Empirically sampling Universal Dependencies

Natalie Schluter
IT University of Copenhagen
natschluter@itu.dk

Željko Agić
IT University of Copenhagen
zeag@itu.dk

Abstract

Universal Dependencies incur a high cost in computation for unbiased system development. We propose a 100% empirically chosen small subset of UD languages for efficient parsing system development. The technique used is based on measurements of model capacity globally. We show that the diversity of the resulting representative language set is superior to the requirements-based procedure.

1 Introduction

The development of natural language parsing systems has historically relied mainly on the central benchmarking dataset the Penn Treebank, as well as, to a lesser extent, a restrictive selection of very well-resourced languages like German and Chinese. This is problematic in that (1) the development of the technology risks being highly biased towards English and other resource-rich languages and their particular annotations for syntax, (2) the technology is inadequately benchmarked against a central group of languages that do not reflect the linguistic diversity required to adequately evaluate parsing systems with respect to language in general, and (3) the development of linguistic resources for unrepresented or poorly represented languages continues to be erroneously regarded as independent of the development of parsing systems, rather than integral to it.

The Universal Dependencies (UD) project (Nivre et al., 2016), has made great strides towards remedying this situation, by providing a single unified syntactic framework and related support for treebank development. The Universal Dependencies 1.4 resource now comprises 64 different treebanks covering 47 different languages (Nivre et al., 2017), and these numbers continue rising (v2.0 is set to add three languages and six treebanks). Parsing scores are now expected to be reported over all (modern) languages if not all treebanks as macroaverages of scores.

With this added diversity in treebanks and languages, and with a growing trend towards more computationally intensive learning algorithms that promise greater accuracy (such as neural networks), feasible parser development should be a rising concern. The availability of computational resources to develop—that is, to train across all interesting parameter/hyper-parameter settings—neural network models for 64 treebanks within a reasonable amount of time will counteract progress and shut out researchers without adequate computational resources. Moreover, there are environmental concerns for the inefficient use of power in the language-exhaustive development of these resources.

In this paper, we provide an entirely empirically motivated sub-sample of nine languages that can be used to develop monolingual parsing resources. The method uses delexicalised parser performance as a measure of similarity to construct a language similarity network. The network is naturally partitioned into language groups using a standard network clustering algorithm, which does not take the number of clusters as a parameter. The clusters are assumed to be diverse between them but coherent within them, with respect to their individual parser models. Using this technique, the mean and standard deviation of monolingual unlabeled accuracy scores for cluster representatives are found to be close to the true average and standard deviation. Future monolingual parsing systems can extrapolate parser performance over the entire set of languages, using only the set of nine representative languages listed in Table 1, which interestingly excludes English, Chinese, German, and Czech.

Efficient parser development for UD languages.

As an efficient alternative to exhaustive parameter search across 47 languages (or 64 treebanks), the
method we propose for the development of parsing resources is the following:

1. Development: develop parsing resources over only the nine languages in Table 1, optimising for average and standard deviation of unlabeled attachment across all languages.

2. Full testing: using the parameters discovered in step (1), report final average parsing scores and standard deviation over all UD languages.

In Section 3 we will outline the network analytic method for determining these nine representative languages empirically. First we discuss the only preceding approach to sampling UD languages for parser development; the approach is essentially non-empirical.

2 Related work

De Lhoneux and Nivre (2016) presented the first approach to language sampling from UD. They hand-picked a set of representative languages based on the following requirements:

1. Language family: include exactly one language from each of 8 coarse-grained language families, and no more than one from each of 15 fine-grained language families,

2. Morphological diversity: include at least one isolating, one morphologically rich and one inflecting language,

3. Treebank size and domain: ensure varied treebank size and domain,

4. Non-projectivity: include one language with a large amount of non-projective trees.

De Lhoneux and Nivre (2016) also considered the quality of treebanks and selected those languages that had as few annotation inconsistencies as possible. To ensure comparability, they also only consider treebanks with morphological features. They selected eight languages: Czech, Chinese, Finnish, English, Ancient Greek-PROIEL, Kazakh, Tamil, and Hebrew (cf. Table 2).

Our method differs in that it is entirely empirical, based on delexicalised parsing model similarity. Note that we also control for treebank size and exclude all morphological information.

3 Methodology

Delexicalised and projection-based parser approaches form the state-of-the-art for cross-lingual dependency parsing systems (Rasooli and Collins, 2015). Moreover, as shown by Agić et al. (2016) in upper-bound experiments, languages that are well-known to hold similar syntactic behaviours to one another, given that they come from the same language family, often generate better cross-lingual parsers for one another.

In our approach, we use delexicalised cross-lingual parsing scores to indicate parser generalisation capacity from one language to another. As such, these parsing scores can be seen as a sort of similarity score between languages. The more similar the POS sequences and associated syntactic structures are between languages, the more similar the optimal parsing model to parse them and the better the resultant delexicalised parsing scores between them. We call this similarity score, (optimal) model similarity.

We need a global account of model similarity between UD languages in order to select a naturally small representative subset of UD languages based on maximal coverage of model capacities.

Building the network. We first create a complete weighted directed network \(G = (V, E, w) \) to reflect model similarity. Each node in \(V \) represents a language from the UD dataset. We make arcs between all ordered pairs of nodes and decorate each arc with a weight as follows.

For a pair of languages \(L_1 \) and \(L_2 \) in our dataset, the arc \((L_1, L_2) \) is the unlabeled attachment score of the delexicalised parser trained on \(L_1 \) and evaluated on \(L_2 \). In Section 4, we give the precise parameters of these experiments. The network thus created can be seen to roughly model the flow of model similarity. In order to transform these edge weights into probabilities, which our clustering algorithm requires, we put the set of outgoing weights of a node through soft-max at temperature
Table 2: Language clusters, flow (centrality) and rankings, given temperature \(\tau = 0.025\). The most central languages for clusters are highlighted in blue. Red rows are the languages chosen by de Lhoneux and Nivre (2016). And the one purple language, Hebrew, was chosen by both methods.

\(\tau\), to be determined with respect to true parsing score aggregates later.

Our goal is to use the network to determine the language representatives of the UD dataset. To do this, we run the Infomap network clustering algorithm and then extract the most important languages from each cluster.

Clustering the network naturally. We need to now cluster the nodes of the network, given its structure, but without supplying the number of languages as a parameter, in order for the output modular structure be completely data-driven.

Infomap\(^1\) poses the problem of the clustering of nodes in a weighted directed network as the dual of the problem of minimising the description length of a random walker’s movements on a network. Intuitively, the description parts corresponding to various regions of the network may be compressed if the random walker spends longer of periods of time there.

The description of the network (the map equation) to be minimised is

\[
L(M) := q_x H(Q) + \sum_{i=1}^{m} p_C H(P_i)
\]

where \(q_x\) is the total given probability that the random walker enters some new cluster; \(H(Q)\) is entropy of the modular structure of the network; \(p_C\) is the probability that some node in cluster \(i\) is visited together with the probability of exiting cluster \(i\); and \(H(P_i)\) the entropy of the internal network structure in cluster \(i\).

The interested reader is referred to Rosvall et al. (2009) for more details. Infomap outputs three pieces of information that we need here: (1) The number of clusters, (2) the cluster that each node belongs to, and (3) the flow of each node in the network as determined by the random walk traversals. The larger the flow, the more central a node is within the network.

\(^1\)http://www.mapequation.org/code.html
Extracting representative languages. For each cluster, the most representative (central) language of the cluster is considered to be the node with the highest flow. In terms of the random walker in the network structure, these are the nodes that are traversed the most within their own clusters, meaning that correspond to languages with highest cluster-wide model similarity. In this sense, they can act as cluster representatives.

Calculating parsing score aggregates. In order to fit the modular structure of the network to the true parsing score aggregates we carry out an exhaustive search for optimal temperature within the interval \(t \in (0, 1] \) at increments of 0.005. The value \(\tau \) is optimal when

\[
|\mu - \mu_t| + |\sigma - \sigma_t|
\]

(1)
is minimised, where \(\mu \) and \(\sigma \) are the true macro-average of unlabeled parsing accuracy score mean and standard deviation, and \(\mu_t \) and \(\sigma_t \) are found in the same way except that parsing scores for non-cluster representatives are replaced by that of their unique cluster representatives. This corresponds to a weighted average and standard deviation of scores of cluster representatives based on cluster size.

4 Data preparation

We used UD v1.4 in our experiment. Out of the 64 treebanks it offers, we select the 47 canonical ones for the 47 languages represented in the release.

We filter out all but the following CoNLL-U features from the dataset: \(^2\) ID, UPOSTAG, HEAD, and DEPREL. Note that all our parsers are delexicalised following McDonald et al. (2013), that is, we exclude all lexical information and learn parses over POS sequences. We also filter out all multi-word tokens.

All training data is sub-sampled up to 10k sentences so as to avoid the bias towards the largest training sets. \(^3\) Then, we train our delexicalised models using the graph-based parser M\(^{ATE} \) with default settings (Bohnet, 2010).

All our parsers assign labels, but here we evaluate for UAS only. While LAS and UAS are the two most highly correlated dependency parsing metrics as per Plank et al. (2015), we find that the latter offers a bit more stability in constructing our similarity network. The aggregates over the 47 UD languages are: average UAS 74.45, and standard deviation UAS 9.4. An optimal language sampling method extrapolates to these aggregates as closely as possible.

5 Method visualisation and discussion

In Figure 1, on the left y-axis, we see the number of clusters generated in the network for varying temperature levels. On the right y-axis, we see the parsing score estimate over cluster representatives for varying temperatures. Equation (1) is minimised when \(\tau = 0.025 \) and this yields nine separate clusters for our model similarity network. The error for this temperature is 5.05 (with \(|\mu - \mu_t| = 3.5 \) and \(|\sigma - \sigma_t| = 1.55 \) as reported in Table 3.

Visualising the model similarity network. A visualisation of the network for \(\tau = 0.025 \) is given in Figure 2. We notice that, as expected, many of the clusters follow language family closely, but there are a number of outliers. For instance, Dutch is entirely alone in its cluster and Vietnamese is grouped together with the Romance languages.

Language centrality. In Table 2, we also see the rank of languages in terms of their centrality (flow score) in the network. The centrality score in our case provides an indication of model similarity between parsers trained on the language in ques-
tion and those of all other languages in the network. Surprisingly, English is ranked in 29th position, which provides simple empirical evidence that parsing resources developed mainly on and optimised for English risk suboptimal overall performance. Interestingly, other well-studied languages like Chinese and Arabic have considerably low rank both in the entire networks well as in their respective clusters.

In Table 2 we have also highlighted the representative languages chosen by de Lhoneux and Nivre (2016). We see that according to our empirical model, the languages they chose reflect neither the centrality nor the diversity intended.

Comparing extrapolations. The error for de Lhoneux and Nivre’s (2016) representative set is given in Table 4. We see that total error is lower in the parsing model similarity method we describe here. However, because of the combined optimisation of mean and standard deviation, our sample over-estimates general performance, while de Lhoneux and Nivre (2016)’s sample underestimates the reliability of the parser to achieve the mean performance.

6 Concluding remarks

We have shown the first 100% empirical method for determining a small representative sample of UD languages for parser development, and have proposed an associated methodology. In particular, for the Universal Dependencies v1.4, we given a specific subset of nine languages on which parsing systems can be developed efficiently.

The language clusters presented here have many similarities with well-studied language family distinctions, but also many differences. These clusters could provide an interesting technology-motivated study of syntactic similarity between languages.

References

Bernd Bohnet. 2010. Top accuracy and fast dependency parsing is not a contradiction. In Proceedings of the 23rd International Conference on Compute-