Abstract—We present a general transformation of general omission resilient distributed algorithms into byzantine fault ones. The transformation uses the guarantees of integrity and confidentiality provided by a trusted execution environment to implement a byzantine failure detector. Correct processes in a transformed algorithm will operate as if byzantine faulty processes have crashed or their messages were dropped. The transformation adds no additional messages between processes, except for a pre-compute step, and the increase in states of the algorithm is linearly bounded: it is a 1-round, \(n = f + 1 \) translation, making no assumptions of determinism.

Index Terms—Byzantine faults, translation, TEE, TPM, SGX

I. INTRODUCTION

In the byzantine fault model, we know that \(3f + 1 \) processes are necessary to solve the consensus problem \([1,2]\), while \(2f + 1 \) processes are sufficient to solve the problem in the crash-fault model \([3]\). By solve, we mean with some relaxation of either liveness, asynchrony or determinism, to circumvent FLP impossibility \([4]\). Using hybrid fault models, where some subsystems are assumed to fail only by crashing, new solutions have achieved \(2f + 1 \) fault tolerance \([5,10]\). The trusted subsystem prevents a process from sending contradicting messages, which increases the fault tolerance from \(3f + 1 \) to \(2f + 1 \) \([5,11]\).

These small trusted subsystems take different forms. Most notable are the attested append-only memory (A2M) identified by Chun et. al. in \([5]\), and the authenticated monotonic counter (TrInc) identified by Levin et. al. in \([11]\). The solutions using these trusted subsystems make the common assumption that the component, in fact, does not experience byzantine faults, but fails only by crashing.

We show how any algorithm tolerant to general omission faults and unreliable channels can be transformed into a byzantine fault-tolerant algorithm. Note that while the transformation works regardless of synchrony, it does require the underlying algorithm to be resilient to omission faults also in the synchronous setting.

The transformation operates by moving the entirety of the algorithm into a Trusted Execution Environment (TEE). We do not assume that the TEE is free from byzantine faults, but rather use the integrity and confidentiality guarantees provided by the TEE. The intuition behind the transformation is that the integrity guarantee simulates a perfect local byzantine fault detector oracle, which can detect only byzantine faults, and can be used to translate any such fault to a crash or a message omission. Meanwhile, the confidentiality guarantee ensures that, given a shared secret between the integrity protected processes, no process can falsely pass itself off as being integrity protected.

The transformation works on both synchronous (but omission resilient) and asynchronous algorithms; transforms both deterministic and randomised algorithms; introduces no overhead on the number of messages past pre-computation; imposes only a small constant overhead on message size; and preserves the algorithm’s fault tolerance. To our knowledge, no transformation with these properties currently exists.

The overhead of transformations are traditionally measured in rounds and fault tolerance (e.g. \([12,15]\)). E.g. a 4-round, \(n = 3f + 1 \) transformation converts one round of message send/receives in the algorithm into four and requires that at most \(\lceil \frac{n-1}{f} \rceil \) processes exhibits faults. (A translated algorithm will have the lower fault tolerance of the transformation and the original.) We say that a transformation is a crash to byzantine transformation if it can transform a crash fault-tolerant algorithm to be byzantine fault-tolerant and that the transformation translates byzantine faults to crash faults if a byzantine fault on one process presents as a crash fault to the transformed algorithms on other, correct, processes. Using these terms, this paper presents a 1-round, \(n = f + 1 \) general omission to byzantine transformation.

This paper comprises 5 sections: in Section II we present related work; in Section III we give our system model; in Section IV we present and prove correct our core transformation; and in Section V we give an example application.

II. RELATED WORK

Automatically transforming or translating algorithms to have fault tolerance in stronger fault models is a well-known idea. Transformations generally focus on the translation of faults and are therefore referred to as translations. Translations are distinguished by the synchrony of the system in which they are applied, since they, usually, cannot translate faults in both synchronous and asynchronous systems.

Synchronous translations. These include the composable translations of \([12]\), where the composition of auxiliary translations results in two crash-to-byzantine translations: a 4-round, \(n = 4f + 1 \) translation and a 6-round, \(n = 3f + 1 \) translation. The translations differ in their broadcast primitives (reliable, validated, etc.). These results were improved upon...
in [13], which presents 2, 3, and 4-round translations, with fault tolerance related to the round-increase:
\[n > \max(6f - 3, 3f), \]
\[n > \max(4f - 2, 3f) \]
and
\[n = 3f + 1, \]
respectively. Recently [16] proposed a translation assuming each process has a unique cryptographic signature and that at most one in any replicated pair of a process fail simultaneously, achieving under these assumptions a crash-to-authenticated-byzantine translation.

None of these translations caters to randomized algorithms: they all rely on comparing deterministic behaviour to check whether a process is exhibiting byzantine faults.

Asynchronous translations. In this setting, [17] proposes a crash-to-byzantine translation, by building a reliable broadcast primitive which filters messages to present byzantine faults as crashes. The protocol requires three broadcast rounds and has a fault tolerance of
\[n = 3f + 1. \]
Coan [14] builds upon this result and proposes a 2-round,
\[n = 4f + 1 \]
translation, and a 3-round,
\[n = 3f + 1 \]
translation; both making asynchronous crash fault-tolerant algorithms into byzantine fault-tolerant ones. Ho et. al. [18] proposes an asynchronous crash to byzantine translation using an ordered authenticated broadcast primitive, yielding a fault tolerance of
\[n = 2f + 1 \]
if the primitive is built using cryptography, or
\[n = 3f + 1 \]
it is built without cryptography. The broadcast primitive requires 3 rounds for each original message.

Lastly, our translation is related to that of Clement et. al. in [15], where it is shown that the non-equivocation given by a trusted subsystem is not enough to ensure the
\[2f + 1 \]
lower bound in the hybrid fault model, but that transferable authentication—e.g., digital signatures—is needed as well. In this setting, they create a 1-round,
\[n = f + 1 \]
crash to byzantine translation using a trusted subsystem that ensures non-equivocation and transferable authentication. Our translation distinguishes itself on the following points: their translation can translate asynchronous algorithms, while ours can translate both synchronous and asynchronous algorithms; they assume that the trusted subsystem can only fail by crashing, while we assume only the integrity and confidentiality of a TEE; their translation requires the algorithm to be deterministic, as their primitive requires simulation of the sending process’ underlying state machine by the receiving process, while ours require no such simulation, and thus can translate both randomized and deterministic algorithms; each sent message from a process in their translation includes all previously received and sent messages to enable complete simulation of the sending process by the receiving process, making the message size grow linearly with the number of rounds. In our transformation, the messages have the constant overhead of a Message Authentication Code tag (MAC).

III. System Model

We will now present our system model, which is related to that of [13], where hosts (processes) can have several linked (connected) agents (state machines), each with separate state and progression. We will not, however, model links (channels) as separate state machines, but instead, use the abstraction of channels as passive components for delivering messages.

A. Processes and channels

A system comprises processes, state machines and channels: A distributed algorithm consists of
\[n \]
processes
\[\{p_0, \ldots, p_{n-1} \} \]
each containing a set of state machines. State machines on the same process may be connected with reliable FIFO-channels; whereas state machines on separate processes can be connected only with unreliable channels, which may drop, reorder, duplicate, corrupt, or redirect messages. We make no synchrony assumptions about channels and processes, as we solely use the assumptions of the underlying system.

“State machines” here are any kind of automaton that consumes inputs and produces outputs. A simple example is Mealy Machines; however, we emphasise that our transformation also applies to more powerful machines such as pushdown automata or Turing machines. Note that some of the machines introduced by our translation—notably the wrapper machines and the machines appending MAC codes to messages—cannot be adequately represented as finite state machines, but require more powerful computational models.

Formally, a state machine in this paper consists of a set of states, transitions between the states, and an initial state. (When state, transitions, and alphabet of actions are all finite, the machine is a Mealy Machine.) Transitions are on the form
\[(s_0, t_{in}) \rightarrow (s_1, t_{out}) \]
where
\[s_0 \]
and
\[s_1 \]
are, respectively, the beginning and end states of the transition.
\[t_{in} \]
and
\[t_{out} \]
are tuples of the form
\[(B, c) \]
where
\[B \]
is an arbitrary length bit string, and
\[c \]
is a named channel.
\[t_{in} \]
is an input message on channel
\[c \]
required for the transition to initiate, and
\[t_{out} \]
is the output message produced and sent via channel
\[c \]
as a consequence of the transition. We use
\[\emptyset \]
to indicate that a transition does not require an input or an output.

![Diagram](image)

Fig. 1. Simple example of processes and channels in our system model.

Figure 1 shows an example of processes and channels. This simple setup has 2 processes,
\[P_0 \]
with the state machines
\[SM_0, \ldots, SM_2 \]
and
\[P_1 \]
with state machines
\[SM_3, \ldots, SM_5. \]
The state machines of
\[P_0 \]
are connected with the reliable channels
\[c_0 \]
and
\[c_1 \]
while the state machines of
\[P_1 \]
are connected with the reliable channels
\[c_2 \]
and
\[c_3. \]
The processes are connected through the unreliable channel
\[c_4 \] between
\[SM_1 \]
and
\[SM_3. \]
This model is inherently non-deterministic: state machines of a process can be in different states across otherwise identical runs. However, we do not rely on the determinism of an algorithm in our transformation, and our transformation does not introduce non-determinism.
B. Faults

As mentioned, channels between processes are unreliable, and messages may be arbitrarily dropped from these channels. We use channel omissions as a proxy for all omission faults in the system, including send- and receive omissions. Note that this convention makes it impossible to detect where the message omission has taken place, a key problem in general omission resilient systems [19]. Formally, we model a crash failure by an ε-transition to a special state s_ε, with no outgoing transitions. Once a state machine enters this state, it can neither transition away, receive inputs, nor create outputs, altogether behaving as if crashed.

To model byzantine faults, we must allow arbitrary behaviour. To this end, we model a byzantine fault of a process as the removal, addition or substitution of any number of that process’ state machines with arbitrary replacement machines. We have conventional assumptions regarding cryptography: a byzantine fault cannot produce faults requiring the simulation of secrets – notably, we assume that no byzantine fault will be able to produce previously unobserved messages with correct Message Authentication Codes (MACs).

C. TEE guarantees

A TEE is a subsystem [2] providing Authenticity, Integrity, Confidentiality and Remote Attestation [20] – [22]. Authenticity is the property that a program saved to persistent storage and later loaded into a TEE, loads successfully into the TEE only if it is the unaltered original program. In other words, the program cannot be changed after it has been compiled into a TEE compliant binary [1]. Integrity is the property that only a program running in a TEE can change the data in the memory of a TEE, and the program can only change the data in the TEE that has been allocated to it. This integrity property still holds while the data resides outside the TEE, e.g. in persistent storage. We presently work with a weaker integrity property: unauthorised changes to data inside the TEE cause the immediate loss of all cryptographic secrets in that TEE. We choose this weaker model because nothing prevents a byzantine process from trying to impersonate a crashed process, but the integrity property will ensure that the impostor process will not be able to replicate the confidentiality-protected secrets.

To model these properties, we need three more concepts:

1) An integrity protected area of each process.
2) A state machine (SM_c) for each such area in which all cryptographic secrets resides.
3) An attestation process (P_{RA}) and an attestation state machine (SM_{A}). An SM_{A} resides on each process, and together with P_{RA} enables Remote Attestation.

The state machine SM_{c} enjoys the Confidentiality property: so only SM_{c} may access cryptographic secrets residing on the process. We assume that no other process, including ones arising from byzantine failures, can “guess” these secrets. The integrity protected area enjoys the Integrity property in the sense that if it encounters a byzantine failure—if one of its state machines is substituted—the SM_{c} machine disappears.

Details of Remote Attestation varies with the implementation, e.g., the GlobalPlatform standard has no standardised Remote Attestation mechanism, but supports different implementations [25, 26]. We assume that SM_A and P_{RA} are able to perfectly attest to state machines in the integrity protected area, i.e. uniquely identify the state machines and their states and verify that they are located in an integrity protected area. Moreover, we assume that, as part of that attestation, the remote attestation process is able to securely provision SM_{c} with a shared symmetric secret. These assumptions are supported by, e.g., Remote Attestation in SGX [27, 28], which relies on trusting an Intel® Attestation Server (IAS).

As some implementations of TEEs have limited access to hardware peripherals, we do not allow channels from the integrity protected area of a process to another process. Instead, we introduce state machines outside the integrity protected area that has a reliable channel into the integrity protected area, and an unreliable channel to another process. We name these state machines wrapper state machines or simply wrappers.

D. Weakening of channels

To allow failing processes arbitrary behaviour, we allow correct state machines to receive messages from all state machines on faulty processes. Messages from faulty processes can be received on any and all channels by state machines on
correct processes. The only exception we allow is that faulty state machines outside the integrity protected area cannot send messages on channels with both endpoints inside an integrity protected area. This is a realistic assumption: communication between modules in the same TEE is usually implemented by shared memory, which also resides inside the TEE, and thus is protected from tampering by modules outside the TEE.

E. Integrity violations vs. byzantine faults on SGX

We explain in more detail, using Intel SGX as an example, exactly in what sense we can construct a byzantine failure detector using SGX primitives. The primary protection against integrity violations in SGX is an integrity tree with the root stored in SRAM on-die [24]. All integrity-protected memory is MAC’ed in blocks collected in a Merkle-tree, with the root of this stored in on the CPU itself. When reading data from memory, MACs of the loaded blocks are verified against the root of the Merkel tree: If they do not verify, the CPU halts, requiring a physical reset. However, Gueron notes in [24] that, both the CPU and its caches are trusted components, i.e., reside within the “Trust boundary perimeter”, which results in some confidentiality attacks [29]-[31], but no known integrity attacks exist at the time of writing. It follows that SGX might not protect against faults taking place in the CPU cache, nor any affecting the CPU itself.

Regardless, this mechanism protects against physical and software attacks on memory: No process, including other SGX processes, can (except with negligible probability) modify data in the integrity protected memory without the CPU halting [27]. This is an argument that SGX can detect and protect against byzantine faults that change code and main memory after process initiation. Note that a “byzantine fault” here may not “guess” secrets encapsulated in SGX.

IV. Transformation

We now present the transformation of general omission tolerant algorithms to byzantine fault-tolerant algorithms, under the assumption that the algorithm handles unreliable channels.

The core idea of our transformation is to move the entire set of state machines into the integrity protected area, thus guaranteeing the integrity of the algorithm. However, we will need to ensure the integrity of all messages between the protected areas, both on the unprotected areas of the processes and while in transit on the channels. To this end, the transformation involves modifying both processes and individual state machines. On the process-level, we move constituent state machines into the integrity protected area; on the individual state machine level, we sign messages from the state machines to ensure integrity during transmission.

We present the transform in stages: Steps 1–4 adds integrity protection and remote attestation; Steps 5–6 implements byzantine failure detectors by validating such attestations.

A. Stage 1: Integrity protection & remote attestation

These are steps 1–4:

1) Encapsulate state machines in their process’ integrity protected area.
2) Add wrapper machines and connect them to the integrity protected state machines, and to each other.
3) Add SMc, a machine hosting secrets, to each process.
4) Add SMc to all processes, and connect them to PRA.

Note that the machines added in steps 2–4 are not finite. We visualise these steps for a very simple protocol in Figure 2.

Step 1 moves the state machines of each process into the integrity protected area of that process, visualised in Figure 2 as a box inside the processes. We temporarily remove channels to external processes.

Step 2 adds back the missing channels via a “wrapper”
state machine residing outside the integrity protected area of a
process. For each (unreliable) inter-process channel, we add (1)
a wrapper at each endpoint, (2) an (unreliable) channel with
endpoints in the wrappers and (3) a (reliable) channel from
each end-point wrapper to the original state machine end-point.

Step 3 adds a cryptographic state machine SM_c to all
integrity protected areas. SM_c will store any secrets, will MAC
messages to be transmitted, and will be cleared of secrets if a
byzantine fault is detected in the integrity protected area.

Step 4 adds remote attestation: A machine SM_A on all
processes and a P_{RA} process.

B. Stage 2: Detecting byzantine failures

All processes must first complete a pre-compute step to
participate in the transformed algorithm. In the pre-compute
step, the processes are (a) remotely attested and (b) provisioned
with a shared cryptographic secret. All processes will share
the same secret after completing step (b). These steps do not
presuppose synchrony or eventual delivery: Any message of
the remote attestation being infinitely delayed is equivalent to
the first message of the underlying algorithm being infinitely
delayed. With this shared key, a Message Authentication Code
(MAC) is appended to messages, which verifies to other
processes that the message was constructed by a non-failed
integrity protected state machine. Because we have assumed
that a byzantine failure manifests as the loss of cryptographic
secrets, a correct MAC guarantees that the message in question
originated from a correct process.

This mechanism requires MAC’ing all outbound messages
and checking all inbound messages, steps 5–6:

5) MAC each outbound inter-process message sent from
within the integrity-protected area. We transform each transi-
ton $(s_0, t_{in}) \rightarrow (s_1, (B, c))$ into the two transitions:

$$(s_0, t_{in}) \rightarrow (s', (B, c))$$

$$(s', (B\|MAC(B), c)) \rightarrow (s_1, (B\|MAC(B), c))$$

Here c_e is a reliable channel to SM_c, s' is a new state,
where the state machines wait for a reply from SM_c, and
$B\|MAC(B)$ is B appended with a valid MAC tag.

6) Verify the MAC on each inbound message. Each transition
of the form $(s_0, (B, c)) \rightarrow (s_1, t_{out})$ becomes:

$$(s_0, (B\|MAC(B), c)) \rightarrow (s', (B\|MAC(B), c))$$

$$(s', ("1", c)) \rightarrow (s_1, t_{out})$$

$$(s', ("0", c)) \rightarrow (s_0, 0)$$

Here s' is an intermediate state in which we await a reply from
SM_c. If SM_c replies that the MAC is valid ("1") we proceed
to s_1; otherwise, the MAC is invalid, and we return to the state
s_0. In the latter case, the machine behaves as if no message
was ever received.

Note that the machines added in steps 5 and 6 are not
finite. Step 5 and 6 compose; if a transition has inter-process
messages as both input and output, the transition is transformed
by step 5, and the resulting transition with the inter-process
output is then transformed by step 6. Note that if SM_c handles
requests in order, neither step 5 nor step 6 introduce new non-
determinism, because both steps use a waiting state, such that
the requesting state machine must receive a response from
SM_c before continuing. The entirety of the transformation
introduces no new non-determinism since each external send
and receive have simply been broken up into smaller atomic
steps, during which the state machine is waiting.

C. Overhead

The number of new states and transitions are both linearly
bounded by the number of messages to/from state machines
on other processes. Each inter-process message send adds one
state and one transition; each inter-process message receival
adds one state and two transitions.

Counting messages, each inter-process message in the origin-
al system incurs additional intra-process messages in the
transformed system for MAC’ing (2), for the sending and re-
ceiving wrappers (2), and for MAC verification (2); altogether
6 messages. Intra-process messages incur no overhead.

An algorithm with m_e inter-process (external) messages and
m_i intra-process messages, the transformed system will use m_e
inter-process messages and $6m_e + m_i$ intra-process messages,
plus some number of messages for the initial remote attestation
and provisioning pre-compute step.

We emphasise that the overhead is all intra-process: barring
the initial remote attestation, the number of inter-process
messages, messages between processes, does not increase.
Moreover, in practice, each inter-process message has only the
small constant-size overhead of a MAC.

D. Correctness

We show how a byzantine fault in any part of the process
will be translated to either perpetual or sporadic message
omission. A failed process with perpetual message omission
seems crashed to all other processes since it cannot in any way
affect the other processes in the system. We call this failure
mode constant omission. Note that a single byzantine fault
might affect more than one state machine and thus several
different types of state machines on the same process.

Integrity protected state machines. Recall that a byzantine
fault consists of the removal, addition, or replacement of
machines; and that such a fault causes the removal of the
SM_c state machine containing secrets of the integrity protected
area. With the lost secrets assumed unguessable by new state
machines, no machine in the failed process will be able to
produce MACs (Step 5). State machines of correct processes
will, therefore, behave as if they received no messages from the
failed process (Step 6): all correct non-wrapper state machines
experience constant omission from the faulty process. Note that
this case includes the cryptographic machine SM_c.

Wrapper state machines. A replacement for a wrapper
machine cannot fake correct MACs and so behaves equivalently
to an unreliable channel: the failed machine can drop, reorder,
corrupt and redirect the messages. Since the original algorithm
is assumed to handle unreliable channels, the algorithm can
handle all these faults except malicious corruptions which are
handled by the addition of the MAC. Removing or adding machines are special cases of replacements. Altogether, a byzantine fault in wrapper machines translates to ordinary channel failures or constant omission.

Remote attestation state machines. We assume that remote attestation is an atomic operation, and thus do not consider faults at that site during that attestation process. We proceed to consider the two cases of the remote attestation machine SM_A experiencing a byzantine fault (1) before and (2) after the attestation completes.

(1) If the remote attestation machine suffers a byzantine fault before being remotely attested, it can drop, reorder, corrupt or redirect messages. However, it cannot create new valid messages in this process, nor can it read the shared secret that is provisioned to the cryptographic state machine as a result of the attestation. As such, a fault in the remote attestation machine can at worst have the consequence that either the cryptographic state machine is provisioned with a wrong secret, or not provisioned at all. Both cases translate to constant omission: any message sent from the integrity protected area will be dropped by any correct receiving process.

(2) If the remote attestation state machine experiences a byzantine fault after the remote attestation process has completed, that failure is equivalent to a Byzantine fault in a wrapper state machine, since the remote attestation state machine resides outside the integrity protected area, and does not have special privileges.

Clearly, an unhandled Byzantine fault in P_{RA} violates all of the former guarantees, as Byzantine processes can now be provisioned with the shared secret. Therefore, the remote attestation process must be protected in a way that guarantees that only correct processes are provisioned with the shared secret. Such mechanisms exist [32]–[34].

Except for Byzantine faults in the remote attestation process (P_{RA} and SM_{RA}), we have seen that on all ordinary processes, the transformation translates Byzantine faults to omissions, constant omissions, unreliable channels and crashes.

V. TRANSFORMATION EXAMPLE

We exemplify the transformation with the classic central-server mutual exclusion algorithm (CSME), see, e.g., [35]. In mutual exclusion, a collection of processes share access to one or more resources, referred to as the critical section (CS). To prevent data-races and race-conditions, a mutual exclusion algorithm ensures that at most a single correct process has access to the critical section at any given time, that is, at most one correct process may execute in the CS at a time (safety) and any requests to enter and exit the critical section eventually succeeds (liveness). As an aside, this example demonstrates that the translation has relevance outside consensus problems.

This algorithm does not provide liveness under process crashes. If the server crashes, no process can gain access tokens, and thus no requests for access will succeed. Similarly, if a client crashes with the token, the token is lost. However, safety is still guaranteed: a process cannot access the critical section without a token. Under Byzantine faults, neither safety nor liveness can be guaranteed, e.g., for instance, the server could serve the tokens to all requests without waiting for acknowledgements from the clients.

We now show how applying the transformation from Section IV to CSME yields an algorithm which provides the same guarantees (safety) under Byzantine failures as the untransformed does under crash failures.

First, we model the algorithm as Mealy Machines, channels and processes. We model two different state machines: a client state machine, and a server state machine. The modelling is more straightforward with pushdown automata, but we continue with Mealy Machines for clarity.

Transformation Example

We first show how the state machines are transformed to an algorithm with two client processes. It encompasses 6 states:

- s_0: no client has the token, no requests have been received
- s_1: client 1 has requested the token
- s_2: client 2 has requested the token
- s_3: client 1 has the token, client 2 has requested the token
- s_4: client 2 has the token, client 1 has requested the token
- s_5: the state machine has crashed.

We will assume a CSME system with two client processes P_1 and P_2 each running an instance of the state machine from P_{RA} with an unreliable channel to the server process P_{SM}, which runs an instance of the state machine from P_{SM}.

We first show how the state machines are transformed to have their messages MAC’ed by SM_c and to have SM_c verify
the messages they receive. This is done by applying the state machine transformation described in Section [IV].

![Figure 5](image)

Fig. 5. Client state machine in CSME, after it has been transformed to handle byzantine faults.

Figure [5] shows the client state machine after the transformation. To enter the critical section, a request is sent to SM_c over the inter-process channel c_c for MAC’ing and transitions to s_1'. When the MAC’ed message is returned, this message is sent to the server process. The state machine is now at s_1, which is equivalent to s_1 in the untransformed state machine. c_s is now a channel to/from the wrapper state machine. When a token is received from c_s, the message’s MAC is sent to SM_c for verification. If the MAC is correct, the state machine will transition to s_2, which is in the critical section and is equivalent to s_2 in the untransformed state machine. A similar process is followed when exiting the critical section: the exit message is sent to SM_c for MAC’ing, and the returned message is sent to the wrapper state machine for redirection to the server process. Figure [9] shows the transformed server state machine, omitting s_c for readability. Figures [6] and [7] show the processes before and after the transformation, respectively.

![Figure 6](image)

Fig. 6. Processes and channels in the central server algorithm for mutual exclusion, with one server and two clients.

In the transformed CSME algorithm, correct processes exhibit the same behaviour under byzantine faults, as correct processes under crash faults in the original algorithm. The example here illustrates exactly that the translation directly inherits fault resilience properties of the original algorithm: CSME has safety but not liveness under crash and omission failures, so the transformed CSME algorithm also has safety but not liveness, but under the stronger fault model of byzantine failures and omission failures.

For instance, consider the fault where the server state machines try to serve tokens on any request, without waiting for the token to be first released by the client who currently holds it, violating safety. Model this byzantine fault as SM_0 has been exchanged with SM_{byz} (see Figure [9]), which serves a token to any request by the clients. Under this byzantine fault happens, none of the tokens can be MAC’ed. Thereby, any correct client process (Figure [5]) will get stuck in a loop between s_1 and s_1', when SM_c rejects the token as it has not been MAC’ed. This is behaviour is equivalent to the server process crashing: a token will never be accepted, and the client will be unable to enter the CS.

![Figure 8](image)

Fig. 8. The byzantine fault state machine SM_{byz} on the server process.

VI. CONCLUSION

We have given a 1-round, $n = f + 1$ transformation which translates byzantine faults to crashes and omission. The transformation relies on the integrity and confidentiality guarantees of a Trusted Execution Environment and requires remote attestation. Using this model, we have shown how, by the properties of a TEE, the transformation translates the byzantine faults into either crashes, unreliable channels or omission faults. This ultimately makes an argument for the use of TEEs as trusted subsystems, and for the validity of using TEEs as the subsystem running other small trusted subsystems, by use of the presented transformation.

As future work, it would be interesting to investigate (1) performance ramifications on this technique when applied to more complex distributed algorithms, and (2) possibly implement automated variants of this translation for protocol specification, e.g., Session types, SDL or UML-variants.

REFERENCES

Fig. 9. Server state machine in the central server algorithm for mutual exclusion, after it has been transformed to handle byzantine faults. Note that s_0 has been omitted for improved readability.