to resource
constraints, an evolving application domain, and scarce user
participation. We propose an iteration of alternating activities
in a human-centred design method that seeks to minimise the
need for expensive implementation and user involvement. The
method moves from a low-validity exploration of highly diverse
language designs towards a higher-validity exploration of more
homogeneous designs. We give an in-depth case study of designing
an actuarial DSL called MAL, or Management Action Language,
which allows actuaries to model so-called future management
actions in asset/liability projections in life insurance and pension
companies. The proposed human-centred design method was
synthesised from this case study, where we found it useful for
iteratively identifying and removing usability problems during
the design.

Index Terms—Model-driven engineering, Domain-specific lan-
guage, Human-centred design

I. INTRODUCTION

As computations have become prevalent in most parts
of society, many domain experts with little programming
experience (non-programming experts) are required to input
their knowledge into complex computer systems as part
of their everyday lives. Domain-specific languages (DSLs)
promise a way for experts to do so without relying on the
assistance of programming professionals. By tailoring a
language to the needs of domain experts, a DSL may be
more flexible and expressive than a traditional graphical
user interface (GUI) while still being easier to use than a
general-purpose programming language (GPL).

In this paper, we are concerned with how to tailor
a language to the needs of non-programming domain
experts. In other words, we investigate how to ensure that
a DSL realises its expected benefits when one sets out to

Innovation Fund Denmark (7076-00029B)

design it to accommodate non-programming experts. It is
more difficult for a language designer to anticipate how
non-programming users approach a language than how
programming professionals do. Therefore, we seek to answer
the question by proposing a design method based on our
experiences using human-centred design (HCD) to structure
the language design process for a DSL called MAL. We
distinguish between a method as a general design framework
and a technique as a concrete tool that can be applied as
part of a method. MAL was designed in a collaboration
between Edlund A/S and the IT University of Copenhagen
to allow Edlund’s customers to model company-specific
management actions on a general asset/liability projection
platform (see Section VII-A). Based on our experiences
with designing MAL, we propose a two-phase design
process moving from low-validity exploration of diverse
language designs towards a higher-validity exploration of less
diverse designs. We seek to mitigate the risk of designing a
language unusable by non-programming experts by having an
HCD approach that incorporates the user perspective into the
design process through observation and continuous evaluation.

We consider DSLs as a specific model-driven engineering
(MDE) practice where the abstract syntax of a DSL is
a metamodel, language artefacts are models, and code
generations are transformations. Due to the many usages of
DSLs, we limit our investigation to consider only the design
of applied DSLs (ADSLs) for non-programming experts.
An ADSL is a DSL that seeks to alleviate problems in
large, complex software systems as opposed to exploring
more theoretical aspects of programming languages. While
there are other names for similar types of DSLs (application
domain DSL [1] or real-world DSL [2]), we prefer to use
the term applied since all DSLs exist within the real world
and an application domain. An ADSL lives within a complex
software ecosystem with its corresponding business processes.
An ADSL must be compatible with this context. At the same
time, the introduction of an ADSL often aims to change
business processes by empowering the end-user with new
capabilities and corresponding responsibilities. Therefore,
an ADSL is likely to evolve to remain compatible with its
context, which it intentionally sets out to change.



The paper will progress as follows: Section II describes
the method of the paper. Section III describes state of the
art. Section IV presents a language classification based on
evolution relevant to the design of ADSLs. Section V identifies
challenges to designing ADSLs for non-programming experts.
Section VI describes our proposed iterative, two-phased
design method. Section VII presents our in-depth case study
of creating MAL leading to the proposed method. Finally,
Section VIII discusses threats to the validity of our case study.

The contributions of this paper are:
• A classification and discussion of language evolution

based on Manny Lehman’s program classification.
• An identification of ADSLs’ characteristics and design

challenges.
• A proposal of a design method for creating ADSLs.
• A case study of MAL’s design process leading to the

proposed method.

II. METHOD

In this paper, we propose a design method for ADSLs based
on our experiences with designing MAL. We do so from
the position that a detailed qualitative case study is a valid
scientific method for providing grounds for generalisations [3].
We use our in-depth understanding of challenges faced when
designing MAL to synthesise a general approach to ADSL
design. Although we use these experiences as a justification
for the proposed method, they should only be thought of
as a justification and not as an evaluation of the method.
Additional experiments and experiences with using the method
are required for evaluative purposes. For the sake of clarity,
we choose to present the proposed method followed by the
case study since it allows the reader to more easily follow the
case study.

III. STATE OF THE ART

Programming language usability has been a driving factor
in the history of programing language design [4] [5] [6].
The movement from unsafe, low-level languages towards
safe, high-level languages can be attributed to a demand for
easier ways to construct large, complex, efficient, safe, and
correct software systems. While the idea of using human-
computer interaction (HCI) techniques in language design
[7] has been applied before, there is little well-established
design methodology ensuring the usability of a programming
language. This is the case even though usability is a primary
concern of programming language design. Instead, new
programming paradigms and language features have claimed
to improve the programming experience and have either
succeeded or failed through industrial or academic adoption
or lack thereof. For a language designer, this survival of the
most popular approach to language improvements provides no
guidance on how to design a language. Furthermore, although
there exist many heuristic guidelines and rules for language
design [8] [9], these do not help the designer choose concrete

design activities. As an example, the theory of Physics of
Notation (PoN) [10] contains nine guiding principles for
designing visual notations but provides no design-procedural
guidelines. Van der Linden and Hadar [11] find that few
PoN practitioners report user involvement when eliciting
requirements for a visual notation.

Human-centred design (HCD) seems like the most
promising methodology for guiding a designer on how to
create programming tools [12], including ADSLs for non-
programming experts. HCD seeks to include the user in the
design process to ensure that a designed artefact is innovative
and solves the user’s needs, i.e., it has high usability [13].
Preliminary research findings suggest that while expert
programming language designers believe human-centred
techniques are of great value to language design, very few
use them in practice [14]. Roughly, HCD techniques can
be divided into formative techniques that create new ideas
and evaluative techniques that evaluate a specific idea. Many
techniques have been adapted from general HCI techniques to
the context of programming language design [15]. Evaluative
techniques have a central position in HCD for programming
languages, possibly because programing language design has
historically neglected evaluative studies [16] [17]. For our
proposed method, we group the evaluative techniques into the
following two general cases:

High validity, low variability experiments, or randomised
controlled trials, explore few independent variables with a
large sample size. These statistically significant experiments
may uncover fundamental truths about programming
languages’ usability with a rigour comparable to medical
studies [16] [18]. For example, such work has involved the
effect of static type systems [19] or choice of keywords [20].
From the perspective of ADSL design, such experiments are
costly due to the required number of participants and time
spent conducting the experiments. However, the results of
such existing studies may be used as heuristic guidelines for
future languages. This approach to design has been proposed
as the evidence-based programming language design method,
which seeks to base language design choices on relevant
usability studies [21]. Although such a design method may
eventually be of great value in the design of GPLs, such a
method is less feasible to transfer to the design of a specific
DSL. The primary problem is that the method requires an
experiment that investigates a particular design decision. If we
seek a domain-specific solution for a previously unexplored
domain, it is unlikely that existing experiments directly
address our problems.

Low validity, high variability experiments explore many
different independent variables on a small sample size
as input to design decisions. The idea is that “20 cheap
studies of a variety of ideas and features are likely to be
far more valuable than one expensive study of a particular
feature”, as stated by the Champagne Prototyping technique



[22]. These evaluative techniques are typically variants of
a Wizard of Oz technique [23], which seeks to evaluate a
system on participants by using an approximation of the final
system1. Champagne Prototyping is used to validate end-user
programming features by exposing users to scenarios in their
normal rich functioning system while only mimicking the
core feature of interest. The PLIERS method, which will
be discussed later, also proposes a Wizard of Oz technique
where the language designer functions as a type system and
compiler that can provide users with the illusion of interacting
with the final system. Although these techniques provide a
way of exploring a diverse set of design ideas, they do so at
the cost of the validity of their findings.

HCD methods for DSL design are more difficult to find.
So far, we have discussed only human-centred techniques as
parts of a language design process, except for the evidence-
based language design method. Although these techniques
are of great use and value to designers, they provide little
guidance on how to structure a DSL design process. Even
the guidance in the foundational book Domain-Specific
Languages [25] does not feel comfortable making more
specific suggestions than to “[t]ry out different ideas on your
target audience”. However, some practitioners do provide
some guidance. Although early work descriptively divided
DSL development into the phases of decision, analysis,
implementation, and deployment [26], there is seemingly
a contemporary consensus on using an iterative approach
[1] [12]. The book DSL Engineering [1] recommends early,
agile development of a core language and classifies language
development according to domain experts’ knowledge.
The more recent book Software Languages [27] only
deals “superficially with domain analysis, language design,
evolution, and retirement.” The developers of FlowSL
recommend early usability evaluation when developing DSLs
for non-programmers [28]. Another case study shows how
to evaluate a DSL by treating it as a traditional GUI [29].
The Design Your Own Language [30] toolkit consists of 96
cards, each representing a possible design aspects that affects
the behaviour of users. While the toolkit thoroughly presents
and categorises these decisions important to users, it lacks
processual guidelines for practitioners who seek to navigate
them. Inspired by free and open software communities, the
DSL named Colaboro [31] may be used for decision making
in community-based design projects. Lastly, users may be
included at fixed points in the design process, for example,
through a questionnaire to make syntax decisions [32].

For general-purpose programming languages, the PLIERS
method makes specific suggestions for conducting human-
centred, iterative language refinement [33]. It provides
a general design process, a set of HCD formative and
evaluative techniques, and mitigation for common problems
for conducting such experiments. Although there is an overlap

1Some high validity experiments have a similar approach [24].

between DSL design and GPL refinement, a substantial part
of the method does not apply to the design of ADSLs
for non-programming experts. For example, the method
assumes users with substantial programming experience and
a relatively stable domain. It does so when it suggests that
design questions on a specific language can be back-ported
into a more commonly known language.

Analytical frameworks for understanding and analysing
usability issues of programming languages are also used
for evaluative purposes. They can be used as a theoretical
foundation to guide an evaluative technique and to interpret
its findings. Although the Cognitive Dimension Framework
[34] was developed to identify usability issues in visual
programming languages, its 14 analysis dimensions have
proven useful for analysing many kinds of programming
languages [33] [35] [36]. The Attention Investment Model is
another framework that seeks to explain whether end-users
will use a programming tool. It does so by weighing the
pros of adopting the tool against the cons and risks of doing
so [37]. From the perspective of ADSLs, the theory claims
that users will only use an ADSL if the benefits of using it
outweigh both problems and potential risks. Therefore, an
ADSL should not only make a modest improvement of the
current practices.

The technical design of DSLs comprises programming
languages, tool support, and workbenches for DSL
construction [38]. Several tools exist to alleviate the
pains of developing DSLs by reducing the development cost.
To mention some: MPS, Xtext, Racket, or the Language
Server Protocol all ease the implementation of a DSL by
allowing the reuse of IDE features, language features, and
even complete languages. There are plenty of case studies
and examples of how these tools can be used to create DSLs
[39] [40] [41] [42]. Although the technical choices of DSL
implementation affect a design method and vice versa, we
will not consider technical design as part of our design
method. This separation allows our method to stringently
consider the human-centred perspective and practitioners to
make their own technological decisions.

IV. LANGUAGE EVOLUTION

In a classical paper from 1980, Manny Lehman proposed
to classify programs into the three categories of S, P, and
E-programs [43]. Briefly, an S-type program is precisely
derivable from its specification, a P-type program may have a
precise problem specification but requires an approximation in
its implementation, and an E-type program is embedded in the
real world and is thereby part of its own application domain.
With the progression from S-type to E-type programs follows
more software evolution caused by the distance between a
program’s specification and its actual implementation and
usage.



TABLE I
EXAMPLES OF LANGUAGES BELONGING TO THE DIFFERENT CLASSES.

Category Languages
S-type λ-calculus, regular expressions, Com-

municating Sequential Processes
P-type C, Java, C#
E-type ADSLs, PHP, JavaScript, Python

Inspired by Lehman, we derive a similar classification for
programming languages where each class has its own reasons
for language evolution. We have found that this classification
provides a good framework for distinguishing causes of
language evolution, based on our knowledge of current and
historical programming languages and their development
over time. While S-type languages are very stable, P-type
languages continuously evolve and even more so for E-type
languages. Languages are in themselves interesting to consider
in the perspective of evolution since languages often outlive
software written in them. We will use this classification to
argue that an ADSL is an E-type language that necessitates a
design method that handles language evolution. Table I shows
examples of languages belonging to different classes.

We distinguish between exogenous and endogenous
evolutionary forces corresponding to Lehmann’s first and
sixth laws of evolution [43]. The exogenous forces come
from changes in the domain itself (caused by new legislation,
new business practices, and the like) and from changes in the
underlying technology (such as the shift from mainframes
to stand-alone desktop computers to networked desktops to
web servers, etc.). The endogenous forces come from users
adopting the language, liking some aspects of it and disliking
or missing others, causing them to request changes in the
language.

An S-language is created for the sake of its own
specification that serves as a cardinal example of an external
concept. An S-type language is designed to demonstrate or
model the external concept, which means that the primary
reason for writing a program in the language is to demonstrate
the external concept’s properties. An S-type language only
evolves when its external concept changes or if a better
model is discovered. Therefore, S-languages are very stable,
and it is uncommon for an S-language to evolve. In fact,
an S-language will likely evolve into a new, independent
language, demonstrating some other external concept. Many
languages designed for programming language research and
education are S-languages. The λ-calculus is an S-language
since its purpose is to model computations with its semantics
being of greater interest than its application. The class also
contains other languages such as a simple imperative C-like
language used to teach compiler construction or simple
state machine-based languages [25] used to demonstrate
DSLs as a concept. While these languages may resemble
P-type languages, they are S-type since they are reduced

to fundamental concepts directly aligning them with their
specification.

A P-language is created for the sake of its programs
and their application context. A P-language is designed to
create and maintain complex programs, which means that
it considers software engineering aspects such as hardware,
efficiency, code-reuse, and broader development context. A
P-language will primarily evolve in response to exogenous
forces in its application context: new hardware technologies,
software engineering practices, or programming language
paradigms. P-languages are more concerned with language
usage within a specific computational model than the
language itself. As a result, there are many pairs of S and
P-type languages where an S-type language demonstrates
the computational model while a P-type language makes
the model practically usable. Some examples of pairs are
λ-calculus & Haskell, Algol-60 [44] & Algol-W [45] or
Pascal [46], regular expressions & Perl compatible regular
expressions [47] and Communicating Sequential Processes
[48] & Occam [49] or Erlang [50].

An E-language is created for the sake of its programs
that, in turn, are shaped by their application context. Like
P-languages, an E-language is designed to create and maintain
complex programs, but where a P-language derives its form
from some computational model, an E-language is primarily
influenced by its application context. An E-language is likely
to evolve due to both exogenous and endogenous forces.
This means that the development of many E-languages has
an ad-hoc feeling compared to P-languages. PHP is an
example of an E-language created for the purpose of dynamic
server-side creation of webpages with database access. As
web technology evolved, so did PHP with the additional
user requirements, security fixes, and larger web frameworks.
Also, many DSLs are E-languages since they are shaped by
their domain, which is part of the application context.

Some properties of this classification are best made
explicit: First, a language is not inherently S-type, P-type, or
E-type. Instead, it is the purpose and usage of a language
that determines its class. Thus, the class of a language may
change over time. Second, there is a clear correlation between
a P-type or E-type and whether it is a GPL or a DSL.
However, the classes are not equivalent. For example, a stable
DSL that serves as a top-level state-machine interface is a
P-type language since it makes a computational model readily
available to its users. Likewise, we have already argued why
a GPL such as PHP has many E-type characteristics. Third,
the classification does not establish that S-type languages are
superior to E-type languages or vice versa. Neither is the
point that one should write S-type programs in an S-type
language and so forth. The point of the classification is
to provide a new perspective for the reasons for language
evolution. Based on the above classification, we have the
following hypotheses:



Hypothesis 1: Most ADSLs are E-type languages and part
of an endogenous evolutionary cycle.

Such an evolutionary cycle would unfold as follows: an
initial version of the DSL supports only parts of the domain
(to avoid wasted implementation effort) and additionally
contains misunderstandings of the domain. Nevertheless, the
implemented parts may be successful in attracting users who
request additions and adaptations, which causes the DSL to
subsequently attract more users who request new features.

Hypothesis 2: Language evolution is hindered by a formal
language specification, which means that a formal language
specification in itself moves a language towards an S-type
language.

Evolving a formal language specification is costly,
especially if the specification guarantees properties such as
type safety. Therefore, a language creator may, rightfully,
opt not to evolve a language when the evolution requires
its formal specification to change. When this happens, the
language specification is in itself deemed more important
than the language usage, which is a characteristic of S-type
languages. This may be the reason why Standard ML is more
S-like than similar languages such as OCaml and F#.

We use the hypotheses to make the following assertion: a
design method for ADSLs must handle the described endoge-
nous evolutionary cycle. For this purpose, it may be counter-
productive to spend time formally describing the developed
language and proving language properties. Formalisation may
be desirable for other reasons, but it may impede the language
design process, at least in the early stages.

V. DESIGN CHALLENGES

In this section, we describe the challenges of having a
human-centred design process for creating ADSLs for non-
programming experts. Most of these challenges stem from
seeking to have users evaluate language designs, as such
evaluation requires some way for users and designers to
communicate complex concepts.

Challenge 1: High impact systems

ADSLs may have a high impact in the sense that they
model important phenomena so that errors can have serious
consequences. Whether domain experts use the DSL to es-
timate a pension company’s solvency [51], model financial
contracts [52] [53], or manage telecommunication switches
[54], mistakes can come at a high price. A design process for
a high impact ADSL should consider ways to minimise the
risk of errors.

Challenge 2: Few experts

A domain may have few experts, even if it is of great
importance. In general, the more specialised a domain be-
comes, the fewer experts there are in the domain. In some

highly specialised domains, such as asset/liability projections
of Danish pension companies, there are very few experts,
meaning that a design method cannot rely on many repeated
user evaluations with domain experts. This scarcity challenges
the core of HCD since users are vital for the method. For our
purposes, we will assume that the design team always has
one expert available since we deem it unlikely that one would
create a DSL for a specialised domain without an expert’s
help.

Challenge 3: Gap between designer and user

There will always be a knowledge gap between designer
and user. This gap is vast in the design of an ADSL since
both language designers and domain experts come from very
specialised domains which require years of experience and
education to grasp. Even though neither person will fully
comprehend the other’s domain, a design method must seek
to bridge this gap since any form of miscommunication may
translate into problems with the design.

Challenge 4: Evolving and amorphous domains

As stated in section IV, an ADSL will likely evolve, even
during its development. Domain experts may discover new
opportunities and requirements during the design process,
which means there is a risk of a language being outdated
before it is completed. Therefore, the design method should
allow for domain changes even late in the process.

When there are substantial uncertainties (such as unfinished
mathematical models or unclear legislation) in a domain, we
call it amorphous. By this, we mean that domain experts are
actively working on clarifying these uncertainties resulting in
an evolving domain. These uncertainties make it difficult to
design a DSL since they move the design in the direction
of general-purpose solutions. An amorphous domain leads
to a particular form of evolution, resulting in a decrease in
domain entropy. While one should seek to answer all domain
questions, it may not be possible to do during the design phase.

Challenge 5: Intangible and abstract product

A domain-specific language is an intangible and abstract
product that makes it difficult for users and customers to
monitor it during development. This challenge applies to all
software products [55] but even more so for DSLs because it
can be hard to present a DSL to users. Presenting a DSL’s
grammar and semantics is likely too abstract for the user,
while presenting a single program may be too concrete to
demonstrate broad design implications.

Challenge 6: Part of a complex system

Since an ADSL is created as part of a complex software
system, the DSL may seek to replace a significant codebase.
When this is the case, users may only be interested in complex
models corresponding to thousands of lines of code. This
means that it may not be possible to provide users with a
small core DSL, which will be incrementally expanded and
improved.



VI. PROPOSED METHOD

We propose a pragmatic, iterative, two-phased method to
design ADSLs for non-programming experts. This method
is synthesised from our experience with designing MAL,
which will be discussed in Section VII. With the proposed
method, we strive for a process that lets practitioners create
DSLs that realise their expected benefits while handling the
challenges described in the previous section. This approach
is opposed to striving for a design process that leads to an
optimal language where a statistically significant experiment
justifies each design decision. Such a method should be
applicable to anyone from a novice to an expert DSL designer
but customisable to the needs of a specific design context.
By proposing this method, we seek to contribute to a design
methodological discussion of how such a method can help
practitioners tailor a language to a domain.

We seek to use an HCD approach because the method
promises a way of exploring innovative ideas while ensuring
that these ideas are grounded in users’ needs. At its core,
HCD is an iterative process that consists of two activities.
The first activity creates an artefact or a prototype; the second
activity evaluates the prototype with a user experiment. This
process allows us to continuously evaluate and evolve a
language design, but it immediately raises two questions.
How do we create an artefact suitable for evaluation? and
how is said artefact evaluated?

Our two-phase design method moves from a low-validity
exploration of diverse prototypes towards a high-validity
exploration of few prototypes2. The phase of low-validity
exploration consists of small, fast design iterations using
pseudocode prototypes allowing the designer to explore the
language domain through vastly different language designs.
During this phase, an in-team expert serves as the best
approximation of actual users. When the prototypes of
the low-validity exploration converge, the second phase of
design validation begins. In this second phase of design
validation, the loosely evaluated design from the first phase
is implemented and tested to find usability problems.

A. Low-validity exploration

The first phase consists of small design iterations that seek
to explore the design space at a low cost. Cheap and flexible
prototypes are necessary for this process since the time used
on a prototype is inversely proportional to the number of
iterations. In this phase, prototypes should be purely textual
and could be called pseudocode prototypes analogous to
paper prototypes. These prototypes should be supplemented
by formative techniques such as corpus analysis, interviews,
natural programming, or domain-driven design [12] [56].
During these activities, one should be looking for desired

2With an emphasis on towards since we are not proposing experiments
which give statistically significant results.

language properties and constraints to incorporate into the
design as early as possible.

The purpose of a prototype is to investigate a specific
design decision and facilitate a discussion on the decision.
Therefore, a prototype should be focused on exploring the
solution to only a few problems, so it gives information
on the subject of interest. It may do so in extreme, even
unrealistic ways as long as it serves as an idealised example
and not as an end product. Also, a prototype may tackle
macro-level questions such as how to improve overall program
comprehension. In that sense, the prototyping process uses
the hermeneutic circle since it views the part in the context
of the whole and vice versa.

The in-team expert is used to evaluate each prototype. The
goal is to prompt the expert for questions and opinions such
as, ”Why can I not just do X?”, ”What if I want to do Y?”,
or ”What is the purpose of Z?”. However, merely showing
a pseudocode prototype may not give the expert sufficient
grounds to provide feedback. Therefore, part of the evaluation
should be to walk through different scenarios in a text editor
to show how one would work with the prototype. A scenario
could be to change a specific business rule, write a new rule
from scratch, or find an error in the program. When possible,
the expert should dictate what to do or write. Again this is
analogous to what one would do with a paper prototype of
a graphical user interface. During the phase of low-validity
exploration, the designer will experience that the language
design of the prototypes become more and more stable. As
this happens and the number of unexplored, potentially viable
designs also diminishes, we say that the prototypes converge
to a single language design. In other words, a consensus
should emerge on how one would like to express different
computations. When this consensus is reached, the phase of
low-validity exploration ends.

B. Design validation

The low-validity exploration produces a rough language
design that neither the designer nor the expert objects to. There
is, however, still a risk that the language design contains
significant flaws. First, the design may have unrealistic
assumptions on the possible language guarantees since the
design builds upon pseudocode prototypes. Second, the
low-validity exploration may have biased the in-team expert,
or they may, for other reasons, not represent domain experts
in general. Phase two seeks to mitigate these risks by creating
a lightweight language implementation and testing it with as
many participants as feasible3. This process should ensure
that the language design is based on realistic assumptions
and usable by outside experts. Any problems discovered
should be addressed by changing the design leading to, if

3The number of needed usability tests has been discussed at least since
Nielsen’s and Launder’s mathematical analysis of usability problems [57].
From our perspective, it is unlikely that someone ends up with the possibility
of performing too many usability tests when creating ADSLs.



TABLE II
CHALLENGES AND REMEDIES

Challenge (section V) Remedy
High impact systems No specific
Very few users Initially use in team expert, then vali-

date with external users
Designer and expert gap Small and fast iterations
Intangible product Text-editor prototypes and demonstra-

tions
Evolving domain Incremental and flexible approach
No small programs No expectation of small programs

possible, new tests. These potential problems are the reason
the implementation needs to be as lightweight as possible.
There are two products of the second phase: first, a lightweight
language implementation ready to be put to use and second,
knowledge of the language’s strengths and usability issues.

C. Tackling challenges

Here we will address why the proposed method handles the
challenges identified in Section V. These are summarised in
Table II. The small and fast design iterations facilitated by
pseudocode prototypes serve a multitude of purposes. First,
they seek to bridge the gap between the designer and the in-
team expert by letting the designer become familiar with the
domain and the expert to become familiar with DSL concepts.
Second, they allow for flexibility in the design process to
handle domain discoveries made by domain experts and the
corresponding evolution of the DSL. Third, the repeated
demonstrations of prototypes try to lessen the intangibility of
the system. The challenge of having few test participants is
handled by using the in-team expert as a best approximation
of users. The second phase primarily exists to mitigate risks
introduced by the first phase, namely that the prototype may
be unrealistic and that real users may be different from the
in-team expert. There is no specific mitigation for developing
a high-impact DSL apart from improving usability and incor-
porating domain constraints into the DSL, thereby eliminating
some potential user errors.

VII. CASE STUDY

In this section, we describe a case study on our experience
using the design method to design the actuarial DSL,
Management Action Language (MAL). It would be
misleading to say that we had a fixed two-phase design
methodology from the outset of the project. Instead, the
two-phased method was discovered and synthesised during
the project to account for the identified risks. This process
introduces a threat to the validity of our findings (discussed
in Section VIII), but recognising the threat is the first part of
mitigation.

Although we played the active part of designers in the
process, we take the perspective of process observers in this
section. For the sake of readability, we will call the in-team
expert Erin and the designer David. First, we give a detailed

description of our design context and why MAL serves as a
cardinal example for an ADSL. Then we discuss our expe-
riences using the two-phase method. Finally, we discuss the
methodological problems experienced throughout the project.

A. Design context

MAL was created in cooperation between the Danish
software company Edlund A/S, specialising in software for
the life insurance and pension industry, and the IT University
of Copenhagen. One of Edlund’s products is a platform that
projects the asset/liability balance of a pension company
in accordance with financial regulations. This projection of
assets and liabilities is used to ensure and document that a
pension company will remain solvent in the future. On this
platform, a company must model its business rules, so-called
management actions. MAL provides companies with a way
of doing so.

MAL seeks to alleviate the following pains in the projection
platform:

• There is a high entry barrier for actuaries for modelling
and understanding business rules in a GPL.

• Some domain properties are difficult to ensure in a GPL.
• It is a security risk to allow actuaries to model and

execute models written in a GPL.
• Customers are provided with a template GPL program

where it is difficult to pick and choose different manage-
ment actions.

• It is difficult for Edlund to experiment with performance
initiatives applicable to customer models expressed in a
GPL.

Given enough time and training, there is no doubt that
actuaries could learn to use any language. Therefore, MAL
more ambitiously aimed to make the language enjoyable to
its users, which could be a selling point of the projection
platform.

MAL is a cardinal example of an ADSL with all of its chal-
lenges (see Section V). It resides within an advanced software
platform and a business-customer relation where Edlund must
be competitive. To provide users with language flexibility,
MAL generates valid GPL programs and allows invoking
some external GPL code. There are few potential users of the
language, each interested in complex models of management
actions of a company, including policies, reserves, assets,
cash flows, future discretionary benefits, etc. The domain of
MAL is evolving and amorphous. The amorphicity stems
from uncertainties in the exact requirements of the Danish
FSA and ongoing actuarial research into the mathematics of
asset/liability projections [58] [59]. In addition, the Danish
pension industry manages assets corresponded to 300% of
Denmark’s GDP in 2019, which means that mistakes made
in such projections could have severe consequences for the
Danish economy [60].



B. Execution

We will now describe how the two phases were executed
to create MAL. We first describe what happened during the
phase and how the method helped us to overcome problems.
This description is followed by a list of condensed lessons
related to the phase.

1) Low-validity exploration: The phase of low-validity
exploration was used to explore a wide range of language
designs and ideas by iterating through low-cost pseudocode
prototypes. Corpus analysis, interviewing, and domain
modelling were the primary formative techniques used
to create these prototypes. The corpus analysis consisted
of analysing existing GPL programs that MAL was to
replace. While this analysis allowed for a thorough domain
investigation, it also hindered using natural programming
as a technique since the in-team expert, Erin, could simply
point to existing code, when asked how to express some
computation. Collaborative domain modelling served as a
better technique to get prescriptive input on how Erin wanted
to work in the domain. During the project, David observed
that several ideas from this collaborative domain modelling
showed up in the GPL programs.

Several ideas were rejected in their initial form but
modified and included in later prototypes. For example,
early in the process, David recognised that the DSL needed
some way for actuaries to model a new quantity that they
wanted to compute. One of the first prototypes explored
the possibility of inferring a data model from a written
program. The idea was that actuaries could simply calculate
and use a quantity by assuming it existed. Although the lack
of explicit modelling turned out to be a bad idea, further
prototype refinement led to a language where usability tests
indicate that users enjoy modelling data in MAL. Later,
David identified the problem that programs became bloated
with iteration constructs. Again, David created a prototype
that explored the possibility of having implicit iterations. This
also turned out to be an unusable idea since its extreme way
of making programs less verbose led to incomprehensible
programs. However, this idea later reappeared as projections
on the level of portfolios, which users generally like. The
point of describing these iterations is to show how they
facilitated the exploration of extreme ideas, which, due to
their low cost, could be discarded or refined as David saw
fit. An experienced language designer could likely have
avoided some of the, in hindsight, design missteps, but from
this method’s perspective, that would only mean that an
experienced designer needs fewer design iterations.

Erin, who was developing the mathematics to be
implemented in MAL, was used as the best approximation of
users during the design process. Therefore, it was difficult
for Erin to state exact requirements and limitations for the
language since she could only say how things looked right

now and in the near future. Often, it was just “possible” that
some functionality was required or “not likely” to be needed.
Instead of requiring Erin to scope the domain, we primarily
analysed her existing computations to synthesise a language
design. This approach had the benefit that Erin could compare
existing computations with equivalent DSL solutions, which
gave her a better basis for questioning design choices.

After approximately ten prototypes, David had a rough idea
of how the language would look. He had identified important
functionality of the language (data modelling, calculations,
and output specification) and had a sketch of a language
that provided said functionality. However, there were still
unresolved questions. First, since Erin had been used as an
approximation of users, it was still unclear whether other
actuaries would actually enjoy using the language. Also, in
the initial language sketch, much attention was paid to how
programs of interest could be modelled. Less attention had
been paid to how a program would fit into Edlund’s customer
relationship, where the company provides template solutions
to several customers.

Lesson 1: Do not be afraid of seemingly stupid, crazy, or
unrealistic ideas. Even if an idea does not end up in the final
language, it can still shape and delimit the language.

Lesson 2: Do not require the domain expert to make
absolute statements about functionality. Instead, ask how
likely it is that some functionality is required. Design the
language for functionality, which has a high probability of
being required.

Lesson 3: A comparison between existing models and
equivalent DSL models will likely prompt a reaction from
domain experts. So will modifying models expressed by the
DSL.

Lesson 4: For a novice designer, it is easy to come up with
unrealistic ideas. Therefore, a novice designer should seek to
validate that an idea is realistic.

2) Design validation: In the second phase, David sought
to validate that the language was highly usable by actuaries.
The plan was to conduct traditional usability experiments with
actuaries to find and weed out usability issues. Therefore,
phase two began with a lightweight implementation of the
DSL and an identification of important usability goals. The
Cognitive Dimension Framework [34] was used to identify
these goals and corresponding tasks. For example, one goal
was that “the user should understand the different kinds of
data and where the data comes from” (hidden dependencies).

In total, two usability tests were conducted; one with an
Edlund actuary and one with a customer actuary. The test
consisted of training (30 min), task solving (120 min), and
a semi-structured interview (30 min). The tests strengthened



David’s belief in many design choices since both users
saw potential in MAL’s data modelling and were able to
understand and modify complex programs. However, the
usability tests also found significant problems with syntactical
choices, training material, and error messages. An example
of one of these problems was that the prototype had moved
from a C-like towards an ML-like syntax without much
complaint from Erin. When exposing fresh actuaries to the
language, it became clear that actuaries are more experienced
with a C-like notation. As one participant explicitly stated:
“[they] were missing curly braces and semicolons for
structure”. Although such a syntactic problem is easy to fix, it
is essential to identify to flatten the learning curve of the DSL.

During the second phase, it became clear that the language
should not only be tailored to its domain. It should also
be aligned with Edlund’s customer relations. Concretely,
MAL needed to support Edlund’s service of providing its
customers with template implementation of management
actions. Therefore, a module system was implemented that
made it easier for customers to pick and choose between
standard management actions distributed across multiple files.
This was done even though one test participant explicitly
stated that it was easy to navigate in a MAL program since it
was contained in a single file. Although this was arguably a
paternalistic choice, we firmly believe that it is to the benefit
of the users.

Lesson 5: The design resulting from phase one will likely
contain obvious flaws easily discovered when testing it with
an external domain expert.

Lesson 6: Implementing any language functionality will
increase the cost of design revisions and make the design less
flexible.

Lesson 7: Consider how to teach the language when
designing the language. The teaching of the language is
almost as important as the language itself and easily forgotten.

C. Domain evolution

The domain of MAL evolved during both design phases
causing changes to the language design and its implementa-
tion. There were several causes to this evolution. One cause
was regular software maintenance and refactoring, leading to
small functionality changes. Another cause was novel domain
discoveries leading to new data models and functionality, e.g.
it turned out that it should be possible to model a policy by
a probabilistic three-state entity. Finally, some evolution was
caused by users’ wishes. They wanted a clearer understanding
of the projection platform, improved debugging facilities, and
more control over the projection. At the beginning of the
project, this evolution was straightforward to handle since
we had no implementation. When implementation began in
the second phase, evolution came at a high cost. This cost

included development time on improving functionality and
time spent updating existing MAL programs when breaking
updates were made. It is possible that focusing more on the
tooling of the technical design could have reduced some of this
cost, e.g., by using a projectional editor. Nonetheless, these
experiences reinforce our belief that one should try to delay
implementation until it is necessary for some objective.

D. Experienced problems

If the only purpose of our design process was to ensure
the usability of MAL, then we find it adequate. However,
it is also a success criterion for an ADSL project that
the language is used and actually alleviate the pains it is
intended to. Although we are currently integrating MAL
into Edlund’s projection platform, we find it necessary to
discuss our experienced problems with taking the language
into production.

One problem with the design method, and implementation,
is that while MAL was developed, actuaries had invested
a significant amount of time into solutions written in a
GPL. Although we believe MAL demonstrates significant
improvements, actuaries may judge that these improvements
do not offset the time invested into their current solutions
[37]. Therefore, it would have been desirable to either start
the development of MAL at an earlier point in time or to
speed up the development.

Another solution to this problem could have been to have
a more participatory design approach by involving Edlund’s
customers more directly in the design process [61]. However,
such inclusion was not possible for us since it could potentially
strain customer relations. Therefore, the future of the language
depends on whether it demonstrates benefits significant enough
that it can be introduced without fear of straining customer
relations.

VIII. THREATS TO VALIDITY

The experiences described in the case study are the empirical
findings presented in this paper. As explained in Section II,
these findings should not be seen as an evaluation of the
proposed method but as the material used to synthesise the
method. This raises the possible external threat to validity
that our experiences are not generalisable and the internal
threat to validity that we are biased in the case study. We
deal with each threat separately.

First, it is possible that our case study, and therefore the
proposed method, is not generally applicable. This risk stems
from the possibility of simply tailoring a design methodology
to the specific design situation. To mitigate this risk, we
have sought to be as precise as possible in describing the
design context of MAL and identifying general challenges
to the design process which are applicable to other ADSLs.
At the same time, we have described our in-depth context-
dependent experiences through a case study motivating our



methodological choices. Ultimately, future evaluation with
other projects is needed to get a fuller understanding of the
method.

Second, it is possible that we as authors have an inherent
confirmation bias in presenting our case study: we believe
that the design method is effective and leads to good ADSLs,
and may selectively present only supporting evidence. But
in fact, we have sought to describe a method that can
mitigate specific problems and have openly discussed our
experiences and problems using the method, with two goals:
First, we hope that some practitioners may learn from our
experiences. Second, we hope that this article will provoke
other practitioners to more explicitly discuss their design
processes for domain-specific languages and challenge ours.

IX. CONCLUSION

In this paper, we have described our experiences with
conducting human-centred design to create an ADSL for
non-programming experts in an evolving domain. We have in
two ways described the characteristics of ADSLs, which we
have found important for the design process. First, we have
derived a language classification of programming languages
based on their evolutionary characteristics. We argue that
ADSLs belong to the class of steadily evolving E-type
languages highly influenced by their application domain.
Second, we have identified challenges to the design process.
Based on these, we have argued that a design method must
be able to handle evolving domains as well as include
user validation in the design process while minimising user
participation when possible.

We have conducted a case study on the design process of
MAL and how this process sought to realise MAL’s expected
benefits. We found that early usage of rapid prototyping using
pseudocode prototypes allowed us to explore a large design
space. Using an in-team domain expert to conduct low-validity
evaluations of these language designs allowed us to identify
and fix usability issues. The low cost of the prototypes had
the additional benefit of allowing rapid evolution of MAL’s
domain. Later in the process, domain experts external to
the team was used for a higher validity evaluation of the
language. These explorations indicate that users enjoy how
they can model data, the conciseness of expressions, and find
the language adequate in its expressiveness and functionality.
Even more importantly, the evaluations pointed us to concrete
usability issues, which the in-team expert did not uncover.
However, we did experience problems in the design process.
Once we began implementing the language, it became more
expensive to handle domain evolution. Also, we experienced
obstacles in taking the language into production primarily
due to the perceived high costs of transitioning to MAL for
Edlund’s customers.

Based on these experiences, we have proposed a two-phase
design method that seeks to guide ADSL designers in their
innumerable syntactic and semantic design choices. An
initial low-validity exploration using pseudocode prototypes
allows the in-team expert to remain non-committal on design
questions for as long as possible. A following higher-validity
exploration seeks to ensure that the language design is
generally usable by domain experts. Conclusively, the method
seeks to incorporate the user’s perspective into the design
process while minimising the cost of conducting evaluations,
thereby avoiding unnecessary overhead. We are currently
looking into the possibility of conducting short co-design
workshops with domain experts to design quality assurance
measures for ADSLs. Future work will seek to evaluate this
method by applying it to the design of other ADSLs.

REFERENCES

[1] M. Voelter, DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages. Lexington, KY: CreateSpace Independent
Publishing Platform, Jan. 2013.

[2] “ACM Workshop on Real World Domain Specific Languages
2019,” May 2021, accessed on: May 13, 2019. [Online]. Available:
https://sites.google.com/site/realworlddsl

[3] B. Flyvbjerg, “Five Misunderstandings About Case-Study Research,”
Qualitative Inquiry, vol. 12, no. 2, pp. 219–245, Apr. 2006, publisher:
SAGE Publications Inc.

[4] F. P. Brooks, “Keynote address: language design as design,” in History
of programming languages—II. New York, NY, USA: Association for
Computing Machinery, Jan. 1996, pp. 4–16.

[5] E. Dijkstra, “Programming considered as a human activity,” in Classics
in software engineering. USA: Yourdon Press, Jan. 1979, pp. 1–9.

[6] C. A. R. Hoare, “Hints on programming language design.” Stanford
University, Stanford, CA, USA, Technical Report, 1973.

[7] B. A. Myers, J. F. Pane, and A. Ko, “Natural programming languages
and environments,” Communications of the ACM, vol. 47, no. 9, pp.
47–52, Sep. 2004.

[8] J. F. Pane and B. A. Myers, “Usability Issues in the Design of Novice
Programming Systems,” School of Computer Science, Carnegie-Mellon
University, Pittsburg, Pennsylvania, Tech. Rep., Aug. 1996.

[9] L. McIver and D. Conway, “Seven Deadly Sins of Introductory Pro-
gramming Language Design,” in Proceedings of the 1996 International
Conference on Software Engineering: Education and Practice (SE:EP
’96), ser. SEEP ’96. USA: IEEE Computer Society, Jan. 1996, p. 309.

[10] D. Moody, “The “Physics” of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering,” IEEE
Transactions on Software Engineering, vol. 35, no. 6, pp. 756–779, Nov.
2009, conference Name: IEEE Transactions on Software Engineering.

[11] D. van der Linden and I. Hadar, “A Systematic Literature Review of
Applications of the Physics of Notations,” IEEE Transactions on Soft-
ware Engineering, vol. 45, no. 8, pp. 736–759, Aug. 2019, conference
Name: IEEE Transactions on Software Engineering.

[12] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers
Are Users Too: Human-Centered Methods for Improving Programming
Tools,” Computer, vol. 49, no. 7, pp. 44–52, Jul. 2016.

[13] D. Norman, The Design of Everyday Things: Revised and Expanded
Edition, revised edition ed. New York, New York: Basic Books, Nov.
2013.

[14] A. Stefik, B. Sharif, B. A. Myers, and S. Hanenberg, “Evidence About
Programmers for Programming Language Design (Dagstuhl Seminar
18061),” Dagstuhl Reports, vol. 8, no. 2, pp. 1–25, 2018, place:
Dagstuhl, Germany Publisher: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[15] M. Coblenz, J. Aldrich, B. A. Myers, and J. Sunshine, “Interdisciplinary
programming language design,” in Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, ser. Onward! 2018. Boston,
MA, USA: Association for Computing Machinery, Oct. 2018, pp. 133–
146.



[16] A. Stefik and S. Hanenberg, “Methodological Irregularities in
Programming-Language Research,” Computer, vol. 50, no. 8, pp. 60–63,
2017, conference Name: Computer.

[17] I. Poltronieri Rodrigues, M. de Borba Campos, and A. F. Zorzo,
“Usability Evaluation of Domain-Specific Languages: A Systematic
Literature Review,” in Human-Computer Interaction. User Interface
Design, Development and Multimodality, ser. Lecture Notes in Computer
Science, M. Kurosu, Ed. Cham: Springer International Publishing,
2017, pp. 522–534.

[18] S. Hanenberg, “Empirical, Human-Centered Evaluation of Programming
and Programming Language Constructs: Controlled Experiments,” in
Grand Timely Topics in Software Engineering, ser. Lecture Notes in
Computer Science, J. Cunha, J. P. Fernandes, R. Lämmel, J. Saraiva,
and V. Zaytsev, Eds. Cham: Springer International Publishing, 2017,
pp. 45–72.

[19] S. Kleinschmager, R. Robbes, A. Stefik, S. Hanenberg, and E. Tanter,
“Do static type systems improve the maintainability of software systems?
An empirical study,” in 2012 20th IEEE International Conference on
Program Comprehension (ICPC), Jun. 2012, pp. 153–162.

[20] A. Stefik and S. Siebert, “An Empirical Investigation into Programming
Language Syntax,” ACM Transactions on Computing Education, vol. 13,
no. 4, pp. 19:1–19:40, Nov. 2013.

[21] A.-J. Kaijanaho, “Evidence-based programming language design : a
philosophical and methodological exploration,” Jyväskylä studies in
computing, no. 222, 2015, accepted: 2015-11-17T10:33:20Z ISBN:
9789513963880 Publisher: University of Jyväskylä.

[22] A. Blackwell, M. Burnett, and S. Jones, “Champagne Prototyping:
A Research Technique for Early Evaluation of Complex End-User
Programming Systems,” in 2004 IEEE Symposium on Visual Languages
- Human Centric Computing. Rome: IEEE, 2004, pp. 47–54.

[23] J. D. Gould, J. Conti, and T. Hovanyecz, “Composing Letters with a
Simulated Listening Typewriter,” Proceedings of the Human Factors
Society Annual Meeting, vol. 25, no. 1, pp. 505–508, Oct. 1981,
publisher: SAGE Publications.

[24] T. Marter, P. Babucke, P. Lembken, and S. Hanenberg, “Lightweight pro-
gramming experiments without programmers and programs: an example
study on the effect of similarity and number of object identifiers on the
readability of source code using natural texts,” in Proceedings of the
2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, ser. Onward! 2016.
Amsterdam, Netherlands: Association for Computing Machinery, Oct.
2016, pp. 1–14.

[25] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley
Professional, 2010.

[26] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, Dec. 2005.

[27] R. Lämmel, Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer International Publishing, 2018.

[28] A. Barišić, V. Amaral, M. Goulao, and A. Aguiar, “Introducing usability
concerns early in the DSL development cycle: FlowSL experience
report,” p. 10.

[29] A. Barišić, V. Amaral, M. Goulão, and B. Barroca, “Quality in use
of domain-specific languages: a case study,” in Proceedings of the 3rd
ACM SIGPLAN workshop on Evaluation and usability of programming
languages and tools, ser. PLATEAU ’11. Portland, Oregon, USA:
Association for Computing Machinery, Oct. 2011, pp. 65–72.

[30] V. Zaytsev, “Language Design with Intent,” in 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and
Systems (MODELS), Sep. 2017, pp. 45–52.

[31] J. L. C. Izquierdo and J. Cabot, “Community-driven language devel-
opment,” in 2012 4th International Workshop on Modeling in Software
Engineering (MISE), Jun. 2012, pp. 29–35, iSSN: 2156-7891.

[32] M. J. Villanueva, F. Valverde, and O. Pastor, “Involving End-Users in
the Design of a Domain-Specific Language for the Genetic Domain,”
in Information System Development, M. José Escalona, G. Aragón,
H. Linger, M. Lang, C. Barry, and C. Schneider, Eds. Cham: Springer
International Publishing, 2014, pp. 99–110.

[33] M. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise, C. Barnaby,
J. Sunshine, J. Aldrich, and B. A. Myers, “PLIERS: A Process that
Integrates User-Centered Methods into Programming Language Design,”
arXiv:1912.04719 [cs], Aug. 2020.

[34] T. Green and M. Petre, “Usability Analysis of Visual Programming
Environments: A ’Cognitive Dimensions’ Framework,” J. Vis. Lang.
Comput., 1996.

[35] S. Clarke, “Evaluating a new programming language,” 13th Workshop
of the Psychology of Programming Interest Group, pp. 275–289, 2001.

[36] S. P. Jones, A. Blackwell, and M. Burnett, “A user-centred approach
to functions in Excel,” in Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, ser. ICFP ’03.
Uppsala, Sweden: Association for Computing Machinery, Aug. 2003,
pp. 165–176.

[37] A. Blackwell and M. Burnett, “Applying attention investment to end-user
programming,” in Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments, Sep. 2002, pp. 28–30.

[38] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat,
P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler,
R. Solmi, V. A. Vergu, E. Visser, K. van der Vlist, G. H. Wachsmuth, and
J. van der Woning, “The State of the Art in Language Workbenches,”
in Software Language Engineering, D. Hutchison, T. Kanade, J. Kittler,
J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, M. Erwig, R. F. Paige, and E. Van Wyk, Eds.
Cham: Springer International Publishing, 2013, vol. 8225, pp. 197–217,
series Title: Lecture Notes in Computer Science.

[39] M. Voelter, B. Kolb, T. Szabó, R. Daniel, and A. van Deursen, “Lessons
learned from developing mbeddr: a case study in language engineering
with MPS,” Software & Systems Modeling, 2017.

[40] D. Ratiu, M. Voelter, and D. Pavletic, “Automated testing of DSL
implementations—experiences from building mbeddr,” Software Quality
Journal, vol. 26, no. 4, pp. 1483–1518, Dec. 2018.

[41] A. M. Şutı̂i, M. v. d. Brand, and T. Verhoeff, “Exploration of modularity
and reusability of domain-specific languages: an expression DSL in
MetaMod,” Computer Languages, Systems & Structures, vol. 51, pp.
48–70, Jan. 2018.

[42] N. Vasudevan and L. Tratt, “Comparative Study of DSL Tools,” Elec-
tronic Notes in Theoretical Computer Science, vol. 264, no. 5, pp. 103–
121, Jul. 2011.

[43] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sep. 1980,
conference Name: Proceedings of the IEEE.

[44] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden, M. Woodger, and P. Naur, “Report on the algorithmic
language ALGOL 60,” Communications of the ACM, vol. 3, no. 5, pp.
299–314, May 1960.

[45] N. Wirth and C. A. R. Hoare, “A contribution to the development of
ALGOL,” Communications of the ACM, vol. 9, no. 6, pp. 413–432, Jun.
1966.

[46] N. Wirth, “The programming language pascal,” Acta Informatica, vol. 1,
no. 1, pp. 35–63, Mar. 1971.

[47] “Perl Compatible Regular Expressions,” accessed on: May 13, 2019.
[Online]. Available: http://www.pcre.org/

[48] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978.

[49] D. May, “Occam,” Apr. 1983.
[50] J. Armstrong, “The development of Erlang,” in Proceedings of the

second ACM SIGPLAN international conference on Functional program-
ming, ser. ICFP ’97. Amsterdam, The Netherlands: Association for
Computing Machinery, Aug. 1997, pp. 196–203.

[51] “Tyche modelling platform,” accessed on: May 13, 2019. [Online].
Available: https://www.rpc-tyche.com/Software/Modelling

[52] S. Peyton Jones, J.-M. Eber, and J. Seward, “Composing contracts: an
adventure in financial engineering (functional pearl),” ACM SIGPLAN
Notices, vol. 35, no. 9, pp. 280–292, Sep. 2000.

[53] J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Stefansen,
“Compositional specification of commercial contracts,” International
Journal on Software Tools for Technology Transfer, vol. 8, no. 6, pp.
485–516, Oct. 2006.

[54] D. A. Ladd and J. C. Ramming, “Two Application Languages in
Software Production,” p. 9.

[55] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley
Publishing Company, 2010.

[56] Evans, Domain-Driven Design: Tacking Complexity In the Heart of
Software. USA: Addison-Wesley Longman Publishing Co., Inc., 2003.



[57] T. K. Landauer and J. Nielsen, “A Mathematical Model of the Finding
of Usability Problems,” INTERCHI, p. 8, 1993.

[58] K. Bruhn and A. S. Lollike, “Retrospective reserves and bonus,”
Scandinavian Actuarial Journal, pp. 1–19, Aug. 2020.

[59] D. K. Falden and A. K. Nyegaard, “Retrospective Reserves and Bonus
with Policyholder Behavior,” Risks, vol. 9, no. 1, p. 15, Jan. 2021,
number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

[60] B. M. Jensen, M. D. Raffnsøe, and J. She, “Forsikrings- og pension-
ssektoren i ny kvartalsvis statistik,” 2019.

[61] K. Bodker, F. Kensing, and J. Simonsen, Participatory It Design:
Designing for Business and Workplace Realities. Cambridge, MA,
USA: MIT Press, 2004.


