Exploiting non-constant safe memory in resilient algorithms and data structures

Lorenzo De Stefani, Francesco Silvestri

Dipartimento di Ingegneria dell’Informazione, University of Padova
Via Gradenigo 6/B, I-35131 Padova, Italy
{destefan,silvest1}@dei.unipd.it

Abstract

We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size \(S \), and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let \(\delta \) and \(\alpha \) denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with \(\alpha \leq \delta \). We propose a resilient algorithm for sorting \(n \) entries which requires \(O(n \log n + \alpha(\delta/S + \log S)) \) time and uses \(\Theta(S) \) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require \(O(n \log n + \alpha \delta) \) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses \(\Theta(S) \) safe memory words and \(\Theta(n) \) faulty memory words for storing \(n \) keys, and requires \(O(\log n + \delta/S) \) amortized time for each insert and deletemin operation. Our resilient priority queue improves the \(O(\log n + \delta) \) amortized time required by the state of the art.

Keywords: resilient algorithm, resilient data structure, memory errors, sorting, priority queue, tradeoffs, fault tolerance

1. Introduction

Memories of modern computational platforms are not completely reliable since a variety of causes, including cosmic radiations and alpha particles [1], may lead to a transient failure of a memory unit and to the loss or corruption of its content. Memory errors are usually silent and hence an application may successfully terminate even if the final output is irreversibly corrupted. This fact has been recognized in many systems, like in Sun Microsystems servers at major customer sites [1] and in Google’s server fleets [2]. Eventually, a few works have also shown that memory faults can cause serious security vulnerabilities (see, e.g., [3]).

As hardware solutions, like Error Correcting Codes (ECC), are costly and reduce space and time performance, a number of algorithms and data structures have been proposed that provide
(almost) correct solutions even when silent memory errors occur. Algorithmic approaches for dealing with unreliable information have been widely targeted in literature under different settings, and we refer to [4] for a survey. In particular, a number of algorithms and data structures, which are called resilient, have been designed in the Faulty RAM (FRAM) [5]. In this model, an adaptive adversary can corrupt up to δ memory cells of a large unreliable memory at any time (even simultaneously) during the execution of an algorithm. Resilient algorithmic techniques have been designed for many problems, including sorting [6], selection [7], dynamic programming [8], dictionaries [9], priority queues [10], matrix multiplication and FFT [11], K-d and suffix trees [12, 13]. Resilient algorithms have also been experimentally evaluated [14, 11, 15, 16].

1.1. Our results

Previous results in the FRAM model assume the existence of a safe memory of constant size which cannot be corrupted by the adversary and which is used for storing crucial data such as code and instruction counters. In this paper we follow up the preliminary investigation in [8] studying to which extent the size of the safe memory can affect the performance of resilient algorithms and data structures. We enrich the FRAM model with a safe memory of arbitrary size S and then give evidence that an increased safe memory can be exploited to notably improve the performance of resilient algorithms. In addition to its theoretical interest, the adoption of such a model is supported by recent research on hybrid systems that integrate algorithmic resiliency with the (limited) amount of memory protected by hardware ECC [17]. In this setting, S would denote the memory that is protected by the hardware.

Let δ and α denote respectively the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with $\alpha \leq \delta$. In Section 2, we show that n entries can be resiliently sorted in $O(n \log n + \alpha(\delta/S + \log S))$ time when a safe memory of size $\Theta(S)$ is available in the FRAM. As a consequence, our algorithm runs in optimal $\Theta(n \log n)$ time as soon as $\delta = O(\sqrt{nS \log n})$ and $S \leq n/\log n$. When $S = \omega(1)$, our algorithm outperforms previous resilient sorting algorithms, which do not exploit non-constant safe memory and require $O(n \log n + \alpha \delta)$ time [6, 7]. Finally, we use the proposed resilient sorting algorithm for deriving a resilient priority queue in Section 3. Our implementation uses $\Theta(S)$ safe memory words and $\Theta(n)$ faulty memory words for storing n keys, and requires $O(\log n + \delta/S)$ amortized time for each insert and deletemin operation. This result improves the state of art for which $O(\log n + \delta)$ amortized time is required for each operation [10].

1.2. Preliminaries

As already mentioned, we use the FRAM model with a safe memory. Specifically, the adopted model features two memories: the faulty memory whose size is potentially unbounded, and the safe memory of size S. For the sake of simplicity, we allow algorithms to exceed the amount of safe memory by a multiplicative constant factor. The adversary can read the content of the faulty memory and corrupt at any time memory words stored in any position of the faulty memory for
up to a total δ times. Note that faults can occur simultaneously and the adversary is allowed to corrupt a value which was already previously altered. The safe memory can be read but not corrupted by the adversary. A similar model was adopted in [8], however in this paper the adversary was not allowed to read the safe memory. We denote with $\alpha \leq \delta$ the actual number of faults injected by the adversary during the execution of the algorithm. Since the performance of our algorithms do not increase as soon as $S > \delta$, we assume through the paper that $S \leq \delta$; this assumption can be easily removed by replacing S with $\min\{S, \delta\}$ in our algorithms.

A variable is reliably written if it is replicated $2\delta + 1$ times in the faulty memory and its actual value is determined by majority: clearly, a reliably written variable cannot be corrupted. We say that a value is faithful if it has never been corrupted and that a sequence is faithfully ordered if all the faithful values in it are correctly ordered. Finally, we assume all faithful input values to be distinct, each value to require a memory word, and that each sequence or buffer to be stored in adjacent memory words.

2. Resilient Sorting Algorithm

In the resilient sorting problem we are given a set of n keys and the goal is to correctly order all the faithful input keys (corrupted keys can be arbitrarily positioned). We propose S-Sort, a resilient sorting algorithm which runs in $O(n \log n + \alpha (\delta / S + \log S))$ time by exploiting $\Theta(S)$ safe memory words. Our approach builds on the resilient sorting algorithm in [8], however major changes are required to fully exploit the safe memory. In particular, the proposed algorithm forces the adversary to inject $\Theta(S)$ faults in order to invalidate part of the computation and to increase the running time by an additive $O(\delta + S \log S)$ term. In contrast, $O(1)$ faults suffice to increase by an additive $O(\delta)$ term the time of previous algorithms [5, 6, 7], even when $\omega(1)$ safe memory is available. Our algorithm runs in optimal $\Theta(n \log n)$ time for $\delta = O(\sqrt{S n \log n})$ and $S \leq n / \log n$: this represents a $\Theta(\sqrt{S})$ improvement with respect to the state of the art [8], where optimality is reached for $\delta = O(\sqrt{n \log n})$.

S-Sort is based on mergesort and uses the resilient algorithm S-Merge for merging. The S-Merge algorithm requires $O(n + \alpha (\delta / S + \log S))$ time for merging two faithfully ordered sequences of length n each with $\Theta(S)$ safe memory. S-Merge is structured as follows. An incomplete merge of the two input sequences is initially computed with S-PurifyingMerge: this method returns a faithfully ordered sequence Z of length at least $2(n - \alpha)$ that contains a partial merge of the input sequences, and a sequence F with the at most 2α remaining keys that the algorithm has failed to insert into Z. Finally, keys in F are inserted into Z using the S-BucketSort algorithm, obtaining the final faithfully ordered sequence of all input values. Procedures S-PurifyingMerge and S-BucketSort are respectively proposed in Sections 2.1 and 2.2, while Section 2.3 describes the resilient algorithms S-Merge and S-Sort.
2.1. \textit{S-PurifyingMerge} algorithm

Let X and Y be the faithfully ordered input sequences of length n to be merged. The \textit{S-PurifyingMerge} algorithm returns a faithfully ordered sequence Z of length at least $2(n - \alpha)$ and a sequence F of length at most 2α: sequence Z contains part of the merging of X and Y, while F stores the input keys that the algorithm has deemed to be potentially corrupted and has failed to insert into Z. The algorithm extends the \textit{PurifyingMerge} algorithm presented in \cite{6} by adding a two-level cascade of intermediate buffers, where the smallest ones are completely contained in the safe memory. Specifically, the algorithm uses six support buffers:\footnote{It can be shown that a more optimized implementation of \textit{S-PurifyingMerge} requires only two buffers (i.e., X_2 and Y_2). However, we describe here the implementation with six support buffers for the sake of simplicity.}

- Buffers X_1 and Y_1 of length $4\delta + S$, and Z_1 of length $\delta + S/2$; they are stored in the faulty memory.
- Buffers X_2 and Y_2 of length S, and Z_2 of length $S/2$; they are stored in the safe memory.

At high level, the algorithm works as follows (see Figure \ref{fig:fig1} for a graphical representation). The computation is organized in \textit{rounds}. In each round, $O(\delta)$ input keys in X and Y are respectively pumped into buffers X_1 and Y_1. Then, the algorithm merges these keys in Z_1 by iteratively merging small amounts of data in safe memory: during each \textit{iteration}, chunks of $O(S)$ consecutive keys in X_1 and Y_1 are moved into buffers X_2 and Y_2, where they are merged in Z_2 using a standard merging algorithm. Keys in Z_2 are shifted into Z_1 at the end of each iteration, while keys in Z_1 are appended to Z at the end of each round. The algorithm performs some checks, which are explained in details later, when keys are moved among buffers in order to guarantee resiliency: an \textit{inversion check} is done every time a key is shifted from X_1 to X_2 or from Y_1 to Y_2; a \textit{safety check} is executed every time buffer Z_1 is appended to Z. If a check is
unsuccessful, some critical faults have occurred and then part of the computation must be rolled back and re-executed.

We now provide a more detailed description. Each round starts by filling buffers X_1 and Y_1 with the remaining keys in X and Y, starting from those occupying the smallest index positions (i.e., from the smallest faithful values). Subsequently, the algorithm fills Z_1 with at least δ values from the sequence obtained by merging X_1 and Y_1 or until there are no further keys to merge. Specifically, buffer Z_1 is filled by iterating the following steps until it contains at least δ values or there are no further keys to merge in X_1, X_2, Y_1 and Y_2:

1. Buffers X_2 and Y_2 are filled with the remaining keys of X_1 and Y_1, respectively, starting from the smallest index position. With the exception of the first iteration of the first round, an inversion check is executed for each key inserted in X_2 and Y_2. If a check is unsuccessful, the current round is restarted. In the first iteration of the first round, each key is inserted in X_2 and Y_2 without any check.

2. Buffers X_2 and Y_2 are merged in Z_2, until buffer Z_2 is full or there are no further entries in X_2 and Y_2. The merging is performed using the standard algorithm since input and output buffers are stored in safe memory.

3. Buffer Z_2 is appended to Z_1 and then emptied.

As soon as Z_1 is full or there are no further keys, a safety check is performed on Z_1: if it succeeds, buffer Z_1 is appended to Z and flushed and then a new round is started; otherwise, the current round is restarted.

The inversion check works as follows. The check is performed on every new key x of X_1 inserted into X_2, and on every new key y of Y_1 inserted into Y_2. We describe the check performed on each entry x, being the control executed on y defined correspondingly. If X_2 is empty, no operation is done and the check ends successfully. Otherwise, the value x is compared with the last inserted key x' in X_2. If x is larger than x', no further operations are done and the check ends successfully. Otherwise, if x is smaller than or equal to x', it is possible to conclude that at least one of the two keys is corrupted since X_2 is supposed to be faithfully ordered and each key to be unique. Then, both keys are inserted into F and removed from X_1 and X_2; if there exists at least one value in X_2 after the removal, the check ends successfully, and it ends unsuccessfully otherwise. We observe that inversion checks guarantee X_2 and Y_2 to be perfectly ordered at any time (recall that the two buffers are stored in safe memory).

The safety check works as follows. The check is performed when Z_1 contains at least δ keys or there are no more keys to merge. In the last case, the check always ends successfully. Suppose now that Z_1 contains at least δ keys, and let z be the latest key inserted into Z_1 which we assume to be stored in safe memory. Denote with X' (resp., Y') the concatenation of keys in X_2 and X_1 (resp., Y_2 and Y_1). If there are less than $S/2$ keys in X' and Y' smaller than or equal to z, the safety check ends successfully. Otherwise, the algorithm scans X' starting from the smaller position and compares each pair of adjacent keys looking for inversions: if a pair is not ordered,
it is possible to conclude that at least one of the two values has been corrupted, and hence both keys are inserted in \(F \) and removed from \(X' \). A similar procedure is executed for \(Y' \) as well. The check then ends unsuccessfully.

When a round is restarted due to an unsuccessful check, the algorithm replaces keys in \(Z_i, X_i \) and \(Y_i \), for any \(i \in \{1, 2\} \), with the keys contained in the respective buffers at beginning of the round (specifically, just after the algorithm terminates to fill buffers \(X_1 \) and \(Y_1 \) with new keys). However, keys that have been moved to \(F \) during the failed round are not restored (empty positions in \(X_1 \) and \(Y_1 \) are suitably filled with keys in \(X \) and \(Y \)). This operation can be implemented by storing a copy of \(X_1, Y_1 \) and \(Z_1 \) in the faulty memory, and of \(X_2, Y_2 \) and \(Z_2 \) in the safe memory. For every key moved to \(F \), the key is also removed from the copies.

Lemma 1. Let \(X \) and \(Y \) be two faithfully ordered sequences of length \(n \). \(S\text{-PurifyingMerge} \) returns a faithfully ordered sequence \(Z \) of length \(|Z| \geq n - 2\alpha \) containing part of the merge of \(X \) and \(Y \), and a sequence \(F \) of length \(|F| \leq 2\alpha \) containing the remaining input keys. The algorithm runs in \(O(n + \alpha\delta/S) \) time and uses \(\Theta(S) \) safe memory words.

Proof: It is easy to see that the algorithm uses \(\Theta(S) \) safe memory and that each input key must be in \(Z \) or \(F \). We prove that \(Z \) is faithfully ordered as follows: we first show that \(Z_1 \) is faithfully ordered at the end of each round; we then argue that \(Z_1 \) can be appended to \(Z \) without affecting the faithful order of \(Z \). We say that a round is successful if the round is not restarted by an unsuccessful inversion or safety check. For proving the correctness of the algorithm we focus on successful rounds since unsuccessful ones do not affect \(Z \).

Let us now show that buffer \(Z_1 \) contains a faithfully ordered sequence at the end of a successful round. Inversion checks guarantee that any key inserted in \(X_2 \) is not smaller than the previous one, and then buffer \(X_2 \) is sorted at any time. Moreover, since the round is successful, buffer \(X_2 \) always contains at least one key during the round and, in particular, the buffer contains a key between two consecutive iterations. This fact guarantees that the concatenation \(\hat{X} \) of all keys inserted in \(X_2 \) in each iteration of the round creates an ordered sequence. Similarly, we have that the concatenation \(\hat{Y} \) of all keys inserted in \(Y_2 \) in each iteration of the round is ordered. Each iteration of the round merges in safe memory a part of \(\hat{X} \) and \(\hat{Y} \). Then, the concatenation of all keys written into \(Z_2 \) during the round is the correct merge of \(\hat{X} \) and \(\hat{Y} \) (note that the largest keys in \(\hat{X} \) and \(\hat{Y} \) are not merged and are kept in \(X_2 \) and \(Y_2 \)). Since these output keys are first stored in \(Z_2 \) and then in \(Z_1 \), we can claim that \(Z_1 \) is a faithfully ordered sequence: indeed, there can be an out-of-order key in \(Z_1 \) due to a corruption occurred after the key has been moved from \(Z_2 \) to \(Z_1 \).

We now prove that \(Z \) is faithfully ordered. If the algorithm ends in one successful round, then \(Z \) is faithful ordered by the previous claim. We now suppose that there are at least two

2An entry can be removed from a sequence in constant time by moving the subsequent entries in the correct position as soon as they are read and by maintaining the required pointers in the safe memory.
successful rounds. Let Z'_i be the two buffers appended to Z at the end of the i-th and $(i+1)$-st successful round. We have that Z'_i and Z'_i+1 are faithfully ordered by the previous claim, and we now argue that even the concatenation of Z'_i and Z'_i+1 is faithfully ordered. Let z be the latest value z inserted in Z'_i; since z is maintained in safe memory, we have that z is larger than all the faithful values in Z'_i and smaller than all values in X_2 and Y_2. Since the round is successful, there are at most $S/2$ keys smaller than or equal to z in X' and hence at least $\delta + 1$ keys larger than z in X': indeed, the $4\delta + S$ entries in X_1 at the beginning of the round can be moved in F (at most 2δ), in Z_1 (at most $\delta + S/2 - 1$), or in X_2 (thus remaining in X'). Therefore, there exists a faithful key in X' larger than z, and hence all the faithful values remaining in X must be larger than z. The at most $S/2$ keys smaller than or equal to z must be in X_1, and they will be removed by inversion checks in subsequent rounds since there are at least $S/2$ values in X_2 larger than z (note that there are always at least $S/2$ keys X_2 at the end of an iteration). Since a similar claim applies to Y, we have that all faithful keys in Z'_i+1 are larger than those in Z'_i. It follows that Z, which is the concatenation of Z'_1, Z'_2, \ldots, is faithfully ordered.

Finally, we upper bound the running time of the algorithm. If no corruption occurs, the algorithm requires $O(n)$ time since there are $O(n/\delta)$ rounds, each one requiring $O(\delta/S)$ iterations of cost $O(S)$. Faults injected by the adversary during the first iteration of the first round cannot restart the round, but increase the running time by at most a factor $O(\alpha)$ since each fault can cause two keys to be moved in buffer F. Consider an unsuccessful round that fails due to an inversion check. Since at the beginning of each iteration there are at least $S/2$ keys in both X_2 and Y_2, then at least $S/2$ inverted pairs are required for emptying X_2 or Y_2 and the adversary must pay $S/2$ faults for getting an unsuccessful inversion check. Consider now an unsuccessful round that fails due to a safety check. Since there are at least $S/2$ keys larger than or equal to z in X_2 and Y_2 and there are at least $S/2$ keys smaller than z in X_1 and Y_1, there must be at least $S/2$ inversions. Since at least $S/2$ of these inversions are removed during the safety check and cannot be used by the adversary for failing another round, the adversary must pay $S/2$ faults for getting an unsuccessful safety check. In all cases, each unsuccessful round costs $O(\delta)$ time to the algorithm and $S/2$ faults to the adversary: since there cannot be more than $\lfloor 2\alpha/S \rfloor$ unsuccessful rounds, the overhead due to unsuccessful rounds is $O(\alpha\delta/S)$. The lemma follows.

\[\square \]

2.2. S-BucketSort Algorithm

Let X be a faithfully ordered sequence of length n_1 and Y an arbitrary sequence of length n_2. The S-BucketSort algorithm computes a faithfully ordered sequence containing all keys in X and Y in $O(n_1 + (n_2 + \delta)n_2/S + (n_2 + \alpha)\log S)$ time using a safe memory of size $\Theta(S)$. This algorithm extends and fuses the NaiveSort and UnbalancedMerge algorithms presented in [6].

The algorithm consists of $\lceil n_2/S \rceil$ rounds. At the beginning of each round, the algorithm removes the S smallest keys among those remaining in Y and stores them into an ordered sequence P maintained in safe memory. Subsequently, the algorithm scans the remaining keys of X, starting from the smallest position, and partitions them among $S + 1$ buckets B_i where B_0
contains keys in $(-\infty, P[1])$, B_i keys in $[P[i], P[i+1])$ for $1 \leq i < S$ and B_S keys in $[P[S], +\infty)$. The scan of X ends once $\delta + 1$ keys have been inserted into B_S or there are no more keys left in X. For each key x in X, the search of the bucket is crucial for improving performance and proceeds as follows: the algorithm checks if x belongs to the range of the last used bucket B_k, for some $0 \leq k \leq S$; if the check fails, then the algorithm verifies if x belongs to the right/left $\log S$ adjacent buckets of B_k; if this search is again unsuccessful, the correct buffer is identified by performing a binary search on P. When the correct bucket is found, entry x is removed from X and appended to the sequence of keys already in the bucket, thus guaranteeing that each bucket is faithfully ordered. When the scan of X ends, the sequence given by the concatenation of $B_0, P[1], B_1, P[2], \ldots, B_S, P[S]$ is appended to the output sequence Z, keys in B_S are inserted again in X (in suitable empty positions of X that maintain the faithful order of X), P and the $S+1$ buckets B_i are emptied and a new round is started. After the $\lceil n_2/S \rceil$ rounds, all remaining keys in X are appended to Z.

The S smallest values of Y, which are used in each round for determining the buckets, are extracted from Y using the following approach. At the beginning of S-BucketSort (i.e., before the first round), a support priority queue containing S nodes is constructed in safe memory as follows. Keys in Y are partitioned into S segments of size $\lceil n_2/S \rceil$ and a node containing the smallest key and a pointer to the segment is inserted into the priority queue (the segment is stored in the faulty memory). Each time the smallest value is required, the smallest value y of the queue is extracted (we note that y is the minimum faithful key among those in Y or a corrupted key even smaller). Then, y is removed from the queue and from the respective buffer, and a new node with the new smallest key and a pointer to the segment is inserted in the queue. When a value is removed from a segment, the remaining values in the segment are shifted to keep keys stored in consecutive positions. At the beginning of each round, the S values used for defining the buckets are obtained by S subsequent extractions of the minimum value in the priority queue and maintained in S safe memory words.

Lemma 2. Let X be a faithfully ordered sequence of length n_1 and let Y be a sequence of length n_2. S-BucketSort returns a faithfully ordered sequence containing the merge of keys in X and Y. The algorithm runs in $O(n_1 + (n_2 + \delta)n_2/S + (n_2 + \alpha) \log S)$ time and uses $\Theta(S)$ safe memory words.

Proof: It is easy to see that the algorithm uses $\Theta(S)$ safe memory and that each key of X and Y must be in the output sequence at the end of the algorithm. We now argue that the output sequence Z is faithfully ordered at the end of the algorithm: we first prove that the sequence appended to Z at the end of each round is faithfully ordered, and then show that it can be appended to Z without affecting the faithful order of Z. We now prove that the sequence appended to Z at the end of a round is faithfully ordered. For each $0 \leq i \leq S$, each faithful key appended to bucket B_i is in the correct range (note that P cannot be corrupted being in safe memory) and the sequence of keys in B_i is faithfully ordered since the insertion maintains
the order of faithful keys in \(X \). Therefore, the sequence \(B_0, P[1], B_1, P[2], \ldots, B_{S-1}, P[S] \) that is appended to \(Z \) is faithfully ordered. We now show that the appended sequence guarantees the faithful order of \(Z \) by proving that, at the end of a round, the faithful keys that remain in \(X \) are larger than those already in \(Z \) (i.e., faithful keys that are appended in subsequent rounds are larger). If the round ends since there are no further keys in \(X \), the claim is trivially true.

Suppose now that the round ends since there are \(\delta + 1 \) keys in \(B_S \). Then, there must exist at least one faithful key larger than \(P[S] \) in \(B_S \) and all remaining faithful values in \(X \) must be larger than \(P[S] \). Therefore, we can conclude that \(Z \) is faithfully ordered at the end of the algorithm: by the above argument \(Z \) is faithfully ordered at the end of the last round; the keys in \(X \) that are appended to \(Z \) after the last round do not affect the faithful order of \(Z \) since \(X \) is faithfully ordered and faithful keys in \(X \) are larger than those already in \(Z \).

We now upper bound the running time. Suppose no corruptions occur during the execution of the algorithm. Extracting the \(S \) smallest keys from \(Y \) using the auxiliary priority queue requires \(O(n_2 + S \log S) \) time \(O(n_2 \log n_2) \) time if \(n_2 < S \) for each of the \(\lceil n_2/S \rceil \) rounds, and therefore a total \(O(n_2(n_2/S + \log S)) \) time. The insertion of an entry \(X[i] \) in a bucket, for each \(1 \leq i \leq n_1 \), requires \(O(1 + \min\{f_i, \log S\}) = O(1 + f_i) \), where \(f_i \) is the number of keys of \(Y \) in the range \((X[i - 1], X[i]) \): indeed, the algorithm searches the bucket for \(X[i] \) among the \(O(\min\{f_i, \log S\}) \) buckets around the one containing \(X[i - 1] \) and then, only in case of failure, performs a binary search on \(P \). When no fault occurs, each key of \(Y \) contributes to one of the \(f_i \)'s since \(X \) is sorted. Therefore, the partitioning of \(X \) costs \(O(\sum_{i=1}^{n_2} (1 + f_i)) = O(n_1 + n_2) \). We note that the above analysis ignores the fact that in each round \(\delta + 1 \) values are moved back from \(B_S \) to \(X \) this fact leads to an overall increase of the running time given by an additive component \(O(\delta [n_2/S]) \), which follows by charging \(O(\delta) \) additional operations to each round. A fault in \(X \) may affect the running time required for partitioning \(X \). In particular, each fault may force the algorithm to pay \(O(\log S) \) for the corrupted key and the subsequent one in \(X \): indeed, a corruption of \(X[i] \) may force the algorithm to perform a binary search in order to find the right bucket for \(X[i] \) and for the subsequent key \(X[i + 1] \). The additive cost due to \(\alpha \) faults is hence \(O(\alpha \log S) \). The corruption of keys in \(Y \) does not affect the running time since the algorithm does not exploit the ordering of \(Y \). The lemma follows.

2.3. \textit{S-Merge} and \textit{S-Sort} Algorithms

As previously described, \textit{S-Merge} processes the two input sequences with \textit{S-PurifyingMerge} and then the two output sequences are merged with \textit{S-BucketSort}. We get the following lemma.

Lemma 3. Let \(X \) and \(Y \) be two faithfully ordered sequences of length \(n \). Algorithm \textit{S-Merge} faithfully merges the two sequences in \(O(n + \alpha (\delta/S + \log S)) \) time using \(\Theta(S) \) safe memory words.

Proof: By Lemma\[\square\] algorithm \textit{S-PurifyingMerge} returns a faithful sequence \(Z \) of length at most \(2n \) and a sequence \(F \) of length at most \(2\alpha \) in \(O(n + \alpha \delta/S) \) time. These output sequences are
then combined using the \texttt{S-BucketSort} algorithm: by Lemma2 this algorithm returns a faithfully ordered sequence of all the input elements in $O(n + \alpha \left(\delta / S + \log S\right))$ time. The lemma follows. □

By using \texttt{S-Merge} in the classical mergesort algorithm3 we get the desired resilient sorting algorithm \texttt{S-Sort} and the following theorem.

\textbf{Theorem 1.} Let X be a sequence of length n. Algorithm \texttt{S-Sort} faithfully sorts the keys in X in $O(n \log n + \alpha \left(\delta / S + \log S\right))$ time using $\Theta(S)$ safe memory words.

\textit{Proof:} Let us assume, for the sake of simplicity, n to be a power of two, and denote with $\alpha_{i,j}$ the number of faults that are detected by \texttt{S-Merge} on the j-th recursive problem which operates on input sequences of length 2^i, with $0 \leq i < \log n$ and $0 \leq j < n/2^i$. A fault injected in one sub-problem at level i may affect the parent problem at level $i + 1$, but cannot affect sub-problems at level $i + 2$. Indeed, a key x corrupted during the sub-problem at level i may be out-of-order in the output sequence. Key x is then recognized by the \texttt{S-Merge} at level $i + 1$ as a fault, inserted in F by \texttt{S-PurifyingMerge}, and then positioned in the correct order in the output sequence by \texttt{S-BucketSort} (x will thus be consider as a faithful key in the parent problem at level $i + 2$).

Another fault might cause key x to be stored out-of-order again in the output sequence at level $i + 1$, but this fact is accounted to the new fault. Hence, we get $\sum_{i=0}^{\log n-1} \sum_{j=0}^{2^i-1} \alpha_i \leq 2\alpha$. By the upper bound on the time of \texttt{S-Merge} in Lemma3 we get that the running time of \texttt{S-Sort} is upper bounded by

$$O\left(\sum_{i=0}^{\log n-1} \sum_{j=0}^{2^i-1} \left(n/2^j + \alpha_{i,j} (\delta / S + \log S)\right)\right).$$

The correctness of \texttt{S-Sort} follows by the correctness of \texttt{S-Merge}. □

3. Resilient Priority Queue

A resilient priority queue is a data structure which maintains a set of keys that can be managed and accessed through two main operations: \texttt{Insert}, which allows to add a key to the queue; and \texttt{DeleteMin}, which returns the minimum faithful key among those in the priority queue or an even smaller corrupted key and then removes it from the priority queue.

In this section we present an implementation of the resilient priority queue that exploits a safe memory of size $\Theta(S)$. Let n denote the number of keys in the queue. Our implementation requires $O(\log n + \delta / S)$ amortized time per operation, $\Theta(S)$ words in the safe memory and $\Theta(n)$ words in the faulty memory. Our resilient priority queue is based on the fault tolerant priority queue proposed in \cite{10}, which is in turn inspired by the cache-oblivious priority queue in \cite{18}. The

3The standard recursive mergesort algorithm requires a stack of length $O(\log n)$ which cannot be corrupted. However, it is easy to derive an iterative algorithm where a $\Theta(1)$ stack length suffices.
The structure of our resilient priority queue is similar to the one used in [10], however we require some auxiliary structures and different constraints in order to exploit the safe memory. Specifically, the resilient priority queue presented in this paper contains the following structures (see Figure 2 for a graphical representation):

- The **immediate insertion buffer** I_0, which contains up to $\log n + \delta/S$ keys. This buffer is stored in the faulty memory.
- The **priority queue** P_I, which contains up to S nodes. Each node contains a pointer to a buffer of size at most $\log n + \delta/S$ and the priority key of the node is the smallest value in the pointed buffer. Buffers are stored in the faulty memory, while the actual priority keys are stored in the safe memory.

The presentation is organized as follows: we first present in Section 3.1 the details of the priority queue implementation, with particular emphasis on the role played by the safe memory; then we proceed in Section 3.2 to prove its correctness and complexity bounds.

3.1. Structure

The performance of the resilient priority queue is here improved by exploiting the safe memory and the S-Merge and S-Sort algorithms, in place of the resilient merging and sorting algorithms in [6]. It is important to point out that the $\Omega (\log n + \delta)$ lower bound in [10] on the performance of the resilient priority queue does not apply to our data structure since the argument assumes that keys are not stored in safe memory between operations. The amortized time of each operation in our implementation matches the performance of classical optimal priority queues in the RAM model when the number of tolerated corruptions is $\delta = O(S \log n)$: this represents a $\Theta (S)$ improvement with respect to the state of the art [10], where optimality is reached for $\delta = O(\log n)$.
queue P_I and other structural information (e.g., buffer length, the position in the buffer of the smallest key) are stored in $O(S)$ safe memory words. The purpose of P_I is to act as a buffer between the newly inserted data in I_0 and the main structure of the priority queue, that is layers L_0, \ldots, L_{k-1} (see below). On the one hand it allows to rapidly access the newly inserted keys, while on the other hand it accumulates such keys so that the computational cost necessary for inserting all these keys in the main structure is amortized over the insertion of at least $S \log n + \delta$ new values.

- The layers L_0, \ldots, L_{k-1}, with $k = O(\log n)$. Each layer L_i contains two faithfully ordered buffers U_i and D_i, named up buffer and down buffer, respectively. Up and down buffers are connected by a doubly linked list: for each $0 \leq i < k$, buffer U_i is linked to D_{i-1} and D_i and vice versa. The layers are stored in the faulty memory, while the size and the links to the neighbors of each buffer are reliably written (i.e., replicated $2\delta + 1$ times) in the faulty memory using additional $\Theta(\delta)$ space. For each layer, we define a threshold value $s_i = 2^{i+1}(S \log^2 n + \delta (\log S + \delta/S))$ which is used to determine whether an up buffer U_i has too many keys or a down buffer D_i has too few. Specifically, we impose the following order and size invariants on all up and down buffers at any time:

 - (I1) All buffers are faithfully ordered;
 - (I2) For each $0 \leq i < k - 1$, the concatenations $D_i D_{i+1}$ and $D_i U_{i+1}$ are faithfully ordered;
 - (I3) For each $0 \leq i < k - 1$, $s_i/2 \leq |D_i| \leq s_i$ (this invariant may not hold for the last layer);
 - (I4) For each $0 \leq i < k$, $|U_i| \leq s_i/2$.

- The priority queues P_U and P_D and the pointers p_U and p_D, which are stored in the safe memory. These queues are used to speed up the access to entries in U_0 and D_0. We consider the buffer U_0 as the concatenation of two buffers U_0^P and U_0^S. U_0^P contains keys in the $\delta + 1$ smallest positions (if any) of U_0, while U_0^S contains all the remaining keys (if any) in U_0. U_0^S itself is divided into up to S sub-buffers, each one with maximum size $\delta/S + 1$ and associated with one node of P_U; each node maintains a pointer to the beginning of a sub-buffer of U_0^S and its priority key is the smallest value in the respective sub-buffer. Each node also contains support information such as the size of the relative sub-buffer and the position of the smallest key in the sub-buffer. p_U points to the first element of U_0^P. This structure ensures that the concatenation of a resiliently sorted U_0^S with U_0^P is a faithful ordering of all the elements in U_0 at all times. The priority queue P_U can be built by determining the minimum element of each sub-buffer in U_0^S and then by building the priority queue in safe memory. The priority queue P_D and pointer p_D are analogously constructed from buffer D_0.

12
Since the priority queues P_I, P_U and P_D are resiliently stored, we use any standard implementation that supports the \texttt{Peekmin} operation, which is an operation that returns the minimum value in the priority queue without removing it. We note that buffer sizes (i.e., s_i) depend on n: As suggested in [10], a global rebuilding of the resilient priority queue is performed when the number of keys in it varies by $\Theta(n)$. The rebuilding is done by resiliently sorting all the keys and then distributing them among the down buffers starting from D_0.

The functioning and purpose of the auxiliary structures will be detailed in the description of the \texttt{Insert} and \texttt{Deletemin} operations in Section 3.1.1. We now provide an intuitive explanation of the functioning of our priority queue. Newly inserted keys are collected in the immediate insertion buffer I_0 and in the buffers pointed by nodes in P_I, while the majority of the previously inserted values are maintained in the up and down buffers in the k layers L_i. The role of the down buffers is to contain small keys that are likely to be soon removed by \texttt{Deletemin} and then should move towards the lower levels (i.e., I_0, P_I or L_0); on the other hand, up buffers store large keys that will not be required in the short time (note that this fact is a consequence of invariant (I2)). Keys are moved among layers by means of the two fundamental primitives \texttt{Push} and \texttt{Pull}: these functions, which are described in Section 3.1.2, are invoked when the up and down buffers violate the size invariants, and exploit the resilient merging algorithm S-\texttt{Merge}. The purpose of the support structures is to reduce the overhead necessary for the management of the priority queue in the presence of errors by reducing the number of invocations to the costly maintenance tasks (i.e., \texttt{Push} or \texttt{Pull}) and by amortizing their computational cost over multiple executions of \texttt{Insert} or \texttt{Deletemin}. It will be evident in the subsequent section that P_U and P_D may cause a discrepancy with respect to the order invariants (I1) and (I2) for the first $O(\delta)$ positions of buffers D_0 and U_0. However, we will see that this violation can be in general ignored and can be quickly restored any time the algorithm needs to exploit the invariants on D_0 and U_0, that is any time \texttt{Push} and \texttt{Pull} are invoked.

3.1.1. \texttt{Insert} and \texttt{Deletemin}

The implementation of \texttt{Insert} and \texttt{Deletemin} varies significantly with respect to the resilient priority queue presented in [10]. In particular, the safe memory plays an important role in order to obtain the desired performance.

\texttt{Insert}. The newly inserted key is appended to the immediate insertion buffer I_0. If after the insertion I_0 contains $\log n + \delta/S$ keys, some values in I_0 are moved into other buffers as follows. Suppose that P_I contains less than S nodes. A new buffer I' is created in the faulty memory and filled with the $\log n + \delta/S$ keys in I_0, then a new node is inserted in P_I with the minimum value in I' as key and a pointer to I'; I_0 is flushed at the end of this operation. Suppose now that P_I contains S nodes. All keys in buffer I_0, in the buffers pointed by all nodes of P_I and in the sub-buffers managed through P_U (i.e., in buffer U_0^S) are resiliently sorted using the S-\texttt{Sort} algorithm. These values are then merged with those in $U_0^{P_I'}$ (if any) using S-\texttt{Merge}, and finally
inserted into buffer U_0. After the merge, the immediate insertion buffer, the priority queue P_I and all its associated buffers are emptied. If the merge does not cause U_0 to overflow, the priority queue P_U is rebuilt from the new values in U_0^S by following the previously described procedure. On the contrary, if U_0 overflows breaking the size invariant (I4), the Push primitive is invoked on U_0, P_U is deallocated (since Push removes all keys in U_0) and P_D is rebuilt following a procedure similar to the one for P_U.

Deletemin. To determine and remove the minimum key in the priority queue it is necessary to evaluate the minimum key among the at most $\log n + \delta/S$ keys in the immediate insertion buffer I_0 and the minimum values in P_I, P_D and P_U, which can be evaluated using Peekmin. Finally, the minimum key v among these four values is selected, removed from the appropriate buffer as described below, and hence returned. The removal of v is performed as follows.

- **v is in I_0.** Value v is removed from I_0 and the remaining keys in I_0 are shifted in order to ensure that keys are consecutively stored.

- **v is in P_I.** A Deletemin is performed on P_I for removing the node with key v. Let I' be the buffer pointed by this node. Then key v is removed from I' and the remaining keys in I' are shifted in order to ensure that keys are consecutively stored. We note that the value v may not be anymore available in I' since it has been corrupted by the adversary: however, since each node contains the position of v in I', the faithful value can be restored. Let $c_{I'}$ be the new size of I'. If $c_{I'} \geq (\log n + \delta/S)/2$, a new node pointing to I' is inserted in P_I using as priority key the new minimum value in I'. If $c_{I'} < (\log n + \delta/S)/2$ and I_0 is not empty, up to $(\log n + \delta/S)/2$ keys are removed from the immediate insertion buffer and inserted in buffer I'; then, a new node is inserted in P_I pointing to I' and with priority key set to the new minimum value in I'; finally, if $c_{I'} < (\log n + \delta/S)/2$ and I_0 is empty, all values in I' are transferred in the immediate insertion buffer I_0 and I' is deallocated.

- **v is in P_U.** A Deletemin is performed on P_U for removing the node with key v. Let U' denote the sub-buffer pointed by the removed node. The minimum key v is removed from U' and its spot is filled with the value pointed by p_U, which is then increased to point to the subsequent value in U_0^P (if any). If no key can moved to U' (i.e., there are no keys in U_0^P), the empty spot is removed by compacting U' in order to ensure that keys are consecutively stored and no further operations are performed. The new minimum value in U' is then evaluated and inserted in P_U with the associated pointer to U' (no operation is done if U' is empty).

- **v is in P_D.** Operations similar to the previous case are performed if the minimum key is extracted from P_D. In this case, Deletemin may cause D_0 to underflow breaking the size invariant I3: if that happens, the Pull primitive is invoked on D_0 and P_D is rebuilt following a procedure analogous to the one previously detailed for P_U.

14
We observe that the use of the auxiliary structures \(P_U \) and \(P_D \) in Deletemin may cause a discrepancy with respect to the order invariants (I1) and (I2) for buffers \(U_0 \) and \(D_0 \). We can however justify the waiver from (I1) by pointing out that this structure still ensures that the faithful keys in \(U_0^S \) are smaller than or equal to those in \(U_0^D \). In particular the concatenation of a resiliently sorted \(U_0^S \) with \(U_0^D \) is faithfully ordered (similarly in \(D_0 \)). Additionally, we can justify the waiver from (I2) by observing that the faithful keys in \(D_0 \) are still smaller than or equal to those in \(D_1 \) and \(U_1 \). Furthermore, the invariants can be easily restored before any invocation of Push and Pull by resiliently sorting \(U_0^S \) (resp., \(D_0^S \)) and linking it with \(U_0^D \) (resp., \(D_0^D \)). Therefore, since \(D_0 \) and \(U_0 \) still behave consistently with the invariants for what pertains the relations with other buffers and the possibility of accessing the faithful keys maintained by them in the correct order, we can assume with a slight (but harmless) “abuse of notation” that the invariants are verified for \(U_0 \) and \(D_0 \) as well.

3.1.2. Push and Pull primitives

Push and Pull are the two fundamental primitives used to structure and maintain the resilient priority queue. Their execution is triggered whenever one of the buffer violates a size invariant in order to restore it without affecting the order invariants. The primitives operate by redistributing keys among buffers by making use of S-Merge. The main idea is to move keys in the buffers in order to have the smaller ones kept in the layers close to the insertion buffer so they can be quickly retrieved by Deletemin operations, while moving the larger keys to the higher order layers. Our implementation of Push and Pull corresponds to the one in [10] with the difference that the S-Merge algorithm proposed in the previous section is used rather than the merge algorithm in [6]. It is important to stress how this variation, while allowing a reduction of the running time of Push and Pull, does not affect the correctness nor the functioning of the primitives since the merge algorithm is used with a black-box approach. We remark that, due to the additional structure introduced by using the auxiliary priority queues \(P_U \) and \(P_D \), every time a primitive involving either \(U_0 \) or \(D_0 \) is invoked it is necessary to restore them to be faithfully ordered buffers. This can be easily achieved by concatenating the resiliently sorted \(U_0^D \) (resp., \(D_0^S \)), with \(U_0^S \) (resp., \(D_0^D \)). We can exploit \(P_U \) (resp., \(P_D \)) to resiliently sort \(U_0^D \) (resp., \(D_0^S \)) by successively extracting the minimum values in the priority queue. For the sake of completeness, we describe now the Push and Pull primitives and we refer to [10] for further details.

Push. The Push primitive is invoked whenever the size of an up buffer \(U_i \) grows over the threshold value \(s_i/2 \), therefore breaking the size invariant (I4). The execution of Push(\(U_i \)) works as follows. If \(L_i \) is the last layer, then a new empty layer \(L_{i+1} \) is created. Buffers \(U_i, D_i \) and \(U_{i+1} \) are merged into a sequence \(M \) using the S-Merge algorithm. Then the first \(|D_i| - \delta \) keys of \(M \) are placed in a new buffer \(D' \), the remaining \(|U_{i+1}| + |U_i| + \delta \) keys are placed in a new buffer \(U'_{i+1} \), and an empty \(U'_i \) buffer is created. Finally, the newly created buffers \(U'_i, D'_i \) and \(U'_{i+1} \) are used to respectively replace the old buffers \(U_i, D_i \) and \(U_{i+1} \), which are then deallocated. If \(L_i \) is the
last layer, \(U_{i+1}' \) replaces \(D_{i+1} \) instead of \(U_{i+1} \). If the new buffer \(U_{i+1}' \) contains too many keys, breaking the size invariant \((I4)\), the \textbf{Push} primitive is invoked on \(U_{i+1}' \). Furthermore, since \(D_i' \) is smaller than \(D_i \), it could violate the size invariant \((I3)\). This violation is handled at the end of the sequence of \textbf{Push} invocations on up buffers of layers \(L_i, L_{i+1}, \ldots, L_j \), \(0 \leq i < j < k \) (we suppose the \(i \) and \(j \) indexes to be stored in safe memory). After all the \(j - i + 1 \) invocations, the affected down buffers are analyzed by simply following the pointers among buffers starting from \(U_i \), and by invoking the \textbf{Pull} primitive (see below) on the down buffer not satisfying the invariant \((I3)\).

Pull. The \textbf{Pull} primitive is invoked whenever the size of a down buffer \(D_i \) goes below the threshold value \(s_i/2 \), therefore breaking the size invariant \((I3)\). Since this invariant does not hold for the last layer, we must have that \(L_i \) is not the last layer. During the execution of \textbf{Pull}(\(D_i \)) buffers \(D_i, U_{i+1} \), and \(D_{i+1} \) are merged into a sequence \(M \) using the \textbf{S-Merge} algorithm. The first \(s_i \) keys of \(M \) are placed in a new buffer \(D_i' \), the following \(|D_{i+1}| - (s_i - |D_i|) - \delta \) keys are written to \(D_{i+1}' \), while the remaining keys in \(M \) are placed in a new buffer \(U_{i+1}' \). The newly created buffers \(D_i', D_{i+1}' \) and \(U_{i+1}' \) are then used to respectively replace the old buffers \(D_i, D_{i+1} \) and \(U_{i+1} \), which are then deallocated. If the down and up buffers in layer \(L_{i+1} \) are empty after this operation, then layer \(L_{i+1} \) is removed (this can happen only if \(L_{i+1} \) is the last layer). Resulting from this operation, \(D_{i+1}' \) may break the size invariant \((I3)\), if this is the case \textbf{Pull} is invoked on \(D_{i+1}' \). Additionally, after the merge, \(U_{i+1}' \) may break the size invariant \((I4)\). This violation is handled at the end of the sequence of \textbf{Pull} invocations on down buffers of layers \(L_i, L_{i+1}, \ldots, L_j \), \(0 \leq i < j < k \) (we suppose the \(i \) and \(j \) indexes to be stored in safe memory). After all the \(j - i + 1 \) invocations, all the affected up buffers are analyzed by simply following the pointers among buffers starting from \(D_i \), and by invoking the \textbf{Push} primitive wherever invariant \((I4)\) is not satisfied.

3.2. Correctness and complexity analysis

In order to prove the correctness of the proposed resilient priority queue we show that \textbf{Deletemin} returns the minimum faithful key in the priority queue or an even smaller corrupted value. As a first step, it is necessary to ensure that the invocation of one of the primitives \textbf{Push} or \textbf{Pull}, triggered by an up or down buffer violating a size invariant \((I3)\) or \((I4)\), does not cause the order invariants to be broken. The \textbf{Push} and \textbf{Pull} primitives used in our priority queue coincide with the ones presented for the maintenance of the resilient priority queue in [10]: despite the fact that in our implementation the threshold \(s_i \) is changed to \(2^{i+1}(S\log^2 + \delta(\log S + \delta/S)) \), the proofs provided in [10] (Lemmas 1 and 3) concerning the correctness of \textbf{Push} and \textbf{Pull} still apply in our case. We report here the statements of the cited lemmas:

Lemma 4 ([10] Lemma 1). The \textbf{Pull} and \textbf{Push} primitives preserve the order invariants.
Lemma 5 ([10, Lemma 3]). If a size invariant is broken for a buffer in \(L_0 \), invoking \textbf{Pull} or \textbf{Push} on that buffer restores the invariants. Furthermore, during this operation \textbf{Pull} and \textbf{Push} are invoked on the same buffer at most once. No other invariants are broken before or after this operation.

For the complete proofs of these lemmas we refer the reader to the original work in [10]. It is important to remark that both proofs are independent of the value used as size threshold and hence these proofs hold for our implementation as well. We can therefore conclude that when a size invariant is broken for a buffer in \(L_i \) the consequent invocation of \textbf{Push} or \textbf{Pull} does indeed restore the size invariant while preserving the order invariants which are thus maintained at all times.

Concerning the computational cost of the primitives, an analysis carried out using the potential function method [19, Section 17.3] allows to conclude that the amortized time needed for the execution of both \textbf{Push} and \textbf{Pull} is negligible. A proof of this fact can be obtained by plugging the complexity of the \textbf{S-Merge} algorithm and the threshold value \(s_i \) defined in our implementation in the proof proposed in [10, Lemma 5].

Lemma 6. The amortized cost of the \textbf{Push} and \textbf{Pull} primitives is negligible.

Proof: We now upper bound the amortized cost of a call to the \textbf{Push} function on the up buffer \(U_i \) and we ignore at the moment the subsequent chain of calls to \textbf{Push} and \textbf{Pull} (a similar argument applies to \textbf{Pull}). The cost is computed by exploiting the following potential function defined in [10]:

\[
\Phi = \sum_{i=1}^{k} (c_1 |U_i| (\log n - i) + ic_2 |D_i|).
\]

When a \textbf{Push} operation on \(U_i \) is performed, first the \(U_i, D_i \) and \(U_{i+1} \) buffers are merged and then the sorted values are distributed into new buffers such that \(|U'_i| = 0, |D'_i| = |D_i| - \delta \) and \(|U'_{i+1}| = |U_{i+1}| + |U_i| + \delta \). This leads to the following change in potential \(\Delta \Phi \):

\[
\Delta \Phi = -c_1 |U_i| (\log n - i) - ic_2 \delta + c_1 (|U_i| + \delta) (\log n - (i + 1))
= -c_1 |U_i| + \delta (-ic_2 + c_1 \log n - ic_1 - c_1).
\]

\textbf{Push} is invoked when (I4) is not valid for \(U_i \) and therefore \(|U_i| > s_i/2 = 2^i (S \log^2 n + \delta (\log S + \delta/S)) \).

Then, standard computations show that, for some constant \(c' > 0 \) independent of \(c_1 \), we have

\[
\Delta \Phi \leq -c_1 |U_i| + c_1 \delta \log n \leq -c_1 c'|U_i|.
\]

The time required for the execution of \textbf{Push}, including the time needed to retrieve the reliably stored pointers of the up and down buffers, is dominated by the computational cost of merging \(U_i, D_i \) and \(U_{i+1} \) which, using the \textbf{S-Merge} algorithm, is upper bounded by \(T_m = O(|U_i| + |D_i| + |U_{i+1}| + \alpha (\log S + \delta/S)) \). By the potential method [19, Section 17.3], the amortized cost of \textbf{Push} follows by adding the merging time \(T_m \) to the potential variation \(\Delta \Phi \). Since
$|U_i| \in \Theta \left(2^i \left(S \log^2 n + \delta (\log S + \delta/S) \right) \right)$, we have $T_m = \Theta (|U_i|) = c_m|U_i|$, where c_m is a suitable constant that depends on S-Merge. The amortized cost of Push is $(c_m - c_1 c')|U_i|$ and it can be ignored by conveniently tweaking c_1 according to the values of c_m and c' so that $(c_m - c_1 c')|U_i| < 0$.

In the particular case for which an invocation of Push involves the buffers U_0 and D_0, we have that prior to the standard operations, it is necessary to restore the buffers to their faithfully sorted version by resiliently sorting U_0^S (resp., D_0^S) and linking it with U_0^P (resp., D_0^P). The time required to accomplish these operation is dominated by the time necessary to faithfully sort U_0^S and D_0^S according to the previously described technique, which is $O (\delta (\log S + \delta/S))$. This implies that the time required for restructuring U_0 and D_0 is still dominated by the time required by Push and is hence negligible.

Since each Push and Pull function is invoked on the same buffer at most once (Lemma 5) and the amortized cost is negative, we have that the chain of Push and Pull operations that can start after the initial call is negligible as well. The lemma follows.

The following theorem evaluates the amortized cost of Insert and Deletemin in our resilient implementation of the priority queue.

Theorem 2. In the proposed resilient priority queue implementation, the Deletemin operation returns the minimum faithful key in the priority queue or an even smaller corrupted one and deletes it. Both Deletemin and Insert operations require $O (\log n + \delta/S)$ amortized time. The priority queue uses $\Theta (S)$ safe memory words and $\Theta (n)$ faulty memory words.

Proof: We first observe that the size and order invariants can be considered maintained at all times thanks to the maintenance Push and Pull tasks (see Lemmas 4 and 5), with the aforementioned exception on the first $\delta + 1$ keys in the up and down buffers in L_0. Moreover, by Lemma 6, the cost of Push and Pull can be ignored in our argument.

We now focus on the correctness and complexity of Deletemin. Let v_1, v_2, v_3 and v_4 be the minimum values in I_0, P_I, P_U and P_D, respectively. Deletemin evaluates these four values by scanning all the values in I_0 and by performing a Peekmin operation for P_I, P_U and P_D, respectively. By construction, each value in P_I is selected as the minimum among the keys stored in the associated buffers: since P_I is maintained in the safe memory, v_2 is smaller than any faithful value in the associated buffers. Similarly, v_3 is smaller than the faithful $\delta + 1$ entries in U_0^S, and thus of the remaining faithful entries in U_0^P and of all entries in the up and down buffers for invariant (II). Similarly, we also have that v_4 is smaller than all faithful keys in D_0. We can then conclude that $\min \{v_1, v_2, v_3, v_4\}$ is either the minimum faithful key in the priority queue or an even smaller corrupted value. The time for determining the minimum key and removing it is $O (\log n + \delta/S)$.

We now discuss the correctness and complexity of Insert. The correctness of the insertion is evident since the input key is inserted in some support buffer and can be only removed by
Deletemin. Inserting a key in the immediate insertion buffer requires constant time. If I_0 is full and a new node of the priority queue P_I needs to be created, a total $O(\log n + \delta/S)$ time is required in order to find the minimum among the keys in I_0 and to insert the new node in P_I. When P_I itself is full (i.e., contains S nodes), we have that $O(S\log^2 n + \delta(\log n + \delta/S))$ time is required to faithfully sort all keys in I_0 and in the buffers managed through P_I and P_U, to faithfully merge them with U_0^S, and to rebuild P_U and PS. However, it will be necessary to perform these operations at most once every $\Theta(S\log n + \delta)$ key insertions and therefore its amortized cost is $O(\log n + \delta/S)$.

We recall that the algorithm invokes a global rebuilding every time the number of keys changes by a $\Theta(n)$ factor. Since the cost of the rebuilding is dominated by the cost of the S-Sort algorithm, which is $O(n\log n + \delta(\delta/S + \log S))$, the amortized cost is $O(\log n + \delta/S)$.

By opportunely doubling or halving the space reserved for the immediate buffer I_0, the space required for I_0 is always at most twice the number of keys actually in the buffer. Additionally, the space required for the buffers maintained by P_I is at most double than the number of keys actually in the buffer itself. The space required for each layer L_0, \ldots, L_{k-1} with $k \in O(\log n)$, including the reliably written structural information, is proportional to the number of stored keys, and therefore $\Theta(n)$ faulty memory words are used to store all the layers. Finally, $\Theta(S)$ safe memory words are required to maintain the priority queues P_I, P_D and P_U and for the correct execution of S-Merge and S-Sort. The theorem follows.

4. Conclusion

In this paper we have shown that, for the resilient sorting problem and the priority queue data structure, the presence of a safe memory of size S can be exploited in order to reduce the computational overhead due to the presence of corrupted values by a factor $\Theta(S)$. As future research, it would be interesting to investigate which other problems can benefit of a non constant safe memory and propose tradeoffs highlighting the achievable performance with respect to the size of the available safe memory. We observe that not all problems can in fact exploit an S-size safe memory: indeed the the $\Omega(\log n + \delta)$ lower bound for searching derived in [5] applies even if a safe memory of size $S \leq \epsilon n$, for a suitable constant $\epsilon \in (0, 1)$, is available. Finally, we remark that the analysis of tradeoffs between the safe memory size and the performance achievable by resilient algorithms may provide useful insights for designing hybrid systems mounting both cheap faulty memory and expensive ECC memory, as recently studied in [17].

Acknowledgements

The authors would like to thank G. Brodal, I. Finocchi and an anonymous reviewer for useful comments. This work was supported, in part, by University of Padova under projects STPD08JA32 and CPDA121378, and by MIUR of Italy under project AMANDA.
References

