Combining Sequential and Aggregated Data for Churn Prediction in Casual Freemium Games

Jeppe Kristensen and Paolo Burelli

Abstract—In freemium games, the revenue from a player comes from the in-app purchases made and the advertisement to which that player is exposed. The longer a player is playing the game, the higher will be the chances that he or she will generate a revenue within the game. Within this scenario, it is extremely important to be able to detect promptly when a player is about to quit playing (churn) in order to react and attempt to retain the player within the game, thus prolonging his or her game lifetime. In this paper we investigate how to improve the current state-of-the-art in churn prediction by combining sequential and aggregate data using different neural network architectures. The results of the comparative analysis show that the combination of the two data types grants an improvement in the prediction accuracy over predictors based on either purely sequential or purely aggregated data.

I. INTRODUCTION

Games distributed using the freemium business model are freely downloadable and playable. The main revenue for the games comes from virtual goods that can be purchased by players. Furthermore, many games include some form of advertisement (e.g. banners) that serve as a supplementary revenue stream.

In the freemium industry, similarly to other service industries such as telecommunications, the revenue that a player can generate is proportional to the duration of the relationship between the player and the game/service. Therefore, increasing player retention (i.e. the duration of the period before a player quits) is commonly considered an effective strategy for increasing lifetime value [25].

This can be achieved in many ways, for example by producing more content for players in end-of-content situations or by adjusting problematic sections in the game that have shown to lead players to quit. Another possible way, as shown by Milosevic[20], is to identify the players that are likely about to stop to playing (i.e. churn) and target them with a personalised re-engagement initiative before they abandon the game.

This is challenging especially in non-contractual services such as freemium games. For contractual services, such as telephone subscriptions or newsletters, the churn event is well defined, and corresponds to the moment when the contract expires or is cancelled. However, for non-contractual services, such as games or retail, there is not an explicit event that signals that a user stops using the service.

The most common way, as described by Hadjii et al. [8], is to define the churn time as the time of the last event produced by a player before being inactive for a certain period of time. The duration of the inactivity may be very different depending on the context: for example, if a player does not return to a freemium game after one week it is much more likely that he/she has churned compared to not returning to a clothing retail shop after a week. Formalising churn is therefore industry and time scale dependent and has to take into account the applicability to the business.

Regardless of the churn definition, churn prediction is currently actively researched in number of different industries including telecommunication providers [24], [9], insurance companies [32], pharmaceutical companies [29] and games [16].

Within games, a number of techniques have been employed for churn prediction ranging from a number of supervised learning models based on aggregated player data [8], [27] to more recent works that try to leverage the dynamics for the player behaviour by using temporal data [15].

The main reason to use this kind of data is that the changes in the user behaviour leading up to the churn event are potentially more predictive than aggregated data. Such an assumption is supported by a number of other recent studies on churn prediction in other industries [7], [18], [30].

However, since these temporal based methods focus on the dynamics of the player behaviour in a limited time window, they are unable to capture the baseline behavioural patterns of the players and assume that a specific sequence of events determines churn independently of the player’s history and context.

Inspired by the work of Leontieva and Kuzovkin [17] on combining static and dynamic features for classification, in this paper we investigate how both sequential and historic aggregated data about the player behaviour can be used in churn prediction models. We evaluate a number of different architectures than can be used to combine the two types of data and we showcase the results in a comparative analysis based on data from a commercial free-to-play game.

II. RELATED WORK

While the concept of customer churn has been used in research for many years, the first examples of models for churn prediction start to be published in the late nineties and the early two thousands [19], [21]. In their works, Masand et al. and Mozer et al. employ artificial neural networks (with slightly different topologies and feature selection methods) to predict whether a customer will cancel their telephone subscription or not. Other methods, such as decision trees [14] **FIND OTHER REF**, support vector machines (SVM)
[31] and logistic regressions, have also been used extensively for churn prediction [13], [9], [6], with many variations detailed in [28].

All of the aforementioned methods for churn prediction attempt to assess the likelihood of a customer to churn based on their past behaviour expressed as a static summary of their state. These models assume that conditions leading to a churn event are based only on a given state of the customer rather than the way customer reached that given state. This means that, for instance, two players with the same average number of hour played per day would be classified in the same way event if one of the two is playing increasingly more while the other is progressively stopping.

To capture this type of differences, the inputs to the model need to incorporate a temporal dimension. This dimension can be either approximated (e.g. incorporating trend and standard deviation to the aggregated measure) or the model can process the inputs as time series. Castro and Tsuchi [4], for instance, analyse a number of methods to approximate the dynamics of the customer behaviour using different forms of frequency based representations.

If a feature can be arranged into time-sequential bins (e.g. hourly score, daily time played, monthly minutes on call), a more complete representation of the dynamic behaviour can be expressed in the form of a multi-variate time series, in which each sample of customer behaviour is described as a matrix with \(n_t \) rows and \(n_f \) columns, where \(n_t \) is the number of time steps/length of time-series and \(n_f \) is the number of features.

Prashanth et al. [24] present two different ways of processing time series using machine learning models. In their compararive study, in one of the case, they employ a long short-term memory (LSTM) [11] recurrent neural network using the data directly as time series.. In the other case they flatten the multivariate time-series matrix into a single vector with length \(n_t \cdot n_f \). By flattening the time-series, additional static features such as days since last usage and age can be appended to the vector. This vector is then used as input to non-sequential models such as a random forest classifier (RF) and a deep neural network.

A similar approach is used [14] where the static features (e.g. user age) are repeated for each month for the sequential models. While the performance of the different models is comparable, in both papers the RF outperformed the LSTM approach in terms of area under the curve (AUC). Another architecture that allows using sequential data is Hidden Markov Models which is used in [26].

One issue with framing churn prediction as a binary classification problem is that we do not know if/when a customer churns in the future. Because this information is hidden in the future the data is said to be right-censored. So, instead of framing the churn prediction as a binary classification problem methods such as survival analysis attempt to estimate the time to the next event of interest, for instance the return of the customer or cancellation of subscription.

Survival analysis is extensively used in engineering and economics, and popular methods include Cox Proportional Hazards Model [5] and Weibull Time To Event model [1]. Both methods have been also applied to churn prediction alone and in combination with other classifiers [12], [23], [18], [7].

A. Churn prediction in games

As well as in the other industries, within the games context, the two main approaches for churn prediction consist in either considering churn a classification problem or a survival analysis problem.

In [23], Perianez et al. interpret churn prediction as a survival analysis problem and focus on predicting churn for high-value players using a survival ensemble model. One of the first example of churn prediction as classification instead is the 2014 article by Hadiji et al. [8].

In this work, the authors describe two different forms of churn classification problems, in which the algorithm is either trained to detect whether the player is currently churned (P1) or whether the player will churn in a given future period of time (P2). Furthermore, they compare a number of classifiers based on aggregated gameplay statistics on both tasks on datasets from five different games, showing decision trees to be the most promising classifier.

In the same year, Runge et al. [27] present an article investigating how to predict churn for high value players in casual social games. In this paper, high value player are defined as the top 10% revenue-generating players, the churn definition is similar to the one labelled as P1 by Hadiji et al. [8], and the period of inactivity used to determine churn is 14 days.

A set of classifiers similar to [8] – with the addition of support vector machines – is evaluated on the dataset from two commercial games. For the feed forward neural network and logistic regression models it was found that 14 days of data prior to the churn event leads to the highest AUC.

Furthermore, to include a temporal component in the model, sequences of the daily number of logins are processed through a Hidden Markov Model (HMM). The output of the HMM is then used as an extra input feature. The authors, however, find the the inclusion of the temporal data using HMM degrades the results and hypothesise this might be due to data over-fitting.

A Hidden Markov Model is also used by Tamassia et al. [30] in comparison with other supervised learning classifiers based on aggregated data. The comparative study, conducted on data from the online game Destiny\(^1\), shows an advantage in processing the player behaviour as temporal data.

Kim et al [15] also investigate the predictive power of sequential data by evaluating an Lon-Short Term Memory (LSTM) Neural Network model in predicting churn for new players. In this work, the input data to the LSTM corresponds to a single time series containing the player score recorded every 10 minutes over 5 days; churn is defined as having no activity for 10 days after the first 5 days of observation.

\(^1\)https://www.destinythegame.com/d1
The results show that the LSTM model is able to outperform both a one-dimensional convolutional neural network on the same time series data and traditional learning models (RF, Gradient boosting, logistic regression) in terms of AUC. A similar result is achieved also by the LSTM based model by YOKOZUNADATA in the churn prediction competition article by Lee et al. [16].

Outside of the context of churn prediction in games, Leontjeva and Kuzovkin [17] show in their article that a hybrid LSTM network combining aggregated and time-series data is capable of better churn prediction than methods using only one of the two data types or classical ensemble methods.

These results combined with the aforementioned results by the YOKOZUNADATA LSTM based model suggest that there is potential for hybrid LSTM networks to leverage the combination of aggregated an time-series data. For this reason, in this article we present a comparative study of multiple hybrid architectures of LSTM to evaluate the best solution of the churn prediction problem.

III. METHODS

In this study, we compare a number of different hybrid LSTM architectures that combine time-series data with aggregated data against commonly employed LSTM neural network and random forest algorithms. In this section, we describe all the architectures, the algorithms and the settings employed, while in the next section, we describe the evaluation procedure. However, before describing the algorithms, it is first necessary to define what definition of churn will be used to label the data for the algorithms training and evaluation. This choice motivates what kind of data is relevant and can be used and that, in turn, will also determine what kind of architectures can be tested.

A. Churn definition

In freemium games the relationship between a player and the game is typically non-contractual in nature because the user can stop playing the game without any notice. In this situation there is not clear churn event, like a customer cancelling a subscription. For this reason, different research works have slightly different definition of churn; however, they all agree that a player can be considered churned if inactive for a long enough period of time [16].

In this work, we define a churn event as the last event generated by a player before a period of inactivity. The churn prediction task, similarly to the P2 definition in [8], consists in predicting whether churn event will occur in the next prediction period (e.g. the week following the prediction). Figure 1 show a number of examples of patterns of player activity and explains whether the players are considered churned or not according to our definition.

A second aspect of the churn classification task that we need to specify is at which players is this model targeted. Kim et al. [15] describe a model aimed at predicting churn for new players, while Runge et al. [27] and Perianez et al [23] focus on high-value players.

The churn definitions in this paper will follow the definitions in the thesis of Heiberg-Lürgensen and Petersen [10]. Here a churn date is defined for each player as a date followed by a given period of inactivity. If this churn date happens in the observation period or in a prediction offset window, the player is labelled as having churned. See Fig. 1 for a graphical overview.

Choosing an appropriate inactivity duration is a trade-off between finding actual churners versus players just taking a break. Even though playing sessions in mobile casual games are generally not very long and are somewhat independent of external factors, there are weekly playing patterns. Because of the weekly variations, a minimum requirement for inactivity duration should be at least one week, preferably two to ensure the absence is significant. The maximum duration is not clear cut and can be chosen from a business perspective. If the cost of reengaging churned players is low, a short inactivity period can be chosen, and vice-versa. In this paper the churn span period, i.e. duration of inactivity before being labelled as churner, is set to be 30 days.

In order to choose a reasonable observation period, a few aspects have to be considered. While full sequences of each player’s behaviour can be used, it is typically the behaviour leading up to churn event that we need to capture (e.g. getting stuck on a level). Additionally, given the fact that our churn definition also allows the churn to happen inside the observation period, a too long observation period will not tell us whether the player is about to churn soon or has already churned. It is therefore more viable to choose a limited observation period, which speeds up training of the sequential models. A similar argument can be made as for the churn period – a minimum of two weeks should be
used to capture weekly variations. An observation period of 14 days is therefore used.

Lastly, in order to create actionable predictions, a sliding prediction offset window from a given cut-off date (end of observation period) is used in which the churn can happen, similar to the P2 definition in [8]. This allows for preemptive actions to be taken when a player about to churn, instead of when he/she has already churned. The length of the prediction offset window is 7 days.

B. Models

In order to test whether adding static player data to the models improves the predictions, three models which only use the sequential data are used as a baseline.

Baseline models: The first two baseline models are a random forest classifier and a feed forward neural network. Because these models can not handle sequential data, the sequences are flattened into a single vector of length $10 \cdot 14 = 140$. The last baseline model consists of an LSTM, which can handle sequential data.

The output dimension of the LSTM is set to 16. Heuristically using a larger dimension did not improve the predictions and typically cause the model to overfit.

For creating and training the neural network models Keras\(^2\) is used. The random forest model and cross validation split from scikit-learn\(^3\) are also used.

Stacked LSTM: In [2] a stacked LSTM is used for churn prediction because such an architecture may extract features of different timescales [22].

In this paper four LSTMs with 32 units each are stacked upon each in a uni-directional way. The first three cells return sequences that are used as input for the subsequent cell, while the last layer returns a single activation which is then fed into the output layer.

LSTM Activation + Aux:
LSTM Predict + Dense Aux: [17]
LSTM Hidden State:
Static in LSTM:

IV. EVALUATION

The data used in this paper is from a casual mobile pop shooter game (see Fig. 2) and contains data samples from 2017-06-01 to 2019-03-04. However, because we can not know whether a player has churned until the inactivity period and prediction offset period have passed, the latest data is at least 30 + 7 = 37 days before the upper-bound date.

Two main distinctions are made: **historic data**, which summarises the characteristics of the player, and **temporal data**, which contain sequences of the player’s behaviour.

The temporal data consists of daily aggregations over the observation period. Features which describe activity level are typically very explanatory for churn but data which reflect skill level can also improve the predictions [15], [24]. In total 10 different features are chosen. Examples of these features are:

- **ACTIVITY**: 1 if player was active, otherwise 0
- **GAMESTARTED**: number of times game/app was opened
- **MISSIONSTARTED**: number of missions started
- **POINTSPERMISSION**: average points per mission
- **CONVERTED**: 1 if in-app purchase, otherwise 0

One record therefore has 10 features that each have daily entry for each of the last 14 days.

The historic data contain features to describe the characteristics of the players and are chosen based on heuristics of distinct player personas. These features include game-specific metrics such as amount of in-game currency used, game feature/event participation and booster usage, but also aggregations of general playing patterns (e.g. number of active days, minutes played per day and max level reached).

In total 22 features are used. This is expanded to 36 features using one-hot encoding categorical features.

As argued in the previous section, we use an observation period of 14 days, churn inactivity period of 30 days and a prediction offset window of 7 days. Defining churn this way yields a data set with 65% non-churners and 35% churners. While methods such as over- or undersampling or bootstrapping can be used to deal with class imbalances, ensuring an even class distribution does not guarantee a better result, especially in a churn setting and when using AUC as the evaluation metric [3]. The class imbalance is therefore small enough to not warrant any further action.

In order to gather a diverse data set, 8 sampling dates are chosen, which are each 18 days apart. This ensures data for every week day is included and that the observation periods do not overlap, which also allows sampling a player multiple times since it is assumed that the behaviour in each observation period is independent. Each date has approxi-

\(^{2}\)https://keras.io/
\(^{3}\)https://scikit-learn.org/stable/
TABLE I
MODEL RESULTS. NUMBER IN PARENTHESIS IS UNCERTAINTY ON LAST SIGNIFICANT DIGITS. ASTERISK (*) INDICATES DENSE LAYER BEFORE OUTPUT LAYER

<table>
<thead>
<tr>
<th>Model</th>
<th>AUC</th>
<th>F1 score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline RF</td>
<td>0.8651 (7)</td>
<td>0.7233 (15)</td>
<td>0.7949 (8)</td>
</tr>
<tr>
<td>Baseline NN</td>
<td>0.8666 (8)</td>
<td>0.7416 (17)</td>
<td>0.7953 (8)</td>
</tr>
<tr>
<td>Baseline LSTM</td>
<td>0.8773 (6)</td>
<td>0.7460 (20)</td>
<td>0.8059 (8)</td>
</tr>
<tr>
<td>NN + Aux*</td>
<td>0.8774 (6)</td>
<td>0.7465 (16)</td>
<td>0.8060 (7)</td>
</tr>
<tr>
<td>Stacked LSTM</td>
<td>0.8823 (7)</td>
<td>0.7509 (17)</td>
<td>0.8095 (8)</td>
</tr>
<tr>
<td>LSTM Activation + Aux</td>
<td>0.8824 (7)</td>
<td>0.7511 (15)</td>
<td>0.8095 (8)</td>
</tr>
<tr>
<td>LSTM Activation + Dense Aux*</td>
<td>0.8824 (7)</td>
<td>0.7507 (15)</td>
<td>0.8096 (8)</td>
</tr>
<tr>
<td>LSTM Activation + Dense Aux</td>
<td>0.8812 (7)</td>
<td>0.7489 (30)</td>
<td>0.8090 (10)</td>
</tr>
<tr>
<td>LSTM Hidden State</td>
<td>0.8870 (6)</td>
<td>0.7549 (15)</td>
<td>0.8128 (9)</td>
</tr>
<tr>
<td>Static in LSTM</td>
<td>0.8864 (7)</td>
<td>0.7563 (22)</td>
<td>0.8121 (9)</td>
</tr>
<tr>
<td>Static in LSTM + reg.</td>
<td>0.8870 (6)</td>
<td>0.7549 (15)</td>
<td>0.8128 (9)</td>
</tr>
</tbody>
</table>

VI. DISCUSSION

A. Binary classification

B. Player clustering

VII. CONCLUSION

REFERENCES

[29] Andrei SIMION-CONSTANTINESCU, Andrei Ionut DAMIAN, Nico-

