Norm It! Lexical Normalization for Italian and Its Downstream Effects forDependency Parsing

Rob van der Goot, Alan Ramponi, Tommaso Caselli, Michele Cafagna, Lorenzo De Mattei

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review


Lexical normalization is the task of translating non-standard social media data to a standard form. Previous work has shown that this is beneficial for many downstream tasks in multiple languages. However, for Italian, there is no benchmark available for lexical normalization, despite the presence of many benchmarks for other tasks involving social media data. In this paper, we discuss the creation of a lexical normalization dataset for Italian. After two rounds of annotation, a Cohen’s kappa score of 78.64 is obtained. During this process, we also analyze the inter-annotator agreement for this task, which is only rarely done on datasets for lexical normalization,and when it is reported, the analysis usually remains shallow. Furthermore, we utilize this dataset to train a lexical normalization model and show that it can be used to improve dependency parsing of social media data. All annotated data and the code to reproduce the results are available at:
TitelProceedings of the Twelfth International Conference on Language Resources and Evaluation (LREC 2020)
ForlagEuropean Language Resources Association (ELRA)
Publikationsdatomaj 2020
StatusUdgivet - maj 2020
BegivenhedLREC 2020 - Marseille, Frankrig
Varighed: 17 maj 202022 maj 2020


KonferenceLREC 2020