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Abstract

Locality-sensitive hashing (LSH), introduced by Indyk and Motwani in STOC ’98, has
been an extremely influential framework for nearest neighbor search in high-dimensional data
sets. While theoretical work has focused on the approximate nearest neighbor problems, in
practice LSH data structures with suitably chosen parameters are used to solve the exact

nearest neighbor problem (with some error probability). Sublinear query time is often
possible in practice even for exact nearest neighbor search, intuitively because the nearest
neighbor tends to be significantly closer than other data points. However, theory offers little
advice on how to choose LSH parameters outside of pre-specified worst-case settings.

We introduce the technique of confirmation sampling for solving the exact nearest neigh-
bor problem using LSH. First, we give a general reduction that transforms a sequence of
data structures that each find the nearest neighbor with a small, unknown probability, into a
data structure that returns the nearest neighbor with probability 1− δ, using as few queries
as possible. Second, we present a new query algorithm for the LSH Forest data structure
with L trees that is able to return the exact nearest neighbor of a query point within the
same time bound as an LSH Forest of Ω(L) trees with internal parameters specifically tuned
to the query and data.

1 Introduction

Locality-sensitive hashing [11] (LSH) is the leading theoretical approach to nearest neighbor
problems in high dimensions. In nearest neighbor search we seek to preprocess a point set P
such that given a query point q, we can quickly return the point in P that is closest to q according
to some distance measure dist(·, ·). Theoretical results are typically formulated as approximation
algorithms that allow a point at distance cr to be returned if the nearest neighbor has distance r
from the query point, where c > 1 is a user-specified approximation factor. In practice the
quality parameter of interest is the recall, i.e., the empirical probability of retrieving the nearest
neighbor (see e.g. [1]). As we will see below is not hard to show that LSH methods can obtain
recall arbitrarily close to 1 if parameters are suitably chosen according to the given query and
data set. However, choosing parameters well, in an efficient way, is a challenge [12].
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1.1 Background

Locality-sensitive hashing. A locality-sensitive family of hash functionsH (an “LSH family”)
has the property that hash collision probability decreases as distance increases. Specifically, for
h ∼ H the “hash bucket” Sh(q) = {x ∈ P | h(x) = h(q)} is more likely to contain the nearest
neighbor of q than any other element of P . For a given data set P one would typically use a
family H such that the expected size of Sh(q) is constant (for every q or on average for a certain
query distribution) [14]. Given such a family H, suppose the nearest neighbor is x1 ∈ P , and
define p1 = Pr[x1 ∈ Sh(q)] to be the probability of a hash collision with the nearest neighbor.
Then inspecting Shi

(q) for a sequence of hash functions h1, . . . , hL independently sampled from
H we will fail to find x1 with probability (1 − p1)

L ≈ exp(−p1L). To make this as efficient as
possible we can use a hash table that given q allows us to retrieve Shi

(q) in time O(1+ |Shi
(q)|).

If we assume that the distance between q and x ∈ P can be computed in constant time, the
expected time for this procedure is O(LE[1 + |Sh(q)|]). There are several issues with the above
construction:

• If p1 is large then the query algorithm still goes through L hash buckets, even though we
expect to see x1 within the first O(1/p1) buckets.

• If p1L is small, the recall 1− exp(−p1L) is close to zero.

Notice that p1 depends on the nearest neighbor that we are searching for, resulting in a chicken-
and-egg situation: we would like to conduct the search with knowledge of p1, but we only know
p1 if the search finds x1 (and we know how the collision probability depends on dist(q, x1)). We
will introduce a technique called confirmation sampling for dealing with the former problem of
when to terminate the search when we have no knowledge of p1. The latter problem requires us
to take a new look at how to query the so-called LSH forest data structure, described below.

Approximation versus recall. Early theoretical work on high-dimensional nearest neighbor
search dealt with the simpler case of near neighbor search where it is assumed that a maximum
distance r to the nearest neighbor is known and a point within distance cr must be returned.
A reduction with logarithmic overhead in time and space extends this to solve the approximate
nearest neighbor problem with unknown distance r [11, 10]. These reductions increase the
approximation factor by 1+γ, with space usage proportional to 1/γ, and do not seem to provide
any guarantee on recall even if used with a near-neighbor data structure with approximation
factor c = 1.

A data structure known as LSH forest, first described by Charikar [6] and later generalized
and baptized by Bawa et al. [5], removes the logarithmic overhead in space but the query algo-
rithm still only provides c-approximate results and does not guarantee a specific recall. Indeed,
it is not hard to construct examples where there are many c-approximate nearest neighbors and
the probability of returning the exact nearest neighbor is negligible.

LSH Forest. Since we will describe a new query algorithm for the LSH Forest data structure
we review the data structure here. We will again make use of an LSH family H, but this family
can be “weak” in the sense that collision probabilities are large, say, Pr[h(q) = h(x)] = Ω(1)
for x ∈ P . Assume for simplicity that we can sample h ∼ H and evaluate h(x) in constant
time. For parameters K and L and (i, j) ∈ {1, . . . ,K}× {1, . . . , L}, independently sample hash
functions hi,j ∼ H. Associate each point x ∈ P with a string hj(x) = h1,j(x)h2,j(x) . . . hK,j(x).
For j = 1, . . . , L the jth part of the LSH Forest is a trie that stores prefixes of the set of strings
hj(P ) = {hj(x) | x ∈ P}. Specifically, for each x ∈ P it stores the shortest prefix of hj(x) that
is unique among strings in hj(P ) (if such a prefix exists, otherwise the whole string hj(x)). A
pointer to x is placed in the leaf corresponding to a prefix of hj(x). The space for the data
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structure, not counting space for storing the n points in P , is O(nKL) words naïvely, and can
be improved to O(nL) words using path compression [5].

Querying LSH Forest. On a query q and for a parameter i ∈ {1, . . . ,K}, LSH Forest allows
us to retrieve the hash bucket Si,j(q) of points in P matching a length-i prefix of hj(q) in
time O(i + |Si,j(q)|). We will use p(q, x) = Prh∼H[h(q) = h(x)] as shorthand for the collision
probability between q and x. We have

E[|Si,j(q)|] =
∑

x∈P

p(q, x)i . (1)

The larger the “level” i is the smaller Si,j(q) is in expectation. Conversely the probability of
finding x1 in the hash bucket is Pr[x1 ∈ Si,j(q)] = p(q, x1)

i which decreases exponentially with i.
The query algorithm described in [5] chooses the level i0 to inspect as the smallest level where
the number of collisions is linear, i0 = min{i |

∑L
j=1
|Si0,j(q)| ≤ cL}, for some constant c. The

probability of failing to find the nearest neighbor by inspecting all buckets Si,1, . . . , Si,L at level
i is (1−pi1)

L ≈ exp(−pi1L), so to bound the failure probability we need to choose L large enough.
For example, if the nearest neighbor of q is in a dense cluster of 2cL points whose points almost
surely reside in the same LSH bucket, the algorithm fails to find the nearest neighbor almost
surely. So LSH Forest is only “self-tuning” to a limited extent if high recall is desired: choosing a
suitable parameter L requires at least approximate knowledge of the distance distribution from
q to points of P . Instead, we would like L to be simply a parameter that determines the space
usage, and use a different query algorithm that adapts to the data automatically.

1.2 Our results

LSH methods work by performing many iterations, each inspecting a hash table Di with a
small (and unknown) probability p1 of finding the nearest neighbor. It is easy to see that
after ln(1/δ)/p1 iterations the nearest neighbor will be retrieved with probability at least 1− δ.
We show that this number of iterations can be matched in expectation without knowledge of
p1, and in fact even without estimating any collision probabilities. Using a technique we call
confirmation sampling we obtain the following result on LSH-like methods:

Theorem 1. Suppose there is a sequence of independent, randomized data structures D1,D2, . . . ,
such that on query q, Di returns the nearest neighbor of q in P with probability at least pq and
each other point in P with probability at most pq. Let δ > 0 be given. There is an algorithm
that depends on δ but not on pq that on input q queries data structures D1, . . . ,Djq , performs jq
distance computations, where E[jq] = O(ln(1/δ)/p1), and returns the nearest neighbor of q with
probability at least 1− δ.

Theorem 1 shows that, at least in the case where we may use quadratic space to store a
sufficiently long sequence of data structures Di, it suffices to focus on minimizing the product
of the expected time for Di and the number of iterations 1/p1.

In practice one would of course not have access to an unbounded sequence of data structures,
but rather to a fixed number L of data structures. If these data structures offer a trade-off
between query time and probability of returning the nearest neighbor it is still possible to apply
Theorem 1: For i = 1, 2, . . . , log n run confirmation sampling in rounds of L steps with time
budget 2i for each data structure Di. Terminate as soon as confirmation sampling returns a
result — by a union bound over the log n rounds the error probability is at most δ log n.

Our second result addresses how to adapt not only to the collision probability of the nearest
neighbor, but to the whole distance distribution from q to points in P . In particular, we design
and analyze a new adaptive query algorithm for the LSH Forest data structure [6, 5] discussed
above. LSH Forest is known to be able to adapt to the distance distribution to some extent,
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but previous work has required the query algorithm to depend on the distance to the nearest
neighbor in P . In contrast our query algorithm is independent of properties of the data. The
only requirement is that the LSH family used is monotone in the sense that collision probability
is non-increasing with distance. We compare our adaptive algorithm to an optimal algorithm in
a class of natural algorithms that choose a level i∗ and a number of tries j∗ (which may depend
on the distance distribution between q and P ) and inspect the first j∗ buckets at level i∗.

Theorem 2. Let OPT (L,K) denote the optimal cost of a natural algorithm that queries an LSH
Forest data structure with L trees and K levels and returns the nearest neighbor with probability
at least 1 − 1/n. Further assume that the LSH family is monotone. Then there is an adaptive
algorithm that queries an LSH Forest data structure with O(L) trees and K levels that returns
the nearest neighbor using time O(OPT (L,K)) with probability 1− 1/n.

LSH Forest is not an asymptotically optimal data structure for approximate nearest neighbor
search in general. For example, it is known that data-dependent methods can be asymptotically
faster in several important spaces, and data structures obtaining better space-time trade-offs are
known [3, 2]. Generalizing our results for exact nearest neighbors to a data-dependent setting,
say, in Euclidean space, is an interesting open direction. Note that the data structures Di in
Theorem 1 could be data dependent, though present data-dependent LSH techniques rely on
knowing the (approximate) distance to the nearest neighbor.

1.3 Related work

There is a large literature on using LSH for nearest neighbors search in practice, often generalized
to the k-nearest neighbor problem where the k closest points in P must be returned. For
simplicity we concentrate on the case k = 1, but most results extend to arbitrary k. Many
heuristics that work well in practice come without guarantees on either result quality or query
time in high dimensions, or provides guarantees only under certain assumptions on the data set.

Guarantees on recall. In practice, the performance of locality-sensitive hashing techniques
is usually measured by their recall: the fraction of the true k-nearest neighbors found on average,
see e.g. [1, 4]. From a theoretical point of view it is natural to bound the expected recall, i.e.,
the probability that the nearest neighbor is found. We are only aware of very few works that
provide theoretical guarantees on expected recall in conjunction with sublinear query time in
high dimensions and without assumptions on data.

Dong et al. [9] outline an “adaptive” method for achieving a given expected recall in the
context of multiprobe LSH (with no formal statement of guarantees). The idea is to determine,
after inspecting i buckets, whether to terminate or to inspect bucket i+1 based on the collision
probability p(q, x̂1) between q and the nearest neighbor x̂1 found in the first i buckets. This
requires an efficient method for computing p(q, x̂1), which might not be known, especially for
small collision probabilities. This is not just a theoretical problem: Prominent LSH methods
such as p-stable LSH [8] and cross-polytope LSH [1] do not have closed-form expressions for
collision probabilities. Our adaptive algorithm is similar in spirit, but entirely avoids having to
compute collision probabilities.

For the related near neighbor problem where a search radius r is given it is easier to give
guarantees on recall, especially when collision probabilities at distance r can be computed, see
e.g. [7].

Parameter tuning. Since the performance of LSH data structures depends on parameter
choices, a lot of work has gone into devising ways of choosing good parameters for a given data
set, both during data structure construction and adaptively for the query algorithm. Slaney et
al. [14] propose to select parameters based on the “distance profile” of a data set, but needs a
bound on the distance to the nearest neighbor to function.

4



The state-of-the-art FALCONN library [1] uses grid search over parameters to empirically
estimate the best parameters, assuming that the data and query distributions are identical.

We note that the adaptive method of Dong et al. [9] does not adapt search depth to the
distance distribution from the query point q. In fact, choosing good parameters for LSH and
especially multi-probe LSH was mentioned by Lv et al. [12] as a challenge in the paper celebrating
their VLDB 10-year Best Paper Award.

2 Confirmation sampling

Let Q denote a probability distribution with finite support S. Further assume that elements of
S are equipped with a total ordering relation ≺, and define x1 = min(S) as the smallest element
in the support with respect to the ordering ≺. Consider the problem of identifying x1 given that
we only have access to samples from the distribution Q and to the ordering, i.e., given elements
x, y ∈ S we can determine whether x ≺ y, x = y, or y ≺ x. We propose a simple randomized
algorithm for solving this problem that we call confirmation sampling. The algorithm works
by drawing samples from Q while keeping track of the smallest element seen so far together
with the number of times it has been sampled in addition to the first sample — the number of
confirmations. Once the smallest element has been confirmed t times, the algorithm reports that
element and terminates. We use ∞ to denote an element that is larger than all elements of S.

Algorithm 1: ConfirmationSampling(Q, t,≺)

1 β ←∞, count ← 0
2 while count < t do

3 sample X ∼ Q
4 if X = β then

5 count ← count + 1
6 else if X ≺ β then

7 β ← X
8 count ← 0

9 return β

Theorem 3. Let Q denote a probability distribution with finite support S. For x1 = min(S) and
X ∼ Q let p1 = Pr[X = x1] and let p2 = max{Pr[X = x] | x ∈ S\{x1}} be the largest sampling
probability among elements of S other than x1. Then:

Pr[ConfirmationSampling(Q, t) 6= x1] ≤ (1− p1)

(

p2
p1 + p2

)t

The expected number of samples made by ConfirmationSampling is bounded by (t+ 1)/p1.

Before we show Theorem 3 we observe that it implies Theorem 1: Define an ordering on P
by x �q y ⇐⇒ dist(q, x) ≤ dist(q, y). It can be turned into a total ordering ≺q by an arbitrary
but fixed tie-breaking rule. Choose t = ⌈log2(1/δ)⌉ and run ConfirmationSampling(Q, t,≺q)
with the ith sample from Q being produced by querying Di for the nearest neighbor of q. Since
p1 ≤ pq and p2 ≥ pq we have that the error probability is bounded by 2−t ≤ δ.

Proof. If the algorithm fails to report x1 it must have happened at least t times that the confir-
mation counter was incremented (line 5) due to a sample X satisfying the condition X = β for
β 6= x1. We will refer to such events as false confirmations and proceed by upper bounding the
probability that the algorithm performs t false confirmations. Prior to each sample the proba-
bility of performing a false confirmation is maximized if β = x2 for some x2 6= x1 maximizing
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the sampling probability, i.e., Pr[X = x2] = p2. Note also that the first sample can never result
in a false confirmation. The probability of the algorithm performing t false confirmations before
sampling x1 can therefore be upper bounded by the probability that the first sample is not equal
to x1 and that we in the following samples observe t samples of x2 before sampling x1. The
probability that we sample x2 conditioned on sampling either x1 or x2 is exactly p2

p1+p2
, and the

probability of this happening t times in a row is
(

p2
p1+p2

)t

.

To analyze the number of samples, consider an infinite sequence of independent samples
X1,X2, · · · ∼ Q, and suppose that in the ith iteration the algorithm uses sample Xi. Observe
that the algorithm terminates no later than iteration i if x1 is sampled t+1 times in X1, . . . ,Xi.
The expected number of iterations needed to sample x1 t+ 1 times is exactly (t+ 1)/p1.

Theorem 3 is tight in the case where Q only assigns non-zero probability to two elements. In
Appendix A we derive the exact distribution of the output of ConfirmationSampling. We
observe that for the proof to work, the distribution from which samples are drawn does not need
to be the same in each iteration of ConfirmationSampling, as long as p1 is a lower bound
on sampling x1 and p2 is an upper bound on sampling each element other than x1. If for some
γ ∈ [0, 1] we have that every distribution satisfies p2/(p1 + p2) ≤ γ then we can upper bound
the error probability by γt.

2.1 Application to locality-sensitive hashing

Assume that we have an LSH family that is tuned to give few collisions between query and
non-neighbor points for a given query and data distribution. Such a “tuned” LSH family may be
obtained if the query distribution is known as discussed in section 1.3. We can use confirmation
sampling to adjust query time according to the distance to the nearest neighbor.

Let (V,dist) denote a distance space. That is, V is equipped with a distance function
dist : V × V → R. We define locality-sensitive hashing [11] as follows:

Definition 4. Let H denote a distribution over functions h : V → R. We say that H is locality-
sensitive over (V,dist) if there exists a non-increasing f : R→ [0, 1] such that for all x, y ∈ V we
have that

Pr
h∼H

[h(x) = h(y)] = f(dist(x, y)).

We use the ordering ≺q defined above and define a distribution Qq that is most easily
described as a sampling procedure. For now we will not care about the efficiency of implementing
the sampling. To create a sample X ∼ Qq, sample h ∼ H, compute the “bucket”

S(q) = {x ∈ P | h(x) = h(q)} .

Now define X as the element of S(q) closest to q, if such an element exists, and otherwise a
random element in P .1 More precisely: If S(q) 6= ∅ we pick X as the unique minimum element
in S(q) according to the total order ≺q, and if S(q) = ∅ we pick X uniformly at random from
P .

Lemma 5. For X ∼ Qq and any x2 ∈ P , Pr[X = x1] ≥ Pr[X = x2].

Proof. Since H is locality-sensitive we have that Pr[h(q) = h(x1)] ≥ Pr[h(q) = h(x2)]. Thus

Pr[X = x1] = Pr[h(q) = h(x1)] +
Pr[S(q) = ∅]

n

≥ Pr[h(q) = h(x2)] +
Pr[S(q) = ∅]

n
= Pr[X = x2] .

1The sampling of a random element ensures compatibility with ConfirmationSampling, which requires a
sample to be returned even if there is no hash collision. It is not really necessary from an algorithmic viewpoint,
but also does not hurt the asymptotic performance.
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As before Theorem 3 now implies that confirmation sampling succeeds with good probability:

Lemma 6. Let x1 be the nearest neighbor of q in P (breaking any ties according to ≺q).
ConfirmationSampling(Qq , t,≺q) returns x1 with probability least 1 − 2−t. The expected
number of samples from Qq is bounded by (t+ 1)/p1, where p1 ≥ Pr[h(q) = h(x1)].

To efficiently sample from Qq we independently sample h1, h2, · · · ∼ H, and construct a
sequence of hash tables D1,D2, . . . that allow us to find Si(q) = {x ∈ P | hi(x) = hi(q)} in time
O(1 + |Si(q)|). Random samples from P can be realized using an array of pointers to elements
of P .

We note that the above is not an entirely satisfactory solution, since the number of data
structures needed cannot be bounded ahead of time (or rather, Ω(n) data structures may be
needed to succeed, resulting in quadratic space usage). A possible remedy if the algorithm does
not terminate after inspecting L hash tables is multi-probing [13, 12] where more than one bucket
is inspected in each hash table. Multiprobing increases the probability p1 of finding the nearest
neighbor in each hash table. In the next section we consider another approach to dealing with
a space-bounded data structure.

3 Fully adaptive nearest neighbor search

We present an adaptive algorithm for nearest neighbor search in an LSH Forest that succeeds
with high probability2 and matches the minimum expected running time that can be obtained
by a natural algorithm that has full knowledge of the LSH collision probabilities between the
query point and all the data points, provided we are are allowed a constant factor increase in the
number of trees used by the algorithm. We define OPT (L,K) as the minimum expected search
time that can be achieved by an algorithm with access to an LSH Forest of L trees of depth K
where the algorithm can choose to search j ≤ L trees at level i ≤ K with the requirement that
the nearest neighbor should be reported with probability at least 1− 1/n.

OPT (L,K) = min{(lnn)(i+
∑

x∈P

p(q, x)i)/p(q, x1)
i | 0 ≤ i ≤ K, p(q, x1)

iL ≥ lnn}

We note that OPT (L,K) only reflects the optimal running time under the assumption that p1
is bounded away from 1. If for example we had p1 = 1 the multiplicative overhead of lnn in the
running time would not be needed.

Overview of our approach. The algorithm works by measuring the number of collisions at
different levels in the LSH Forest and with high probability adapting to search at a level that
will result in O(OPT (L,K)) running time. Ideally, given sufficiently many trees, we would like
to search the level i that balances the number of hash function evaluations and the expected
number of collisions with the query point. However such a level might not exist as the expected
number of collisions can decrease by more than a constant factor as we increase the level.

We begin by introducing some notation. Let p1 = p(q, x1), where x1 denotes the nearest
neighbor to q in P and define:

C(i) =
∑

x∈P

p(q, x)i,

T (i) = (i+ C(i))/pi1.

2For every choice of constant c ≥ 1 there exists a constant n0 such that for n ≥ n0 we can obtain success
probability 1− 1/nc where n = |P | denotes the size of the set of data points.
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Observe that C(i) is the expected number of collisions with the query point at level i, and T (i)
is the expected running time of an algorithm that searches at level i and guarantees reporting
the nearest neighbor of q with some constant probability. If we let i∗ denote the choice of level
resulting in the minimum value of OPT (L,K) then OPT (L,K) = T (i∗) lnn. Finally, define i′

to be the smallest integer i such that C(i) ≤ i.
Given that the number of trees L is sufficiently large we can show that searching either

the first 1/pi
′

1 trees at level i′ or the first 1/pi
′−1

1
trees at level i′ − 1 results in an expected

running time that is bounded by O(T (i∗)) while we report the nearest neighbor with constant
probability at least 1 − 1/e. That is, one of the two levels right around where the number of
hash function evaluations and the number of collisions balance out (we have C(i′) ≤ i′ and
C(i′−1) > i′−1) result in optimal running time for constant failure probability. Since we don’t
know p1 we can search both of these levels using confirmation sampling, in parallel, until one of
them terminates. This gives us an algorithm that with constant probability terminates in time
O(T (i∗)) and reports the nearest neighbor. In order to reduce the failure probability to 1/n
while obtaining optimal running time in the high probability regime we can perform O(log n)
independent repetitions, so that conceptually there are O(log n) independent forests, and stop
the search once a constant fraction terminates.

Query algorithm and parameters. There are two circumstances that prevent us from being
able to use the approach outlined above. The primary problem is that we don’t know the value
of i′ and estimating it appears to be difficult. The solution proposed by our algorithm is to
instead search the “empirical” i′ and i′ − 1: we measure the number of collisions at different
levels and search level i and i− 1 where i is set to the minimum level where the average number
of collisions is smaller than i. This procedure is described in pseudocode in the for-loop section
of Algorithm 2.

The second problem is that restrictions on L and K can make it necessary for us to search
a level i < i′ − 1, either because K < i′ − 1 or because L is too small to ensure that we find the
nearest neighbor by searching at level i′ − 1. The second part of Algorithm 2 that runs when
j = L′ deals with this problem by searching through the LSH forests bottom-up until a level
that results in optimal running time is encountered.

Algorithm 2: AdaptiveNearestNeighbor(q)

1 for j ← 1, 2, 4, . . . , L′ do

2 find the smallest level i such that the first j trees in at least half of the forests have at
most 10ij collisions. If such a level does not exist set i = K.

3 in each forest run confirmation sampling at level i and i− 1 with a time budget of
10ij (looking at no more than j buckets and at no more than 10ij collisions).

4 if confirmation sampling terminated in 1/4 of the forests at level i or level i− 1 then

5 report the closest point seen so far and terminate.

6 if j = L′ then

7 run confirmation sampling in lock-step across the forests starting at level i− 1,
decreasing the level and starting over once 1/2 of the searches have explored tree
number L′. Do this until confirmation sampling terminates in 1/4 of the forests.

We aim for matching the running time of OPT (L,K) up to constant factors when we are
allowed to use O(L) trees. Algorithm 2 operates on Θ(log n) LSH Forests that each has L′ trees
where L′ = O(L/ log n) is a sufficiently large power of two. The confirmation sampling used
to search in these forests has a parameter setting of t = 3 since we only need each search to
terminate and correctly report the nearest neighbor with a sufficiently large constant probability.
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The proof of Theorem 2 is based on two arguments. First we will show that the stopping
condition that 1/4 of the forests at a given level terminates within the time budget ensures that
the nearest neighbor is always reported with high probability. Second, we show that with high
probability the algorithm terminates in time O(OPT (L,K)).

Correctness. The choice of i made by the algorithm always satisfies i ≤ n since there can
be no more than n collisions at any level. If we show correctness with high probability at a
fixed level then we can use a simple union bound over the first n levels to show that with
high probability at every level where 1/4 of the searches terminate we have found the nearest
neighbor of the query point. The instances of confirmation sampling used by Algorithm 2 use
t = 3 confirmations before terminating. According to Lemma 6 the probability of terminating
and reporting a point different from the nearest neighbor is at most 1/8. By applying a standard
Chernoff bound we can show that over O(log n) independent runs of confirmation sampling with
high probability less than 1/4 the instances will fail to report the nearest neighbor.

Bounding the running time. We remind the reader that we use i∗ to denote the underlying
choice of level that minimizes OPT (L,K), that i′ denotes the minimum level such that C(i′) ≤ i′,
and that i is the choice of level made by the query algorithm.

Consider line 2 of Algorithm 2 where the level i is set to the smallest level where the first j
trees in at least half the forest have at most 10ij collisions. This operation can be completed in
O(ij) time per forest by proceeding top-down across all the forests and for each forest summing
up the number of collisions across all its tries at the current level until level i is reached. We
make use of constant-time access to the size of buckets/subtrees as we search down in an LSH
Forest trie (either by explicitly storing the size of subtrees when we construct the trie, or by
inspecting the pointers to the bucket associated with a given prefix).

We will now argue that with high probability Algorithm 2 terminates in time O(OPT (L,K))
in each of the two following cases:

Case 1: C(i∗) ≤ i∗. We will show that there exists a value of j ≤ L′ such that with high prob-
ability the algorithm terminates at this value (or earlier) and in O(OPT (K,L)) time. Consider
the first iteration of the for-loop where 100/pi

∗

1 ≤ j ≤ L′. Such a j exists by the restrictions under-
lying the choice of level that minimizes OPT (L,K) and by our freedom to set L′ = O(L/ log n).
By Markov’s inequality the probability that the number of collisions in the first j trees of a forest
at level i′ is greater than 10i′j is at most 1/10. Therefore it happens with high probability that
the algorithm sets i ≤ i′ ≤ i∗ where the last inequality follows from the definition of i′ and the
assumption that C(i∗) ≤ i∗. By our choice of j we know that confirmation sampling at level i
will terminate in each forest with a large constant probability, say, 9/10. With high probability
we therefore have that in at least 1/4 of the forests confirmation sampling at level i terminates
within the budget of 10ij. To bound the total running time we use that with high probability
i ≤ i′ for every value of j and since j is doubled at every step of the for loop we can bound the
running time in all O(log n) LSH forests by O(i′j log n) = O(T (i∗) log n) = O(OPT (L,K)).

Case 2: C(i∗) > i∗. Consider first the sub-case where i∗ = i′ − 1. Suppose there exists a
minimum j ≤ L′ such that i′j ≥ 100T (i′ − 1), j is an integer power of 2, and j ≥ 100/pi

′−1

1

(the latter condition holds by the assumption i∗ = i′ − 1). We previously argued that with
high probability the algorithm sets i ≤ i′. In the first iteration of the for-loop where j takes
on this value the following holds: If i = i′ then level i′ − 1 is searched with a sufficiently
large budget to ensure termination with high probability. If i < i′ then level i′ − 1 is searched
up until tree number j, again ensuring termination with high probability. In both of these
cases the running time is bounded by O(OPT (L,K)). Otherwise, if L′i′ < T (i′ − 1)/100 then
with high probability the time spent in the for-loop part of the algorithm is upper bounded by

9



O(T (i′ − 1) log n) = O(OPT (L,K)), and if level i′ − 1 was not searched in the for-loop then it
will be searched in the first step of the bottom-up part of the algorithm (because i ≤ i′ with
high probability) where we are guaranteed to terminate in optimal time with high probability.

Consider now the sub-case where i∗ < i′ − 1. Let î denote the largest level satisfying
î < i′ − 1 and 100/pî1 ≤ L′. The query algorithm will terminate with high probability when
having searched sufficiently many trees at level î ≥ i∗. We will proceed by bounding the cost
up to the point where 100/pî1 trees have been searched in half of the forests at level î. The cost
of running the for-loop part of the algorithm is bounded by O(L′i′ log n) with high probability.
The number of collisions encountered through the bottom-up search when having searched level

î + 1 is with high probability bounded by O(C (̂i + 1)L′ log n) = O((C (̂i + 1)/pî+1

1
) log n) since

100/pî+1

1
> L′ by our choice of î. Finally, the cost of searching at level î until 1/4 of the forests

terminate is bounded by O(T (̂i) log n) with high probability.
Next we show that the sum of all these costs is bounded by O(OPT (L,K)). For every x ∈ P

it holds by monotonicity that p1 = p(x1, q) ≥ p(x, q) and it follows that for every i we have

C(i+1) ≤ p1C(i). Applying this inequality we get the bound C (̂i+1)/pî+1

1
≤ C(i∗)/pi

∗

1 ≤ T (i∗)
that is used to bound the number of collisions from the bottom-up search. The same approach
also gives a bound on the number of collisions at level î. In order to bound the contribution
from the for-loop note that C (̂i + 1) ≥ C(i′ − 1) > i′ − 1 where the last inequality holds by

the definition of i′. It also holds that L′ < 100/pî+1

1
by the choice of î. Combining these two

inequalities L′i′ ≤ 100 (C (̂i + 1) + 1)/pî+1

1
= O(T (i∗)). The bound on the total running time is

then given by O(T (i∗) log n)) = O(OPT (L,K)).

4 Conclusion and open problems

We have introduced confirmation sampling as a technique for identifying the minimum element
from a discrete distribution. Confirmation sampling works particularly well when the minimum
element is at least as likely to be sampled as other elements. Combining confirmation sampling
with locality-sensitive hashing we obtain a randomized solution to the exact nearest neighbor
search problem that works without knowledge of the probability of collision between pairs of
points. We use these techniques to design a new adaptive query algorithm for the LSH Forest
data structure with L trees that returns the nearest neighbor of a query point with the same
time bound that is achieved if the query algorithm has access to an LSH forest of Ω(L) trees
with internal parameters specifically tuned to the query and data.

We can use confirmation sampling with LSH to solve the k-nearest neighbor problem with
high probability in k by keeping track of the top-k closest points and requiring each to be
confirmed O(log k) times. If we are able to compute the collision probabilities we can use the
adaptive stopping rule of Dong et al. [9] to stop the search once we have sampled j ≥ ln(1/δ)/p̂k
buckets, where p̂k is the collision probability between the query point and the kth nearest
neighbor candidate found by the query algorithm. This stopping rule guarantees that if x is a
k-nearest neighbor to the query point, and the LSH family is monotone, then x is reported with
probability at least 1 − δ. It would be interesting to find a similarly efficient stopping rule for
δ = Θ(1) that works without knowledge of the collision probabilities.

Our adaptive query algorithm for the LSH Forest data structure makes use of union bounds
over the K levels of the data structure when showing correctness and also uses that with high
probability it doesn’t search too far (something which could potentially cost time O(n)). When
we compare our performance against an optimally tuned algorithm that must succeed with high
probability we can afford to pay for this extra overhead. It remains an open problem to find
an adaptive query algorithm that matches an optimally tuned algorithm when we only require
constant success probability, even if we can compute collision probabilities
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A Exact distribution of the output of ConfirmationSampling

Suppose S = {x1, . . . , xn}, where indices are chosen such that pi = Pr[X = xi] is non-decreasing
in i: p1 ≥ p2 ≥ · · · ≥ pn. Given a distribution Q and a parameter t let ̺i denote the probability
that ConfirmationSampling(Q, t) reports element xi. Consider an infinite sequence of i.i.d.
samples X1,X2, . . . from Q. If xi is sampled t+ 1 times before a single sample of xj with j < i
then the algorithm reports xi. It is easy to see that ̺n = pt+1

n since the only way that xn gets
reported is if the first t+ 1 samples X1, . . . ,Xt+1 are equal to xn. We can extend this idea to
obtain the expression for ̺i.

Lemma 7.

̺i =



1−
∑

j>i

̺j





(

pi
∑

s≤i ps

)t+1

.

Proof. We will gradually reveal information about the outcomes of the sequence X1,X2, . . . in
order to arrive at the expression in the Lemma. We begin by asking the question for each Xi

whether Xi = xn or Xi < xn. Only if the first t+ 1 samples are equal to xn does the algorithm
report xn. Otherwise we can restrict our attention to the elements Xi < xn and ask the same
question for xn−1 and so on.

For a specific choice of distribution we can compare the exact probability that confirmation
sampling fails to report the minimum element with our upper bound in Theorem 3. From
inspection: if we consider the uniform distribution the failure probability appears identical for
t = 1 and as we increase t the upper bound is at most twice as large as the actual failure
probability.
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