Predictive Text Entry for Agglutinative Languages Using Unsupervised Morphological Segmentation

Miikka Silfverberg, Krister Lindén, Hissu Hyvärinen

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstrakt

Systems for predictive text entry on ambiguous keyboards typically rely on dictionaries with word frequencies which are used to suggest the most likely words matching user input. This approach is insufficient for agglutinative languages, where morphological phenomena increase the rate of out-of-vocabulary words. We propose a method for text entry, which circumvents the problem of out-of-vocabulary words, by replacing the dictionary with a Markov chain on morph sequences combined with a third order hidden Markov model (HMM) mapping key sequences to letter sequences and phonological constraints for pruning suggestion lists. We evaluate our method by constructing text entry systems for Finnish and Turkish and comparing our systems with published text entry systems and the text entry systems of three commercially available mobile phones. Measured using the keystrokes per character ratio (KPC) [8], we achieve superior results. For training, we use corpora, which are segmented using unsupervised morphological segmentation.
OriginalsprogEngelsk
TitelInternational Conference on Intelligent Text Processing and Computational Linguistics : CICLing 2012: Computational Linguistics and Intelligent Text Processing
ForlagSpringer
Publikationsdato2012
Sider478-489
ISBN (Trykt)978-3-642-28600-1
ISBN (Elektronisk)978-3-642-28601-8
DOI
StatusUdgivet - 2012
Udgivet eksterntJa
NavnLecture Notes in Computer Science
Vol/bind7182
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Predictive Text Entry for Agglutinative Languages Using Unsupervised Morphological Segmentation'. Sammen danner de et unikt fingeraftryk.

Citationsformater