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ABSTRACT
The volume of metadata needed by a flash translation layer (FTL)
is proportional to the storage capacity of a flash device. Ideally,
this metadata should reside in the device’s integrated RAM to en-
able fast access. However, as flash devices scale to terabytes, the
necessary volume of metadata is exceeding the available integrated
RAM. Moreover, recovery time after power failure, which is pro-
portional to the size of the metadata, is becoming impractical. The
simplest solution is to persist more metadata in flash. The problem
is that updating metadata in flash increases the amount of internal
IOs thereby harming performance and device lifetime.

In this paper, we identify a key component of the metadata called
the Page Validity Bitmap (PVB) as the bottleneck. PVB is used
by the garbage-collectors of state-of-the-art FTLs to keep track of
which physical pages in the device are invalid. PVB constitutes
95% of the FTL’s RAM-resident metadata, and recovering PVB af-
ter power fails takes a significant proportion of the overall recovery
time. To solve this problem, we propose a page-associative FTL
called GeckoFTL, whose central innovation is replacing PVB with
a new data structure called Logarithmic Gecko. Logarithmic Gecko
is similar to an LSM-tree in that it first logs updates and later re-
organizes them to ensure fast and scalable access time. Relative to
the baseline of storing PVB in flash, Logarithmic Gecko enables
cheaper updates at the cost of slightly more expensive garbage-
collection queries. We show that this is a good trade-off because
(1) updates are intrinsically more frequent than garbage-collection
queries to page validity metadata, and (2) flash writes are more ex-
pensive than flash reads. We demonstrate analytically and empiri-
cally through simulation that GeckoFTL achieves a 95% reduction
in space requirements and at least a 51% reduction in recovery time
by storing page validity metadata in flash while keeping the contri-
bution to internal IO overheads 98% lower than the baseline.

1. INTRODUCTION
In recent years, storage devices based on NAND flash memory

such as eMMCs (embedded multimedia cards) and SSDs (solid
state drives) have become widely used for various applications.
Relative to hard disk drives, the benefits of NAND flash include
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Figure 1: RAM-resident FTL metadata and recovery time are in-
creasing unsustainably as device capacity grows.

superior read/write performance, shock-resistance, noiselessness,
and lower power consumption.

The Need for a Flash Translation Layer. Flash memory is
organized into thousands of flash blocks, each of which contains
hundreds of atomic storage units called pages. A critical property
of flash is that a page cannot be updated until the block that con-
tains it is erased. This characteristic creates the requirement for a
Flash Translation Layer (FTL). When a logical page is updated, its
new version is written on a free flash page, and the original flash
page is marked by the FTL as invalid. A lot of metadata is needed
to support this task. At the very least, this metadata includes a
translation table from logical to physical addresses (to keep track
of the whereabouts of live logical pages), as well as a bookkeep-
ing of which flash pages are invalid (to later reclaim them through
garbage-collection).

Costly Integrated RAM. A small RAM module is integrated
into flash devices to store FTL metadata. However, the amount of
this integrated RAM is limited due to its costs. In lower-end devices
like eMMCs, manufacturers use Static RAM (SRAM) due to its
power-efficiency [27]. Today, the cost of SRAM is approximately
$5 per megabyte. This limits the amount of metadata that can be
stored in integrated RAM to a few megabytes at most. Higher-
end flash devices like SSDs typically embed an additional Dynamic
RAM (DRAM) module comprising tens to hundreds of megabytes
[13]. DRAM is 2 orders of magnitude cheaper than SRAM, but
it also contributes to a device’s cost by requiring a more sophisti-
cated controller and circuitry. DRAM also increases runtime costs
because it is more power-hungry than SRAM.

Scalability Problem. The amount of metadata needed by state-
of-the-art FTLs is increasing in proportion to device capacity. This
increases their minimum integrated RAM requirement. It also in-
creases the time that it takes such FTLs to recover from power fail-
ure, because recovery time is proportional to the amount of meta-
data that has to be recovered.
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A natural solution is to persist metadata in flash. This frees up
integrated RAM and also reduces recovery time because flash is
non-volatile and so metadata is not lost when power fails. Indeed,
state-of-the-art FTLs already store the largest metadata structure,
the logical to physical translation table, in flash [22, 26], while
caching frequently accessed mapping entries in integrated RAM.
This approach has kept the integrated RAM requirement and re-
covery time acceptable until now.

However, Figure 1 shows that the integrated RAM requirement
and recovery time are increasing unsustainably as flash devices
continue to grow in capacity. The results are based on an imple-
mentation of LazyFTL [22], which is a state-of-the-art FTL (we
discuss the figure’s derivation in detail in Section 5). In particular,
the figure shows that integrated RAM reemerges as a dominant cost
for low-end devices at capacities of ≈ 128 GB, at which point 4
MB of SRAM are needed. Similarly, recovery time becomes im-
practical at capacities of ≈ 2 TB, at which point recovery takes
tens of seconds. Since there already exist 128 GB low-end1 and 2
TB high-end2 devices on the market, we are at the point in which
these scalability challenges need to be addressed.

In this paper, we identify a key components of the metadata
called the Page Validity Bitmap (PVB) as the bottleneck. PVB is
used by state-of-the-art FTLs to keep track of which physical pages
in the device are invalid. It is updated whenever a flash page be-
comes invalid, and it is queried by garbage-collection operations to
determine which flash pages on a victim block are still valid. PVB
accounts for 95% of all RAM-resident metadata and comprises a
significant proportion of recovery time.

The simplest solution is storing PVB in flash. The problem is that
PVB is frequently updated, so storing it in flash increases write-
amplification, the phenomena whereby several internal flash reads
and writes take place for every logical write issued by the applica-
tion. Write-amplification harms throughput. It also wears out the
device at a faster rate, since flash blocks have a limited lifetime with
respect to the number of times they have each been overwritten.

Flash Devices and Databases. With more and more database
systems and installations utilizing flash devices, it is increasingly
important to scale flash devices to sustain the growth of very large
database applications. At the same time, ensuring quick recovery
in the presence of failures as devices grow is an essential property
that very large databases require.

The Solution: GeckoFTL. To address these scalability chal-
lenges, we propose GeckoFTL. Its central innovation is storing
page validity metadata in flash using a new write-optimized data
structure called Logarithmic Gecko, where Gecko stands for Garbage-
Collector. Logarithmic Gecko is similar to an LSM-tree [32] in
that it logs updates and later reorganizes them in flash to ensure
fast and scalable access time. Relative to the baseline solution of
storing PVB in flash, Logarithmic Gecko enables cheaper updates
at the cost of slightly more expensive garbage-collection queries.
We show that this is a good trade-off because (1) updates are much
more frequent than garbage-collection queries to page validity meta-
data, and (2) flash writes are an order of magnitude more expen-
sive than flash reads. Thus, Logarithmic Gecko reduces the write-
amplification generated by a flash-resident PVB by 98% while still
enabling a 95% reduction in the integrated RAM requirement. Even
for devices that have enough integrated RAM to store PVB, we
show that using Logarithmic Gecko reduces recovery time by at
least 51% and improves performance as the freed integrated RAM
is used to cache a larger proportion of the translation table.

1E.g. Samsung KLMDGAWEBD-B031
2E.g. Samsung MZ-7KE2T0BW

Since GeckoFTL involves storing more metatadata in flash, a
natural question is how to garbage-collect flash-resident metadata.
The GeckoFTL garbage-collector answers this by accounting for
the different update frequencies of user data and metadata thereby
further significantly decreasing the overall write-amplification.

Finally, GeckoFTL removes a significant contention between re-
covery time and write-amplification. In state-of-the-art FTLs, the
flash-resident translation table is updated lazily and in bulk to amor-
tize the cost of updates. Meanwhile, so-called dirty mapping entries
for recently updated logical pages are cached in integrated RAM.
When power fails, these dirty entries are lost, and the time to re-
cover them is proportional to the number of dirty entries that were
in the cache when power failed. To bound recovery time, exist-
ing FTLs limit the number of dirty entries in the cache. However,
doing so also limits the amount by which updates to the flash-
resident translation table can be amortized, so write-amplification
increases. GeckoFTL presents a lazy recovery algorithm based on
checkpoints that removes this contention between recovery time
and write-amplification.

Contributions. Our contributions are as follows.
• We show that as flash devices scale, more metadata will need

to be stored in flash to keep the integrated RAM require-
ment and recovery time practical. However, storing metadata
naively in flash can significantly increase write-amplification
thereby compromising throughput and device lifetime.

• We present GeckoFTL, a page-associative FTL that enables
flash devices to scale while keeping the integrated RAM re-
quirement, recovery time, and write-amplification low.

• GeckoFTL uses a novel data structure called Logarithmic
Gecko to store page validity metadata in flash. Relative to
the baseline solution of storing PVB in flash, Logarithmic
Gecko generates 98% less write-amplification while still en-
abling a 95% reduction in the RAM requirement and at least
a 51% reduction in recovery time.

• GeckoFTL keeps garbage-collection overheads low by dif-
ferentiating between user data and flash-resident metadata.

• GeckoFTL includes a fast recovery algorithm for dirty cached
mapping entries that neither requires a battery nor involves a
contention between recovery time and write-amplification.

2. BACKGROUND
This section provides the necessary background on flash devices

and flash translation layers.
Flash Devices. Flash devices consist of multiple NAND chips,

each of which is organized into independent arrays of memory
cells. An array is a flash block, and a row within the array is a flash
page. A flash page typically stores 4-16 KB and a block typically
contains 64-256 pages.

Idiosyncrasies. Flash memory is subject to several idiosyn-
crasies. (1) The minimum granularity of reads and writes is a flash
page. (2) Before a flash page can be updated, the block that con-
tains it must be erased. (3) Blocks become increasingly prone to
random bit-shifts as a function of the number of erases and rewrites
they have endured. Thus, they have a limited lifetime. (4) Writes
must take place sequentially within a block to minimize bit-shifts
due to electronic side-effects [1]. (5) Page reads and writes have
asymmetric costs; they take tens and hundreds of microseconds to
execute respectively [30], and this discrepancy is increasing as an
industry trend [15]. Moreover, flash writes have an additional cost
in that they wear out the device.
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Figure 2: Overview of Logarithmic Gecko, and terms used throughout the paper.

FTL Tasks. A layer of firmware called the Flash Translation
Layer (FTL) manages these idiosyncrasies while exposing a simple
block device interface to applications. Its principle tasks are per-
forming out-of-place updates to avoid having to erase and rewrite
an entire flash block for every page update, and performing wear-
leveling to ensure that all blocks age at a similar rate.

Out-of-place updates have three important implications. (1) The
physical capacity of the device must be larger than the logical ca-
pacity exposed to the application in order to accommodate free and
invalid flash pages. This extra physical capacity is called over-
provisioned space. (2) A translation table from logical to physical
addresses is needed to keep track of the whereabouts of live logi-
cal pages. (3) A garbage-collector is needed to free space that is
occupied by invalid pages.

FTL Metadata. The FTL relies on metadata to achieve these
tasks. There is an integrated RAM module in flash devices whereon
some of this metadata can be stored to enable fast access. However
the amount of integrated RAM is limited by costs. Lower-end de-
vices rely on power-efficient yet expensive SRAM, which limits
capacity to few megabytes at most. Higher-end devices embed ad-
ditional tens to hundreds of megabytes of DRAM, but this increases
costs by requiring a more sophisticated controller and circuity as
well as higher power-consumption during runtime.

In addition to integrated RAM, every flash page has an adja-
cent spare area whereon metadata about the page can be stored.
The spare area is physically adjacent to its flash page and typically
smaller by a factor of 32 [1]. Since a spare area cannot be updated
before the underlying block is erased, it is used to store metadata
that is relevant for a flash page during one of the page’s life-cycles
(e.g. current logical address, timestamp of when it was last written,
error-correction code, etc).

Translation Table. The largest metadata structure in the FTL is
the translation table from logical to physical addresses. The trans-
lation table is an associative array, and the value at offset i is the
physical address of where logical page i currently resides in flash
[16]. Using the terms in Figure 2, a device with physical flash ca-
pacity of K ·B ·P bytes has a translation table of size 4 ·K ·B ·R
bytes3, which we denote as T T . For example, a 2 TB flash de-
vice described by the example values in Figure 2 has a 1.4 GB
translation table. how to implement the translation table under in-
tegrated RAM constraints has been at the heart of FTL design for
two decades [27].

3Each physical address is 4 bytes.

Early FTL designs tackled this problem by increasing the map-
ping granularity from a page to a block [27, 14, 9, 10, 21, 23, 33].
This allows using one mapping entry per block rather than per page
thereby reducing the size of the translation table by a factor of≈ B.
The problem with these block-associative FTLs is that continuously
reorganizing adjacent logical pages into the same flash block dra-
matically increases write-amplification, especially for update pat-
terns that are random in the logical address space.

On the other hand, state-of-the-art FTLs [22, 26, 24, 18] store a
page-associative translation table in flash while storing frequently
accessed mapping entries in an LRU cache in integrated RAM. The
flash pages that store the translation table are called translation
pages, and each of them contains a contiguous range of mapping
entries. Translation pages are also updated out-of-place, and so a
Global Mapping Directory (GMD) is needed in integrated RAM to
keep track of the most recent version of each translation page [22,
26]. The size of GMD is (4 · T T )/P. Thus, for the 2 TB device
described in Figure 2, GMD is 1.4 MB.

Recovering Dirty Entries. The flash-resident translation ta-
ble is updated lazily and in bulk to amortize the cost of updates
[16]. Meanwhile, dirty mapping entries for recently updated log-
ical pages are stored in the LRU cache in integrated RAM. When
power fails, these dirty mapping entries are lost and must be recov-
ered to keep track of live user data. The brute-force recovery ap-
proach is to scan the spare areas of all flash pages in the device and
create a dirty mapping entry for any page with user data that was
updated after the last time its corresponding translation page was
updated [23]. However, this approach is impractical for very large
flash devices as it involves K ·B spare area reads, which amount to
≈ 26 minutes4 for the example values in Figure 2. An alternative
is using a battery to synchronize all dirty mapping entries with the
flash-resident translation table before power runs out [22]. How-
ever, a battery increases manufacturing costs.

The problem of how to efficiently recover dirty mapping entries
without a battery is open, but the best known approach is to break it
into two subproblems [26]: (1) identifying and recreating mapping
entries for all recently updated logical pages (this should be done
quickly while ensuring that we do not miss any unsynchronized
logical pages), and (2) efficiently synchronizing these mapping en-
tries with the flash-resident translation table. If step (2) is done
before normal operation resumes, then it elongates recovery time
by min(C, T T

P ) page reads and writes. When C > T T
P , this amounts

4A spare area read takes 100/32≈ 3 µs since reading a page takes
≈ 100 µs [15] and a spare area is 32 times smaller than a page [1].



to≈ 7 minutes5 for the values in Figure 2. To bound recovery time,
existing approaches restrict the number of dirty entries in the cache
[26, 18]. The problem is that this also limits the amount by which
updates to the flash-resident translation table can be amortized, and
so write-amplification increases.

PVB. A page-associative FTL must maintain a Page Validity
Bitmap (PVB) to keep track of which flash pages are invalid. PVB
is structured such that bits that correspond to pages on the same
block are adjacent. Whenever a flash page is invalidated, the FTL
shifts the corresponding bit in PVB from 0 to 1. During a garbage-
collection operation, the FTL queries PVB to determine which flash
pages are still valid and need to be migrated before erasing the vic-
tim block. When the victim block is erased, all bits in PVB corre-
sponding to pages on the erased block are set to 0.

Scalability of PVB. PVB contains one bit for each flash page
in the device, and so its size is B·K

8 bytes. For the example val-
ues in Figure 2, PVB comprises 64 MB. Thus, the RAM require-
ment for PVB is roughly 45 times larger than the RAM require-
ments for GMD. This makes PVB the primary bottleneck in terms
of integrated RAM. Moreover, recovering PVB after failure takes
a long time as it requires scanning all translation pages (to identify
all valid flash pages). This takes T T

P page reads, which amount to
≈ 36 seconds for the example values in Figure 2. To bound the inte-
grated RAM requirement and recovery time for PVB, the simplest
solution is to store it in flash [24]. The problem is that this requires
updating one flash page of PVB for every application update. This
significantly increases write-amplification.

3. LOGARITHMIC GECKO
Overview. Logarithmic Gecko is a novel write-optimized data

structure that replaces PVB by indexing page validity metadata in
flash. Figure 2 gives a high-level overview of Logarithmic Gecko
as well as terms that we use throughout the paper.

The operations that Logarithmic Gecko supports at its interface
are updates and garbage-collection queries (henceforth called GC
queries). An update occurs when a flash page is invalidated. A GC
query occurs during a garbage-collection operation to determine
which flash pages are invalid in the victim block. The design goal
of Logarithmic Gecko is to support both operations while minimiz-
ing the internal IO overhead.

Buffered Updates. Logarithmic Gecko handles an update by
inserting the address of the invalidated flash page into a RAM-
resident buffer. The buffer’s size is one flash page, and we denote
V as the number of entries that fit into it. When the buffer fills up,
it is flushed to flash. Thus, V updates lead to one flash write. This
is cheaper than PVB, for which V updates lead to V flash reads and
writes.

Merge Operations. Logarithmic Gecko stores page validity meta-
data in substructures in flash called runs, which are organized into
L levels. When the buffer is flushed, it is inserted as a run into level
0. Runs are merged in the background as an LSM-tree [32] to keep
query time scalable. Whenever there are two runs in the same level,
they are merged. The two original runs are then discarded, and the
new run may be promoted to the next level based on its size. Thus,
a merge operation may continue recursively. As shown in Figure 2,
a run is placed in level i if it consists of between T i and T i+1− 1
flash pages, where T is a tuning parameter that controls a trade-
off between the costs of updates and GC queries. The logical and
physical details of merge operations are given in Section 3.1 and
Appendix A respectively.

5A page read and write take≈ 100 µs and≈ 1 ms respectively [15].
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Figure 3: A Gecko entry

Gecko Entries. Logarithmic Gecko stores addresses of invalid
flash pages in the buffer and in runs as key-value pairs called Gecko
entries (Figure 3). The key of a Gecko entry is a block ID, and the
Gecko entries in each run are sorted by this key. The value of a
Gecko entry is a bitmap of size B, where the bit at offset i indicates
if the physical page at offset i in the block is invalid.

A GC query for key X finds all Gecko entries with key X across
all runs and merges their bitmaps using the bitwise OR operator.
Similarly, when runs that contain two Gecko entries with the same
key are merged, the two Gecko entries are merged in the resulting
run by taking the OR product of their bitmaps. These operations
are described in detail in Section 3.1.

Run Directories. The RAM-resident run directories in Figure 2
serve as indexes for the flash-resident runs. They contain the phys-
ical location of each flash page in each run and the key range of
the Gecko entries that it contains. They speed up GC queries by
enabling them to only read the flash page in each run that contains
the relevant key range. A GC query always traverses the runs from
most recently created to least recently created.

Erase Flag. When a block is erased, all of its pages become
free. Thus, all Gecko entries for this block that were created before
the erase become obsolete and must be ignored during subsequent
GC queries. To accomplish this, a simple approach is to find every
Gecko entry with the block’s key and either erase it or mark it as
invalid. However, this would be a costly operation involving O(L)
flash reads and writes. To avoid this cost, we add one bit to each
Gecko entry called the erase flag (see Figure 3). When a block is
erased, we insert a Gecko entry for the block to the buffer and set
its erase flag to true. Moreover, we terminate a GC query when it
encounters a Gecko entry for the target block with an erase flag set
to true, because all Gecko entries on larger runs were created before
the last time the block was erased and are therefore obsolete.

Logarithmic Gecko removes obsolete entries during merge oper-
ations so that they do not consume space. When two runs that con-
tain Gecko entries with the same key are merged, the entry from the
older run is discarded if the entry from the newer run has its erase
flag set to true.

All in all, the erase flag allows handling a flash erase through
one insertion to the buffer rather than through O(L) flash reads and
writes. This makes the performance of Logarithmic Gecko largely
independent of the frequency of garbage-collection operations.

In Section 3.1, we describe the basic operations of Logarithmic
Gecko in more detail and in Section 3.2 we analyze their costs.
In Section 3.3, we introduce a technique called entry-partitioning
that makes the performance of Logarithmic Gecko independent of
the block size B. In Section 4, we describe how GeckoFTL and
Logarithmic Gecko interact. We show how to recover Logarithmic
Gecko’s run directories and buffer after failure in Appendices C.1
and C.2 respectively.

3.1 Operations
Updates. Logarithmic Gecko’s role is to keep track of invalid

flash pages. Whenever the FTL identifies an invalid page (as ex-
plained later in Section 4.1) it reports it to Logarithmic Gecko via
Algorithm 1. The algorithm checks if there is already a Gecko entry
in the buffer corresponding to the invalid page’s block and creates
one if not. It then sets to 1 the bit in the Gecko entry’s bitmap at
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the offset corresponding to the invalidated page in the block. If the
buffer fills up, it is flushed to level 0 in flash.

Erases. When a flash block X is erased, all of its pages become
free, and so we must ensure that all Gecko entries created before
the block was erased are ignored in subsequent GC queries. This is
done by invoking Algorithm 2, which takes as an input a block ID
and inserts a Gecko entry with a corresponding key into the buffer
with a blank bitmap and the erase flag set to 1.

Merging Runs. When we merge two runs, they may contain
Gecko entries corresponding to the same flash block. We denote
this as a collision. Collisions are easy to detect during a merge
because the runs are sorted by key and we merge them through
linear scans. Algorithm 3 is called to handle a collision. If the
erase flag of the entry from the more recently created run is set to 1,
it means that the other entry was created before the last time the
corresponding block was erased, and so it is discarded. Otherwise,
the bitmaps for the two entries are merged using the bitwise OR
operator to save space.

Figure 4 shows an example of a merge operation. In the example,
the buffer has filled up and is merged with the run at level 0. Two
collisions occur during this merge for the entries with keys X and
Q. For key X , the older entry is discarded since the newer entry’s
erase flag is set to 1. For key Q, the entries are merged using the
bitwise OR operator. The resulting run consists of two flash pages.
In this example, T is 2 so the new run is promoted to level 1.

Input: physical_address pa, logical_address la
1 block_id = pa.block_id;
2 page_offset = pa.page_offset;
3 if !buffer.contains(block_id) then
4 buffer.insert(block_id);
5 buffer[block_id].bitmap = blank bitmap;
6 buffer[block_id].erase_flag = 0;

7 buffer[block_id].bitmap[page_offset] = 1;
8 if buffer is full then
9 flush(buffer) ;

Algorithm 1: Insert an invalid page address into the buffer.

Input: block_id
1 if buffer.contains(block_id) = false then
2 buffer.insert(block_id);

3 buffer[block_id].bitmap = blank bitmap;
4 buffer[block_id].erase_flag = 1;
5 if buffer is full then
6 flush(buffer) ;

Algorithm 2: Insert the address of an erased block to the buffer.

GC Queries. A garbage-collection operation issues a GC query
to determine which flash pages on the victim block are valid and
must be migrated before erasing the victim. A GC query first
searches the buffer and then the runs from smallest to largest for
Gecko entries with keys matching the victim block’s ID. It uses the
run directories to only perform one flash read per run. Thus, its cost
is O(L) flash reads. It finishes once all runs have been searched or
when it encounters an entry with an erase flag set to 1.

Figure 5 shows an example GC query for key 40. It first looks
in the buffer and finds the first matching entry. It then probes the
run directories for the location of the first run (at level 0), reads it
from flash, and finds the second matching entry. It then probes the
run directory for level 1, identifies flash page K as containing keys
that overlap the target ID, reads it, and finds the third matching
entry. Since this matching entry’s erase flag is set to 1, the GC
query terminates. Although there may be Gecko entries with key
40 in runs at higher levels, these entries must have been created
before the last time that block 40 was erased, so they are ignored.
The bitmaps of all found Gecko entries are finally merged using the
bitwise OR operator.

Input: newEntry, oldEntry
1 if newEntry.erase_flag = 1 then
2 return newEntry ;
3 else
4 create resultEntry;
5 resultEntry.bitmap = newEntry.bitmap OR oldEntry.bitmap;
6 resultEntry.erase_flag = oldEntry.erase_flag;
7 return resultEntry ;

Algorithm 3: Handling collisions during merge operations.

3.2 Analysis
The number of levels L in Logarithmic Gecko is dlogT (

K
V ))e,

where K is the number of flash blocks in the device and V is the
number of Gecko entries that fit into one flash page. The reason
is that the largest run consists of K/V pages, and subsequent runs
have exponentially decreasing sizes, each by a factor of T . This
gives way to a logarithmic number of levels.

Cost per Update. An update to Logarithmic Gecko involves
inserting a Gecko entry to the buffer. This entry is later rewrit-
ten multiple times during merge operations. Although the over-
all IO cost of an update is indirect, we can capture it as follows.
During a merge operation, each flash write copies V entries to the
new run. The cost per entry per merge is thus O( 1

V ) of a flash
read and write. Now, if an entry does not become obsolete earlier,
then it participates on average in O(T ) merges per level and goes



Technique Update Garbage-Collection Operation Integrated RAM
flash reads flash writes flash reads flash writes

RAM-resident PVB 0 0 0 0 O(B ·K)

Flash-resident PVB 1 1 1 0 O(B·K
P )

Logarithmic Gecko O( T
V logT (

K
V )) O( T

V logT (
K
V )) O(logT (

K
V )) O( T

V logT (
K
V )) O(B·K

P )

Table 1: Relative to a flash-resident PVB, Logarithmic Gecko offers cheaper updates and more expensive GC queries.

through O(logT (
K
V )) levels before getting merged with the largest

run. Thus, the amortized cost for an update is O( T
V · logT (

K
V )) flash

reads and writes. Typically, V is much larger than T · logT (
K
V ).

Thus, the cost of an update is sub-constant (lower than 1); each
update costs a small fraction of a flash read and a flash write.

Cost per Garbage-Collection Operation. A garbage-collection
operation issues a GC query to Logarithmic gecko. A GC query
traverses the levels from smallest to largest, issuing one flash read
per level. The cost is O(logT (

K
V )) flash reads.

A garbage-collection operation also inserts one entry to the buffer
with the erase flag set to true. As we just saw, the cost of inserting
a Gecko entry to the buffer is O( T

V logT (
K
V )) flash reads and writes.

Tuning. The parameter T controls a trade-off between the costs
of updates and GC queries. The minimum value of T is 2. As T
increases, there are less levels and so GC queries become cheaper.
However, increasing T also increases the cost of updates, as each
entry participates in O(T ) merge operations per level. In Section 5,
we show how to tune T so as to minimize the overall IO overhead.

Comparison to PVB. Table 1 compares the IO costs and inte-
grated RAM requirement of Logarithmic Gecko, a flash-resident
PVB, and a RAM-resident PVB. The RAM-resident PVB has no
IO overheads, but its integrated RAM requirement is high. The
flash-resident PVB has a similar integrated RAM requirement to
Logarithmic Gecko, but it is different in terms of IO costs. With a
flash-resident PVB, the cost of an update is one flash read and one
flash write while the cost of a GC query is one flash read. Com-
pared to a flash-resident PVB, the cost of an update in Logarithmic
Gecko is cheaper while the the cost of a GC query is more expen-
sive. In Section 5, we show that this is a good trade-off because (1)
flash reads are cheaper than flash writes, and (2) GC queries happen
infrequently relative to updates to page validity metadata.

Space-Amplification. The existence of invalid entries leads to
space-amplification in Logarithmic Gecko. However, because the
largest run contains one of each entry, and since the runs at smaller
levels are exponentially smaller, space-amplification is never be-
yond a factor of ≈ 2 for any value of T .

3.3 Entry-Partitioning
When a Gecko entry is inserted into the buffer, is contains a lot

of space yet little information (i.e. most of the bits are set to 0).
This waste of space limits V , the number of Gecko entries that fit
into the buffer. As shown in Table 1, V is inversely proportional
to the update cost in Logarithmic Gecko. We now show how to
decrease the update cost by decreasing the amount of buffer space
that is wasted.

Under the current design, V ≈ P·8
key+B , where P is the size of a

flash page in bytes, key is the size of a key of a Gecko entry in bits,
and B is the number of page validity bits in a Gecko entry. Thus,
the value of V depends on the value of B. In fact, since B tends
to increase as flash devices grow in capacity, the dependency of V
on B is a scalability problem. Our goal is to maximize V while
eliminating its dependence on B.

X 

0 X 

1 X 

2 X 

3 X 

Bitmap.  
B bits 

B/4  
bits 

Erase 
flag 

Block ID 

sub-key 

Erase 
flag 

Figure 6: Entry-partitioning with a factor of 4.

To do so, we introduce entry-partitioning. The idea is to parti-
tion a Gecko entry into S equal sub-entries, where S is the partition-
ing factor. Figure 6 shows an example of entry-partitioning where
S = 4. As shown, each of the partitioned sub-entries has an addi-
tional sub-key component to indicate which part of original bitmap
it corresponds to. Thus, during an update to Logarithmic Gecko,
we only need to insert one sub-entry for the part of the original
bitmap that was updated.

An interesting question is how to tune S. To do so, it helps not-
ing that the overall size of Logarithmic gecko in flash is O(B ·K +
S · key ·K) bits, where O(B ·K) is for the page validity bits and
O(S · key ·K) is for the keys. One extreme is setting S to 1. This
amounts to no entry-partitioning. In this case, B ·K is typically
larger than key ·K, and so the size of Logarithmic Gecko in flash
simplifies to O(B ·K) bits. The other extreme is setting S to B. In
this case, the size of Logarithmic Gecko becomes dominated by the
keys and simplifies to O(B ·K · key) bits. Thus, the space that Log-
arithmic Gecko takes up is amplified by a factor of O(key). Space-
amplification is harmful because it increases the number of levels
in Logarithmic Gecko thereby increasing the costs of both updates
and GC queries. It also increases the size of the run directories in
integrated RAM. Thus, space-amplification should be bounded.

A good balance is setting S = B
key . This removes the depen-

dence of V on B while restricting the size of Logarithmic Gecko
to O(B ·K) bits. For instance, if key is 32 bits and B is 128, than S
is set to 4 so that each sub-entry contains a 32 bits key and a 32 bits
chunk of the bitmap.

4. GECKO FTL
We now present GeckoFTL, a novel FTL whose design goal is to

keep the integrated RAM requirement and recovery time practical
for very large flash devices without paying a high price in terms
of write-amplification. To do so, GeckoFTL makes three innova-
tions. (1) It offloads page validity metadata to flash using Logarith-
mic Gecko. (2) It uses a garbage-collection scheme that prevents
an increase in write-amplification as more metadata is offloaded
to flash. (3) It uses a recovery approach for dirty mapping entries
that does not exhibit a contention between recovery time and write-
amplification.
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Figure 7: Overview of GeckoFTL.

The structure of the translation table in GeckoFTL is orthogonal
to its core design. Thus, we use the simplest and original page-
associative flash-resident translation table design first proposed in
DFTL [22]: the translation table is stored in flash and a Global
Mapping Directory (GMD) in integrated RAM keeps track of the
physical location of every translation page. A RAM-resident LRU
cache stores recently accessed mapping entries. The overall archi-
tecture of GeckoFTL is shown in Figure 7.

We now describe this translation scheme as well as how Geck-
oFTL lays out user data and metadata in flash. In Section 4.1,
we describe how GeckoFTL and Logarithmic Gecko interact. In
Sections 4.2 and 4.3, we describe the novel garbage-collection and
recovery schemes respectively. We discuss wear-leveling in Ap-
pendix D.

Serving Application Reads. Figure 7 illustrates an example
where the application issues a read to logical page 1500. To serve
it, GeckoFTL first checks if the mapping entry is cached. If not, it
finds the appropriate translation page in GMD, reads this transla-
tion page from flash, finds the mapping entry for logical page 1500
within the translation page, inserts this mapping entry into the LRU
cache, and finally reads the user page.

Serving Application Writes. Now suppose the application up-
dates logical page 1500. GeckoFTL immediately writes the new
version of page 1500 on a free flash page Z. It then updates the
cached physical address for the mapping entry to Z and marks the
mapping entry as dirty using a bit flag.

Synchronization Operations. When the LRU cache fills up, the
least-recently-used mapping entry is evicted. If this entry is dirty,
a synchronization operation takes place. A synchronization opera-
tion identifies all dirty mapping entires in the LRU cache that be-
long to the same translation page as the evicted entry6. GeckoFTL
then reads the translation page, updates the dirty cached mapping
entries that it found on the translation page, and writes the updated
translation page on a free page in flash. It then updates GMD to
point to the updated translation page, and marks the cached dirty
mapping entries that were included in the operation as clean.

Physical Layout. The flash pages in GeckoFTL have three types:
(1) user pages, which contain user data, (2) translation pages, which
store the translation table, and (3) Gecko pages, which store Loga-
rithmic Gecko’s runs. GeckoFTL separates these pages into differ-
ent groups of flash blocks based on their types. This gives rise to 3
block groups, as illustrated in Figure 8. Each group has an active
block to which updates are made in an append-only manner. When
an active block runs out of free space, GeckoFTL allocates to the

6The LRU cache is implemented as a tree to enable efficient range
queries for mapping entries on a particular translation page.
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Figure 8: Lifecycle of a flash block.

group a new active block from the pool of free blocks. The overall
fraction of translation and Gecko blocks in a device is in the order
of 0.1% and 0.01% respectively 7. Thus, metadata consumes very
little space in flash.

Garbage-Collection Operations. When the number of blocks
with free space drops below a threshold, garbage-collection is trig-
gered. The garbage-collection mechanism uses the Blocks Validity
Counter (BVC) in Figure 7 to choose a victim. BVC keeps track of
the number of valid pages in each flash block in the device. Once
a victim is chosen, GeckoFTL issues a GC query to Logarithmic
Gecko to identify which pages are still valid in the victim. These
pages are migrated to a block with free space, and the victim block
is erased. Note that garbage-collection migrations are treated like
application writes; a dirty cached mapping entry is created for ev-
ery page that is migrated.

4.1 Invalid Page Identification
We now show how Logarithmic Gecko efficiently identifies in-

valid pages during runtime. To do so, we denote a mapping entry
as e = (logical_address, physical_address). As we just saw, when
a logical page X is updated, a mapping entry ecache = (X ,Z) is
created for it and inserted into the cache. This entry is marked as
dirty because the corresponding mapping entry e f lash = (X ,Y ) in
flash is now pointing to a before-image Y . Our goal is to guarantee
that the invalid flash page Y is eventually identified and reported
to Logarithmic Gecko. The greedy solution is to immediately read
the translation page that contains e f lash. However, this would cost
one extra flash read for every application write. We should avoid
this extra cost. To do so, we augment synchronization operations
to also lazily identify invalid pages.

UIP Flag and Synchronization Operations. We add one bit
to each cached mapping entry called the Unidentified Invalid Page
(UIP) flag. The UIP flag for entry ecache = (X ,Z) is set to true
if there is a flash page Y that contains a before-image of logical
page X that has still not been identified and reported to Logarithmic
Gecko as invalid. During a synchronization operation, before we
replace e f lash = (X ,Y ) by ecache = (X ,Z), we report Y as invalid to
Logarithmic Gecko if the UIP flag of ecache is set to true.

Application Reads. When an application read fetches a map-
ping entry from the flash-resident translation table and inserts it

7 Assuming X mapping entries fit into each translation page, then
the fraction of translation pages in the device is≈ 1/X . In practice,
X is in the order of thousands, so the fraction of translation pages is
in the order of 0.1%. Similarly, each Gecko page contains tens of
thousands of page validity bits, and so the fraction of Gecko pages
is in the order of 0.01%.



into the cache, we set both the dirty and the UIP flags for the new
cached entry to false.

Application Writes. When a logical page X is updated by the
application, we manage the cache as follows. If the mapping en-
try for page X is not already cached, we create a cached mapping
entry for it and set both its dirty and UIP flags to true. On the
other hand, if a mapping entry for page X is already cached, then
we immediately report the old physical page as invalid to Loga-
rithmic Gecko. We then set the entry’s dirty flag to true (if it is
not already) and leave the entry’s UIP flag as it is (as there may
be another before-image of logical page X that has still not been
identified and reported to Logarithmic Gecko).

Garbage-Collection. Since invalid pages are identified lazily, it
is possible that there are still unidentified invalid pages (UIPs) on a
block when it is garbage-collected. These UIPs must be identified
to avoid migrating invalid pages (doing so would overwrite valid
pages). To identify such UIPs, we use the following policy. For
every physical page Y in a victim block that Logarithmic Gecko
reports as valid, we read the spare area of page Y and identify the
logical page X last written on it. We then look up logical address
X in the LRU cache. If there is a cached mapping entry for logical
page X with the UIP flag set to true and with a different physical
address than Y, then we know that the physical page Y is a UIP and
do not migrate it as a part of the garbage-collection operation.

4.2 Garbage-Collection Victim-Selection
Since GeckoFTL stores metadata in flash, an interesting question

is how metadata should be garbage-collected. Existing page-assoc-
iative FTLs use a greedy victim-selection policy, which always tar-
gets the block with the least number of live pages in the device.
The intuition is that this should minimize the number of garbage-
collection migrations thereby minimizing their IO overhead. How-
ever, this intuition is wrong.

Flash-resident metadata is typically updated 2-3 orders of mag-
nitude more frequently than user data. The key insight is that we
should wait before garbage-collecting a block that contains fre-
quently updated (hot) data because its valid physical pages will
soon be invalidated anyways.

The question is by how much to defer garbage-collecting Gecko
blocks and translation blocks. Our answer is to avoid garbage-
collecting them altogether. Instead, GeckoFTL waits until all pages
in a Gecko block or a translation block have become invalid and
only then erases the block. In Section 5, we show that this policy
significantly reduces garbage-collection overheads.

4.3 Recovery from Power Failure
When power fails, GeckoFTL must recover all RAM-resident

data structures shown in Figure 7. The complete and detailed re-
covery algorithm is given in Appendix C. In this section, we focus
on the bottleneck: recovering dirty cached mapping entries. We
show how to quickly identify and recreate mapping entries for all
non-synchronized pages. We also make the case for deferring syn-
chronizing the recreated mapping entries with the translation table
until after normal operation resumes.

Approach. The cache’s capacity is C mapping entries. Thus,
there are at most C dirty mapping entries when power fails. Our
approach is therefore to recreate mapping entries for the C unique
logical pages that were most recently updated. No mapping entry
that was dirty before power failed can be outside of this set. To
do this, we identify the most recently written user blocks based on
timestamps in their spare areas. This takes K spare area reads, one
per flash block. We then read the spare areas of these blocks’ pages
in reverse order starting from the most recently written block. For

each new logical address that we encounter, we create a cached
mapping entry.

Checkpoints. If the number of frequently updated logical pages
before power fails is smaller than C, then some dirty entries can
linger by the end of the LRU queue without ever getting evicted and
synchronized. If so, the backwards scan must reach far back to find
them. To bound the length of the backwards scan, we use runtime
checkpoints. A checkpoint is taken every period of C inserts or
updates to the LRU cache, and it synchronizes any mapping entry
that has been in the LRU cache since the last checkpoint without
getting updated itself. The checkpoints bound the backwards scan
to 2 ·C spare area reads, as any logical page updated before the
second last checkpoint must have been synchronized or updated
again recently enough to be captured by the backwards scan.

In terms of implementation, a checkpoint inserts a dummy entry
into the LRU cache called the checkpoint symbol. It then scans
the cache’s LRU queue from the end backwards until it finds and
removes the symbol inserted by the last checkpoint. It synchronizes
all dirty mapping entries encountered along the way.

Deferred Synchronization. Once GeckoFTL finishes recreat-
ing mapping entries for the most recently updated C unique logical
pages, it still does not know which of these mapping entries are
dirty. A natural approach is to access the flash-resident translation
table to check. However, the cost would be at most T T

P page reads,
which amount to ≈ 36 seconds for the example values in Figure 2.
Instead, GeckoFTL sets the dirty and UIP flags for all cached en-
tries to true and corrects mistakes after normal operation resumes
during regular synchronization operations. This is described in
detail in Appendix C.3. Thus, synchronizing the recreated map-
ping entries does not elongate recovery time, and the penalty is
amortized through synchronization operations that would be taking
place anyways during normal operation.

5. EVALUATION
In this section, we present a detailed evaluation of GeckoFTL.

We first evaluate Logarithmic Gecko in isolation to show how to
optimally tune it and to demonstrate that its performance scales
well with respect to different architectural parameters of a flash
device. We then compare GeckoFTL to existing FTLs and show
that it keeps the integrated RAM requirement and recovery time
practical for very large flash devices while paying a lower price in
terms of write-amplification.

Infrastructure: The FTL in commercial devices is an opaque
black box because manufacturers complete with each other based
on its design. Although it is possible to benchmark flash devices
to determine the efficiency of different IO patterns [6, 7], it is im-
possible to disentangle the impact of different FTL components on
performance let alone modify them. A part of the difficulty is that
flash has no moving parts, so reverse-engineering a flash translation
layer is impossible because there is nothing to observe (unlike for
disks [2]). As a result, all work that we are aware of in this area
relies on simulations [3, 22, 26, 24, 18]. Thus, we implemented
GekoFTL and a few competitor FTLs within the flash simulation
framework EagleTree [11]. This enables capturing the performance
characteristics of different FTL components precisely.

Default Configuration: Unless otherwise stated, we simulate a
2 TB device with 4 KB flash pages and 128 pages per block. This
is a standard architectural configuration [15, 3]. We set the ratio
between the logical and the physical address spaces (a measure of
over-provisioning) to 70%, which is common in practice [35]. We
set the size of the LRU cache to 4 MB and assume that 8 bytes
are needed per cached entry. Thus, the LRU cache accommodates
C = 219 mapping entries. We denote the latency ratio between a
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Figure 9: Logarithmic Gecko with a size ratio T of 2 minimizes
write-amplification.

page write to a page read as δ and set it to 10, which is typical
in practice [15]. We demonstrate throughout the evaluation how
the performance of GeckoFTL scales with respect to all of these
architectural parameters.

Metrics: We use three metrics to evaluate GeckoFTL: integrated
RAM requirement, recovery time, and write-amplification. We
measure write-amplification as WA=(i_writes+ i_reads/δ) where
i_writes and i_reads are the numbers of internal flash writes and
flash reads that take place on average with respect to every logical
page update issued by the application. Since write-amplification
captures the impact on performance of garbage-collection and of
updates to flash-resident metadata, it encompasses the entire im-
pact of GeckoFTL’s core design on performance. In terms of ap-
plication reads, GeckoFTL performs the same as state-of-the-art
FTLs [22, 26] because the structure of the translation table is the
same. Thus, we do not consider application reads in the experi-
mental workload. Nevertheless, our results are easily generalizable
to a mixed workload. In particular, the slowdown factor for ap-
plication reads throughput is the following expression, where RA
is read-amplification caused by reading translation pages to fetch
mapping entries, and RW is the ratio between application reads to
application writes in the mixed workload.

slowdown factor =
1

RA ·RW +WA ·δ

5.1 Logarithmic Gecko vs. Flash-Based PVB
We first compare Logarithmic Gecko to a flash-resident PVB.

Relative to this baseline, Logarithmic Gecko optimizes updates over
GC queries because updates are at the critical path of performance.
We now evaluate the impact of this design decision on write-amplif-
ication. We also show how Logarithmic Gecko performs under dif-
ferent tunings of the size ratio parameter T .

We evaluate Logarithmic Gecko under an adversarial application
workload, which consists of uniformly randomly distributed page
updates. Under this workload, Logarithmic Gecko’s buffer absorbs
as few updates as possible. This maximizes the overhead of merge
operations. On the other hand, PVB is workload-insensitive; its IO
overhead only depends on the number of page updates rather than
the update pattern. Thus, evaluating PVB under this workload is
fair.

The top part of Figure 9 shows the average number of internal
flash reads and writes caused by updates and GC queries to PVB
and Logarithmic Gecko over intervals of 10000 application writes.
The bottom part of Figure 9 expresses these overheads in terms of

write-amplification. Note that at this point, we do not capture the
entire write-amplification in the device, which would also include
garbage-collection and synchronization operations. We omit these
overheads for now to enable an apples to apples comparison be-
tween Logarithmic Gecko and a flash-resident PVB.

As shown in Figure 9, PVB generates high write-amplification
because each application update triggers one flash read and one
flash write to PVB. Thus, PVB accumulates an overhead of 10000
flash reads and writes per interval. This results in a write-amplif-
ication of ≈ 1 + 1

δ
, which in this case is ≈ 1.1. Note that each

garbage-collection operation also triggers one GC query to PVB,
which involves one flash read. However, since garbage-collection
operation are infrequent and since flash reads are inexpensive, the
overhead of GC queries to PVB is negligible.

Logarithmic Gecko outperforms PVB under all tunings of the
size ratio T . The reason is that the cost of updates is significantly
reduced through buffering, and the time to execute GC queries re-
mains fast and scalable because the number of runs is bounded and
we only issue one IO per run during a GC query.

Finally, we observe that Logarithmic Gecko performs best when
the size ratio T is set to 2. Recall that T controls a trade-off be-
tween the IO costs of updates and GC queries; as T increases there
are less levels so GC queries become cheaper, but merge opera-
tions occur more frequently so updates become more expensive.
Since 2 is the lowest value that T can take, the experiment shows
that optimizing for updates as much as possible minimizes write-
amplification. The reasons are that (1) updates are 1-2 orders of
magnitude more frequent than GC queries, and (2) flash writes are
an order of magnitude more expensive than flash reads. For all
subsequent experiments, we set T to 2.

5.2 Logarithmic Gecko Scaling
We now show how Logarithmic Gecko’s performance scales with

respect to different architectural parameters of a flash device: the
block size B, the number of blocks K, and the level of over-provis-
ioning R.

Block Size and Entry-Partitioning. As the capacity of flash
devices grows, the number of pages per flash block B tends to in-
crease. In Section 3.3, we saw that this increases the size of a Gecko
entry thereby reducing V , the number of entries that fit into the
buffer, which in turn increases the cost of updates. To counter this
trend, we proposed a technique called entry-partitioning to make
the buffer size V independent of B (thereby also making the cost of
updates independent of B). The idea is to partition a Gecko entry
into S sub-entries, and to only insert to the buffer the sub-entry that
corresponds to the part of the block that contains the page that was
invalidated.

Figure 10 shows the impact of entry-partitioning on write-amplifi-
cation as we vary the block size and the entry-partitioning fac-
tor. With no entry-partitioning (i.e. S = 1), write-amplification in-
creases proportionally to the block size, whereas a moderate amount
of entry-partitioning makes write-amplification independent of the
block size. As the partitioning factor continues to increase, how-
ever, write-amplification begins to increase. The reason is that the
keys of the partitioned entries lead to space-amplification. This in-
creases the number of levels in Logarithmic Gecko thereby also
increasing the cost of updates and GC queries. To choose the op-
timal value of S, the analytical technique at the end of Section 3.3
can be used. Overall, well-tuned entry-partitioning makes write-
amplification independent of the block size.

Capacity. Logarithmic Gecko’s goal is to enable flash devices
to scale to multiple terabytes without incurring a significant per-
formance degradation. However, as device capacity increases, the



Figure 10: Entry-partitioning makes write-
amplification independent of block size B.

Figure 11: Logarithmic Gecko scales well
for terabyte flash devices.

Figure 12: Over-provisioning level does not
significantly affect write-amplification.

number of blocks K that are indexed in Logarithmic Gecko in-
creases. This increases the number of levels, which, as we see
in Table 1, increases the costs of updates and GC queries. It is
therefore interesting to see the rate at which Logarithmic Gecko’s
performance deteriorates as device capacity increases.

In Figure 11, we compare write-amplification for Logarithmic
Gecko and a flash-resident PVB as we increase the number of blocks
K. For Logarithmic Gecko, write-amplification increases slowly
with respect to device capacity because the costs of updates and
GC queries are logarithmic with respect to the number of blocks K.
On the other hand, for a flash-resident PVB, write-amplification is
independent of device capacity since the cost of updates and GC
queries each involve a fixed number of IOs. An interesting ques-
tion is when the two curves cross. For this to happen, capacity has
to increase by a large factor of ≈ 2100. Thus, Logarithmic Gecko
outperforms PVB for any foreseeable device capacity.

Over-Provisioning. Since Logarithmic Gecko optimizes up-
dates at the cost of more expensive GC queries, it is interesting to
measure performance as the ratio between updates and GC queries
changes. To do so, we vary over-provisioning, which affects the
frequency of garbage-collection operations. As over-provisioning
decreases, there are more live pages per flash block on average.
Thus, garbage-collection victim blocks have more valid pages on
average, so each garbage-collection operation reclaim less free space
on average. As a result, garbage-collection operations take place
more frequently relative to application writes.

In Figure 12, we vary the amount over-provisioning, expressed
in terms of R, the ratio between the logical and the physical ad-
dress spaces. As expected, the number of flash reads due to GC
queries increases. Although more GC queries take place, the over-
all increase in write-amplification is low because flash reads are an
order of magnitude cheaper than flash writes. Overall, Logarithmic
Gecko works well for any reasonable level of over-provisioning.

5.3 GeckoFTL Vs. Existing FTLs
We now compare GeckoFTL to four state-of-the-art page-assoc-

iative FTLs: DFTL [22], LazyFTL [26], µ-FTL [24] and Indexed-
Based-FTL (IB-FTL) [18]. We compare these FTLs in terms of
overall integrated RAM requirement, recovery time, and write-amp-
lification. We show that GeckoFTL keeps the integrated RAM re-
quirement and recovery time practical for very large flash devices
without relying on a battery and while paying a lower price in terms
of write-amplification than the other FTLs.

Competing FTLs. The FTLs we use differ in two critical ways
from one another: (1) in how they store page validity metadata,
and (2) in how they recover dirty cached mapping entries. In terms
of page validity metadata, DFTL [22] and LazyFTL [26] both use
a RAM-resident PVB, whereas µ-FTL uses a flash-resident PVB.
IB-FTL logs the addresses of invalidated pages in flash in a page
validity log (PVL) while maintaining a linked list of pointers be-
tween log entries of invalidated pages on the same block, where the

first pointer for each chain is stored in integrated RAM [18]. We
explain IB-FTL in detail in Appendix E.

In terms of recovery, DFTL and µ-FTL use a battery to recover
dirty cached mapping entries. On the other hand, LazyFTL and
IB-FTL restrict the number of dirty cached entries during runtime
thereby navigating a trade-off between recovery time and write-
amplification. In our experiments, we set the proportion of the
cache that stores dirty mapping entries for LazyFTL and IB-FTL
to 10% of C, the size of the cache.

(1) Integrated RAM Comparison. To compare the FTLs in
terms of integrated RAM requirement, we modeled the sizes of
their different data structures using the formulas in Section 2 and
Appendix B. The top part of Figure 13 shows the amount of in-
tegrated RAM taken up by different data structures for each FTL.
Note that the top part of Figure 1 in the introduction is simply the
total integrated RAM requirement of LazyFTL under different de-
vice capacities.

DFTL and LazyFTL have the largest integrated RAM footprint
because they both use a RAM-resident PVB. GeckoFTL, µ-FTL
and IB-FTL avoid this overhead by storing page validity metadata
in flash and instead only store BVC in integrated RAM to keep
track of the number of valid pages in each block. IB-FTL stores
additional metadata in integrated RAM to enable traversing and
cleaning its page validity log.

GeckoFTL and µ-FTL achieve the lowest integrated RAM foot-
prints. The bottleneck for both is BVC. This bottleneck can be
alleviated by increasing the size of blocks, or by only storing a
sample of BVC in integrated RAM. Note that µ-FTL achieves a
slightly lower footprint than GeckoFTL since the translation table
is a B-tree and so only the root has to be stored in integrated RAM
rather than GMD. Indeed, in situations where integrated RAM is
too scarce for storing GMD, structuring the translation table as a
B-tree is a viable design decision.

(2) Recovery Time Comparison. To compare the FTLs in terms
of recovery time, we modeled the number and types of flash IOs
that are needed to recover each of their RAM-resident data struc-
tures. Appendix C shows the modeling in detail for GeckoFTL.
In our models, reading a flash page takes 100 µs, reading a spare
area takes 3 µs, and writing a flash page takes 1 ms [15]. The mid-
dle part of Figure 13 shows the results of our cost models. Note
that the bottom part of Figure 1 in the introduction is based on the
middle part of Figure 13 and captures the total recovery time for
LazyFTL under different device capacities.

LazyFTL and IB-FTL exhibit significant bottlenecks to recovery
time. Their shared bottleneck, denoted as “LRU cache”, accounts
for the time taken to recover and synchronize dirty mapping entries
with the translation table. DFTL and µ-FTL avoid this bottleneck
by relying on battery. In contrast, GeckoFTL eliminates this bottle-
neck by only identifying dirty entries during recovery and deferring
their synchronization until after normal operation resumes.

LazyFTL’s second bottleneck arises due to recreating the RAM-
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Figure 13: GeckoFTL achieves a better balance among integrated
RAM, recovery time, and write-amplification than existing FTLs for
large devices without relying on a battery.

resident PVB by scanning the translation table. DFTL avoids this
bottleneck by using a battery to copy PVB to flash before power
runs out. In contrast, µ-FTL and GeckoFTL avoid this overhead
because they store page validity metadata in flash, and so it persists
across failures.

IB-FTL’s second bottleneck accounts for the time to recover meta-
data pertaining to its page validity log. Recovering this metadata
entails scanning the whole log, whose size is proportional to device
capacity.

Finally, Figure 13 shows that the time to initially scan the de-
vice to determine the types of blocks is emerging as a bottleneck
for all FTLs. This bottleneck may be alleviated by using a larger
block size or through parallelism, as a flash device typically con-
sists of multiple logical units that can be accessed by the controller
in parallel [3].

(3) Write-Amplification Comparison. To compare the FTLs
in terms of write-amplification, we simulated each of them under
uniformly randomly distributed writes and measured the number
of IOs taking place for different purposes. The bottom part of
Figure 13 shows write-amplification due to (1) application updates
and garbage-collection of user data, (2) synchronization operations
and garbage-collection of translation metadata, and (3) updates, GC
queries and garbage-collection of page validity metadata.

The overhead of updating translation metadata is highest for Lazy-
FTL and IB-FTL because they restrict the proportion of dirty map-
ping entries in the LRU cache. Thus, updates to the translation
table are amortized to a lesser extent. For the other FTLs, the over-
head of updating translation metadata is largely the same. Note that
even though µ-FTL and IB-FTL structure the translation table as a
B-tree, this does not increase the cost of updates to the translation
table by much because the root and internal nodes of the B-tree are
usually cached in integrated RAM.

W R W R W R

Figure 14: Even when integrated RAM is plentiful enough for stor-
ing PVB, GeckoFTL still improves performance by freeing integrated
RAM to cache a larger proportion of the translation table.

Recall that GeckoFTL uses runtime checkpoints to bound recov-
ery time by synchronizing dirty cached entries that have not been
updated for a long time, as explained in Section 4.3. This leads
to premature eviction and synchronization of dirty mapping entries
and should result in an increase in the cost of updates to translation
metadata in GeckoFTL. However, Figure 13 shows that the write-
amplification induced by updating the translation table is largely
the same in GeckoFTL as in DFTL and u-FTL, which rely on a
battery. This demonstrates that the checkpoints in GeckoFTL in-
crease write-amplification by a negligible amount.

In terms of page validity metadata, µ-FTL exhibits the highest
write-amplification because it uses a flash-resident PVB. DFTL
and LazyFTL avoid this overhead because they store PVB in in-
tegrated RAM. IB-FTL and GeckoFTL both achieve low write-
amplification by virtue of buffering and later reorganizing page va-
lidity metadata in flash.

Finally, Figure 13 shows that garbage-collecting metadata blocks
significantly increases write-amplification for DFTL, LazyFTL, µ-
FTL and IB-FTL. GeckoFTL eliminates these overheads by not tar-
geting blocks that contain metadata for garbage-collection, because
such blocks contain frequently updated metadata that will soon be
updated anyways.

Overall. Figure 13 shows that GeckoFTL achieves a better bal-
ance than existing FTLs among integrated RAM requirement, re-
covery time and write-amplification, and it does so without relying
on a battery.

5.4 Better RAM utilization with GeckoFTL
Let us now suppose that integrated RAM is plentiful enough to

store PVB, so storing page validity metadata in flash is not strictly
necessary. We show that even in this case, using Logarithmic Gecko
improves performance because the integrated RAM that it frees up
is used to cache a larger proportion of the translation table.

In Figure 14, we compare three FTLs designs. All of these FTLs
are given ≈ 70 MB of integrated RAM. The first is DFTL, which
stores PVB in integrated RAM. It uses 64 MB of its integrated
RAM for storing PVB, 4 MB for the LRU cache (as in the pre-
vious experiments), and ≈ 2 MB for the remaining RAM-resident
data structures. The second FTL is µ-FTL, which stores PVB in
flash. All of its remaining integrated RAM is allocated to the LRU
cache, which has a size of 68 MB. The third is GeckoFTL. It also
has a cache size of 68 MB, but it stores page validity metadata using
Logarithmic Gecko rather than using a flash-resident PVB. To en-
able an apples to apples comparison, we give the implementations
of DFTL and µ-FTL in this experiment the same garbage-collection
scheme as GeckoFTL.

For DFTL, updating PVB involves no IO overheads since it is in
integrated RAM, but the overhead due to updating translation meta-



data is significant. For µ-FTL, the overhead due to updating trans-
lation metadata drops to nearly 0 because the larger cache enables
more amortization of synchronization operations, but the overhead
due to updating PVB in flash is significant. In contrast, GeckoFTL
achieves the best of both worlds. The cost of synchronization op-
erations is nearly zero because of the larger cache, and the cost of
updating page validity metadata in flash is low by virtue of using
Logarithmic Gecko. Thus, GeckoFTL enables a more effective use
of the available integrated RAM than existing FTLs even when in-
tegrated RAM is plentiful enough for storing PVB.

6. RELATED WORK
In this section, we describe how state-of-the-art page-associative

FTLs maintain page validity metadata. We also discuss how they
garbage-collect flash-resident metadata, as well as how they ensure
quick recovery from power failure. We show how GeckoFTL ad-
vances the state-of-the-art in all of these respects.

Page Validity Metadata. DFTL and LazyFTL [22, 26] use
one bit in the spare area of each flash page to indicate if the page
is invalid. However, in modern flash devices the spare area of a
flash page cannot be updated until the underlying block is erased
[3, 24, 18]. Thus, an implementation of DFTL or LazyFTL would
need to consolidate these bits into PVB and store it either in inte-
grated RAM or in flash. On the other hand, µ-FTL [24] explicitly
stores PVB in flash. The problem with these schemes is that stor-
ing PVB in integrated RAM is expensive and increases recovery
time, whereas storing PVB in flash significantly increases write-
amplification.

IB-FTL [18] logs the addresses of invalidated flash pages in flash
while maintaining a linked list of pointers between log entries that
correspond to invalid pages on the same blocks, and where the first
link in each chain is stored in integrated RAM. Although it gener-
ates low write-amplification, the problem is that its RAM-resident
metadata significantly increases the integrated RAM footprint and
is slow to recover as the entire log must be scanned. Note that the
log does not come with a cleaning mechanism, and so we extend it
with one in Appendix E to enable an apples to apples comparison
with other techniques in the evaluation.

In contrast, GeckoFTL uses Logarithmic Gecko, which gener-
ates low write-amplification while still enabling a great reduction
in recovery time and integrated RAM.

Garbage-Collection. State-of-the-art page-associative FTLs [16,
26, 24] use a greedy garbage-collection policy that always chooses
as a victim the block with the least number of valid pages in the de-
vice. In contrast, we propose a garbage-collection policy that never
targets metadata. Instead, it waits for blocks containing metadata
to become completely invalid and then erases them. This policy
significantly reduces garbage-collection overheads.

Our policy in inspired by state-of-the-art garbage-collectors that
separate logical pages into different groups of flash blocks based on
update frequency [37, 8] and allocate relatively more over-provis-
ioned space to hotter groups [35, 12]. However, state-of-the-art
garbage-collectors rely on temperature detectors (e.g. [17, 34]) to
determine the update frequency of a logical page. Temperature de-
tectors exhibit a trade-off between accuracy and RAM-overheads,
and in our environment integrated RAM is scarce. Moreover, tem-
perature detectors fail when the workload changes or exhibits pe-
riodicity. In contrast, our approach leverages the type of data (i.e.
user data vs. metadata) to infer its update frequency. This approach
avoids the above-mentioned pitfalls of temperature detectors.

Recovery. State-of-the-art FTLs cache recently updated map-
ping entries in integrated RAM to amortize updates to the flash-

resident translation table. When a failure occurs, the FTL need to
recover these so-called dirty mapping entries.

The best known recovery algorithm for dirty mapping entries,
proposed in LazyFTL, exhibits two shortcomings that GeckoFTL
improves upon. In LazyFTL, whenever a dirty mapping entry is
evicted from the cache, the cache is scanned and all other dirty
entries that belong on the same physical block are also synchro-
nized. This is done so that non-fully-synchronized blocks can be
quickly identified during recovery. The problem is that scanning
the cache for each eviction is computationally expensive. In con-
trast, GeckoFTL only scans the cache once per checkpoint thereby
significantly reducing the computational overhead.

The second problem of LazyFTL’s recovery approach is that it
limits the number of dirty entries in the cache to bound the time
it takes to synchronize all of them with the translation table. This
decreases the amount by which updates to the translation table can
be amortized, and so write-amplification during runtime increases.
In contrast, GeckoFTL defers synchronizing the recreated map-
ping entries until after normal operation resumes. Thus, Geck-
oFTL does not need to bound the number of dirty entries in the
cache. This removes the contention between recovery time and
write-amplification.

Logarithmic Method. Various write-optimized key-value stores
[32, 25, 4, 38] use the Logarithmic Method [5, 29], which involves
logging updates and later reorganizing them through merge oper-
ations to guarantee logarithmic access time for queries. In this
paper, we apply the logarithmic method outside of its traditional
usage for key-value storage. We show how to use the logarithmic
method to aggregate information about objects and report the ag-
gregations through queries. Applying the logarithmic method for
write-optimized aggregations in secondary storage is generalizable
beyond Logarithmic Gecko.

7. CONCLUSION
In this work, we show that as flash devices scale in capacity to the

order of terabytes, the metadata space requirement and the recovery
time needed by state-of-the-art Flash Translation Layers are grow-
ing at an unsustainable rate. We identify the Page Validity Bitmap
as the main bottleneck as it takes up 95% of all RAM-resident
metadata and a large proportion of recovery time. We show that
persisting PVB in flash is a poor solution because it increases write-
amplification thereby harming performance and device longevity.

To solve this problem, we design a novel FTL called GeckoFTL.
The central innovation of GeckoFTL is using an alternative data
structure called Logarithmic Gecko, which logs updates about page
validity in flash and later reorganizes them to ensure fast and scal-
able access time for queries. Logarithmic Gecko involves signifi-
cantly cheaper updates yet costlier garbage-collection queries rel-
ative to the baseline. We show that this is a good trade-off since
garbage-collection queries occur infrequently relative to updates to
page validity metadata, and since flash reads are cheaper than flash
writes. Logarithmic Gecko reduces write-amplification relative to
the baseline by 98% while still enabling a 95% reduction in inte-
grated RAM consumption and at least a 51% reduction in recovery
time.
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APPENDIX
A. MULTI-WAY MERGING

As mentioned in Section 3, a merge operation in Logarithmic
Gecko may continue recursively. This is wasteful in terms of flash
writes, as it involves rewriting Gecko entries from lower levels mul-



tiple times. We can reduce this overhead by foreseeing a recursive
merge, and merging all the runs from the onset using a multi-way
sort merge. This reduces the IO overhead of merge operations by
a factor of ≈ 1/T . To achieve this, we use the following policy.
The run at level i participates in a commencing merge if (1) it is
not already participating in another merge, and (2) there is at least
one run at level i−1 participating in this merge. The downside of
this policy is that it increases the number of input buffers needed in
integrated RAM from 2 to L, the number of levels in the tree. Thus,
this technique is only applicable for devices for which integrated
RAM is larger than P ·L.

B. RAM BREAKDOWN
We now derive formulas for the amount of integrated RAM needed

by the different data structures in GeckoFTL that are not already
given in Section 2. The terms are given in Figure 2, and we denote
IX as an X byte integer.

Logarithmic Gecko’s Run Directories

• Number of entries: The run directories contain one entry for
every Gecko page in the device. Thus, we first derive the
number of Gecko pages. Every Gecko entry takes up I4 bytes
for the key and B/8 for the page validity bitmap. Thus, the
number of Gecko entries that fit into a flash page is P/(I4 +
B/8). The largest run contains K entries, one for each block,
and so its size in flash pages is K/(P/(I4 +B/8)). The cu-
mulative size of the rest of the runs is at most the size of the
largest run. Thus, the total number of flash pages in Logarith-
mic Gecko is (2 ·K)/(P/(I4 +B/8)).

• Entry size: Each entry in the run directories is a mapping from
a block ID to the physical address of a flash page. This takes
up 2 · I4 bytes.

• Total: 2 · I4 · (2 ·K)/(P/(I4 +B/8)) bytes.

Blocks Liveness Counter (BVC)

• Number of entries: There are K entries in BVC, one for each
block.

• Entry size: I2 bytes are needed to store the number of invalid
pages in each block.

• Total: I2 ·K bytes.

Logarithmic Gecko’s Buffers

• Number of entries: Logarithmic Gecko has one input buffer
to which Gecko entries are inserted when physical pages be-
come invalid. In addition, the multi-way merge strategy in
Appendix A requires at most L input buffers, one for each
level, and one output buffer.

• Entry size: The size of each buffer is P.

• Total: P · (2+L) bytes.

C. RECOVERY
The recovery algorithm of GeckoFTL, which we call GeckoRec,

comprises eight steps. In this section, we explain each of them and
quantify their costs in terms of flash IOs.

Step 1. GeckoRec commences by creating a temporary data
structure in integrated RAM called the Blocks Information Direc-
tory (BID). An entry in BID consists of 2 fields: the type of the
block (Gecko, translation, user, or free), and a timestamp of when
the first page in the block was written. To create BID, GeckoRec
reads the spare area of the first flash page of each flash block, where

the timestamp and the block’s type are stored. Creating BID takes
K spare area reads.

GeckoRec creates entries in BID for all translation, Gecko and
free blocks. Since most flash blocks contain user data, creating a
BID entry for every user block may cause BID to exceed the in-
tegrated RAM capacity. Thus, GeckoRec only creates BID entries
for the most recently written max(d 2·C

B e,V ) user blocks. The rea-
son this number must be at least d 2·C

B e is to enable scanning the
last 2 ·C user pages to recover dirty mapping entries, as explained
in Section 4.3. The reason it must also be at least as large as V ,
the size of Logarithmic Gecko’s buffer, is to enable finding recently
erased blocks that were lost from Logarithmic Gecko’s buffer when
power failed, as explained in Appendix C.2.

Step 2. Next, GeckoRec scans the spare areas of all translation
pages, where the ID and last-update-timestamp for each of them
are stored. It uses this to recover GMD by finding the most recent
version of every translation page. This takes O(K·B

P ) spare area
reads because the number of translation pages is O(K·B

P ).
Step 3. GeckoRec then recovers Logarithmic Gecko’s run di-

rectories by scanning the spare areas of all flash pages in Gecko
blocks. This takes O(K·B

P ) spare area reads because the number of
Gecko pages is O(K·B

P ). Further technical details about recovering
the run directories are given in Appendix C.1.

Step 4. Next, GeckoRec recovers Logarithmic Gecko’s buffer,
as explained in detail in Appendix C.2. This takes at most 2 ·V
page reads.

Step 5. GeckoRec next recreates the Blocks Liveness Counter
(BLC), which keeps track of the number of valid pages in each
block in integrated RAM. It does this by scanning Logarithmic
Gecko, reconstructing a page validity bitmap for every flash block,
and computing its hamming weight to give the number of invalid
pages in that block. This takes O(K·B

P ) flash reads, since Logarith-
mic Gecko consists of O(K·B

P ) flash pages.
Step 6. Next, GeckoRec recovers dirty mapping entries, as ex-

plained in Section 4.3. This step takes at most 2 ·C spare area reads.
Step 7. For all recreated mapping entries, GeckoRec sets the

dirty and UIP flags to true. Mistakes will be fixed after normal
operation resumes, as explained in Appendix C.3. The IO cost in-
troduced by fixing mistakes is at most O(K·B

P ) flash reads as well
as O(C) spare area reads and redundant insertions into Logarithmic
Gecko, but these overheads take place after recovery is complete
and so they do not elongate recovery time.

Step 8. GeckoRec disposes of BID, and normal operation re-
sumes.

C.1 Restoring the Run Directories
When power fails, we lose Logarithmic Gecko’s run directories.

We now show how to recover them. The challenge is that there
may be multiple obsolete runs on Gecko blocks, but we must only
recover the directories for the runs that were valid at the moment
of power failure. Our approach relies on adding some metadata
to each run to enable determining which run is the most recently
created in each level.

We pad each run in flash with a preamble and a postamble. The
preamble stores the run’s level, a creation timestamp, and a unique
ID. The postamble stores a copy of the run directory for this run.
Every other page in the run begins with a header that contains the
ID of the run that it belongs to.

During recovery, we examine the preamble and postamble of ev-
ery run. We discard any run without a postamble as it is only par-
tially written. We then use the creation timestamps to identify the
most recently-created run in each level. For these runs, we recover
the run directories from the postambles to integrated RAM.



C.2 Restoring the Buffer’s Contents
When power fails, we lose the content of Logarithmic Gecko’s

buffer, which contains the addresses of recently erased blocks and
recently invalidated flash pages. In this section, we show how to
recover them.

C.2.1 Restoring Addresses of Erased Blocks
First, GeckoRec identifies and recreates Gecko entries for all

blocks that were erased since the last time that Logarithmic Gecko’s
buffer flushed. To do this, it identifies the smallest run in Logarith-
mic Gecko and reads its preamble to find its creation timestamp. It
then searches BID for all blocks that are free or whose first page
was written after this timestamp. For each of these blocks, it in-
vokes Algorithm 2, which inserts a Gecko entry into the buffer with
the erase flag set to true. Since at most V blocks can be erased be-
tween two times that Logarithmic Gecko’s buffer flushes, BID must
contain entries for at least the most recently erased V user blocks to
guarantee that GeckoRec does not miss any recently erased blocks.

C.2.2 Restoring Addresses of Invalidated Pages
Next, GeckoRec identifies and recreates Gecko entries for all

flash pages that were invalidated since the last time that Logarith-
mic Gecko’s buffer flushed. To do so, it exploits the property that
an invalid flash page is only reported to Logarithmic Gecko dur-
ing a synchronization operation, which updates a translation page.
Thus, GeckoRec finds all translation pages that were updated since
the last time that Logarithmic Gecko’s buffer flushed. It compares
each of these translation pages to the most recent previous version
of the same translation page8. Every mapping entry in the previous
translation page that mismatches the entry in the current translation
page corresponds to a flash page that was invalidated since the last
buffer flush. For each such mapping entry e = (X ,Z), we check if
the physical address Z is still invalid by reading the spare area of
flash page Z and checking if the logical address last written on it is
still X . If so, GeckoRec inserts Z into Logarithmic Gecko’s buffer
via Algorithm 1.

For this approach to work, we must ensure that recently invali-
dated translation pages are not erased. To do so, we maintain a list
of blocks in integrated RAM that cannot be erased. When a trans-
lation page is updated, we insert the ID of the block that contains
the invalidated version of the translation page into the list. When
Logarithmic Gecko’s buffer is flushed, we clear the list.

The dominant cost of this phase is reading and comparing trans-
lation pages. Since the buffer contains up to V Gecko entries, then
V flash pages are typically invalidated in-between two times the
buffer flushes. In this case, as many as V translation pages could
have been synchronized, so at most 2 ·V translation pages must be
read and compared during this phase of recovery. Note that techni-
cally, if multiple logical pages that all correspond to different trans-
lation pages are stored on the same flash blocks and are updated at
the same time, then the buffer can absorb as many as V ·B inserts
before flushing, in which case 2 ·V ·B translation pages must be
read and compared during this phase of recovery. Although this
scenario is unlikely, it is possible to restrict recovery time to 2 ·V
by limiting the number of insertions that the buffer can absorb to V
before it flushes.

——

8As long as C > V , the same translation page cannot be updated
more than once in-between two times that Logarithmic Gecko’s
buffer flushes, so there is always at most one previous version for
each updated translation page that we must examine.

C.3 Correcting Restored Cached Entries
GeckoRec defers synchronizing the recreated cached mapping

entries with the flash-resident translation table until after normal
operation resumes in order to shorten recovery time. Instead, it
simply sets the dirty and UIP flags for each restored cached map-
ping entry to true. We now show how GeckoFTL corrects these
flags after recovery during regular synchronization operations.

C.3.1 Dirty = false, UIP = false
We first consider a restored cached mapping entry for which the

corresponding mapping entry before power failed had its dirty and
UIP flags both set to false. When the restored mapping entry par-
ticipates in a synchronization operation, GeckoFTL compares its
physical address to the flash-resident mapping entry’s physical ad-
dress. If these addresses match, it means that the cached mapping
entry was wrongly marked as dirty, and so GeckoFTL sets its dirty
and UIP flags to false and omits it from the synchronization oper-
ation. If all cached entries participating in a synchronization oper-
ation are omitted, GeckoFTL aborts the synchronization operation
thereby saving one flash write. The overhead introduced is O(K·B

P )

page reads because there are O(K·B
P ) translation pages and so the

number of aborted synchronization operations is O(K·B
P ). However,

this IO price is only paid after regular operation resumes, and so it
does not lengthen recovery time.

C.3.2 Dirty = true, UIP = false
We now consider a restored cached entry for which the corre-

sponding mapping entry before power failed had its dirty and UIP
flags set to true and false respectively. In this case, only the UIP flag
must be corrected after recovery. As before, when the cached entry
participates in a regular synchronization operation after recovery,
GeckoFTL compares the physical addresses of the cached entry
and the flash-resident entry. Their addresses do not match (this is
true by assumption that the cached entry before power failure was
dirty), and so GeckoFTL replaces the flash-resident entry by the
cached entry. After doing so, GeckoFTL would normally also re-
port the physical address Z of the replaced entry as invalid to Log-
arithmic Gecko. However, address Z was already reported to Log-
arithmic Gecko before power failed (this is true by assumption that
the cached entry’s UIP flag was false before power failed). There is
a danger in reporting page Z to Logarithmic Gecko a second time as
invalid; page Z may have already been erased and rewritten before
power failure, and so reporting it a second time as invalid can lead
to losing live data currently written on it. To avoid this problem,
GeckoFTL first checks in the spare area of page Z if the logical
page written on it is the same as in the restored cached entry. It
only reports Z as invalid to Logarithmic Gecko if these logical ad-
dresses match. Using this approach, GeckoFTL may still report a
physical address to Logarithmic Gecko as invalid a second time af-
ter recovery, but the above check at least guarantees that GeckoFTL
does not report a valid page as invalid.

Cost. This check introduces an overhead of one spare area read
for every entry participating in a synchronization operation. This
is not a large overhead since spare area reads are extremely cheap
compared to flash writes. However, this overhead can also easily
be restricted. The simplest method is to add an uncertainty flag to
each cached mapping entry to signal that we are not sure if the UIP
flag should be true or not. The uncertainty flag is set to true for
any cached entry created during recovery. Otherwise, it is always
set to false. Thus, we only perform the spare area check during a
synchronization operation if the cached entry’s uncertainty flag is
set to true. After the check, we set the uncertainty flag of the entry



to false. Since at most C entries can have their uncertainty flag set
to true, then the overhead is O(C) spare area reads and redundant
insertions to Logarithmic Gecko.

We can also achieve the same effect without introducing an un-
certainty flag. The dirty and UIP flags during normal operation can
only ever be (false, false), (true, false) and (true, true). Thus, we
can set the dirty and UIP flags for all restored cached mapping en-
tries to (false, true), and use this combination to mean that the dirty
flag and UIP flag are currently assumed to be true but that we are
uncertain of this, so we should perform all the appropriate checks
during a synchronization operation after power resumes.

D. WEAR-LEVELING
In this Appendix, we show how GeckoFTL performs wear-level-

ing. We show that the only necessary metadata in integrated RAM
includes a few global statistics comprising 30− 40 bytes at most.
The rest of the wear-leveling metadata can be stored in the spare
areas of blocks.

Wear-Leveling Statistics. GeckoFTL relies on two statistics for
each block to perform wear-leveling. The first statistic is erase-
count, which is the number of times a block has been erased (used
to identify blocks that are exceptionally unworn [36, 20, 3]). The
second statistic is age, which is the number of erases that has taken
place in the device as a whole since the last time that a given block
was erased (used to identify blocks that contain static data [19]).

GeckoFTL maintains the erase-count for each block in one of its
spare areas. An erase-count comprises 2 bytes per block because
every block has a lifetime of at most a few thousands of erases
[3]. The solution in [28] is used to maintain the erase-count in the
presence of power failures.

To maintain the age of blocks, GeckoFTL uses a global erase
counter (4 bytes) in integrated RAM. When any block is erased,
the value of the global counter at that moment is saved as an erase-
timestamp in one of the spare areas of the block, and the global
counter is incremented. The age of any block can thus be calculated
by subtracting its erase-timestamp from the global counter. The
erase-timestamp comprises 4 bytes for each block.

Finding Wear-Leveling Victims. GeckoFTL only stores a few
global statistics for the erase-counts and ages of blocks such as min-
imum, maximum and average (24 bytes). It periodically scans the
device, issuing one spare area read per block, to update its global
statistics and to identify wear-leveling targets based on how their
erase-count and age compare to the global statistics. The scan takes
place gradually with respect to flash writes. In particular, for every
flash write that takes place, we read the spare area of the next block
in the scan. When a scan is finished, we restart it. Since spare area
reads are 3 orders of magnitude less expensive than flash writes,
this ensures that scans do not introduce a significant performance
overhead.

Scan Cost Analysis. Let us define a period as K ·B flash writes,
where K is the number of blocks in the device and B is the number
of pages per block. By definition, B full scans take place during one
period. Furthermore, let us assume that 1/X flash blocks contain
non-static data. Thus, the blocks that contain non-static data each
get erased X times on average during one period.

Clearly, as long as X < B the policy does not fall behind. Under
this condition, static blocks are inspected by the scan more fre-
quently than the rate at which non-static blocks get erased. For
example, suppose that X is 2, meaning that 50% of the blocks are
non-static, and suppose that B is 128. During one period, the non-
static blocks are each erased 2 times on average whereas the static
block are inspected 128 times. It is therefore extremely easy to
discover and address erase-count discrepancies as they arise.

This policy works well even when X > B. For example, sup-
pose X is set to 1000, meaning that 0.1% of the blocks are non-
static. In this case, the rate at which non-static blocks are erased
is 1000/128 ≈ 8 times higher than the rate at which static blocks
are scanned. Thus, each static block may be erased ≈ 8 times on
average while we complete an entire scan to identify wear-leveling
victims, and so the erase-count discrepancy will be no less than
≈ 8. This is acceptable seeing as the number of erases each block
can undergo is in the hundreds or even thousands for modern flash
devices [15]. In a stress case where X >> B, it is possible to in-
crease the frequency of scans (i.e. read more than 1 spare area for
each flash write) to ensure that the wear-leveling policy does not
fall behind.

In summary, scans obviate the need for storing wear-leveling
statistics for each block in integrated RAM in order to find wear-
leveling victims. The frequency of scans is easy to tune such that
they neither impact performance nor fall behind.

Dynamic Wear-Leveling. GeckoFTL uses a complementary
dynamic wear-leveling technique to write frequently updated pages
on unworn blocks (to accelerate their wearing rate) and seldom
updated pages on worn blocks (to decelerate their wearing rate)
[31]. To do this, GeckoFTL needs to know the update frequency of
pages. It does this by keeping an update timestamp for each page
in its spare area. When a page is updated or migrated, we can then
tell based on the timestamp how long it has been since the last time
it was updated relative to the average.

Overall, GeckoFTL uses a range of wear-leveling techniques,
which only require storing a few bytes’ worth of global statistics
in integrated RAM.

E. PAGE VALIDITY LOG
IB-FTL [18] proposes to log the addresses of invalidated flash

pages while maintaining a linked list of pointers between log en-
tries that correspond to invalid pages on the same blocks, and where
the first link in each chain is stored in integrated RAM. However,
the original design in [18] does not include a cleaning mechanism,
and so the page validity log (PVL) can grow indefinitely. To enable
a fair comparison of Logarithmic Gecko and PVL in our experi-
ments, we extended the design of PVL with a cleaning mechanism.

Our extension involves adding a timestamp to every log entry
corresponding to when the page was invalidated. We also add a
timestamp for every block in integrated RAM of the last time it was
erased. We then bound the size of the log to X log entries. When
the buffer is flushed and the log grows beyond X entries, we find
the page that was inserted into the log the longest time ago. For
every entry in this page, we compare its timestamp to the erase-
timestamp of the corresponding block in integrated RAM. If the
entry’s timestamp is larger than the block’s timestamp, it means the
log entry was created after the last time the block was erased, and
so we reinsert it into the log. On the other hand, if the log entry’s
timestamp is smaller, we discard it, because it was created before
the last time the block was erased and is now obsolete.

A natural question is how to tune X , the size of the log. Our
insight is that at any point, the number of invalid pages in the device
is at most the difference between the sizes of the physical address
space and the logical address space. We denote this difference as
D. We propose to set X to double the size of D. Thus, when we
reclaim the oldest page in the log, at least half of its log entries are
discarded on average. Each log entry is reinserted into the log on
average one time, and so the cost in terms of write-amplification is
O( 1

V ), where V is the size of the buffer. In Section 5, we compare
our version of PVL to Logarithmic Gecko.
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