Abstract
Random exploration is one of the main mechanisms through which reinforcement learning (RL) finds well-performing policies. However, it can lead to undesirable or catastrophic outcomes when learning online in safety-critical environments. In fact, safe learning is one of the major obstacles towards real-world agents that can learn during deployment. One way of ensuring that agents respect hard limitations is to explicitly configure boundaries in which they can operate. While this might work in some cases, we do not always have clear a-priori information which states and actions can lead dangerously close to hazardous states. Here, we present an approach where an additional policy can override the main policy and offer a safer alternative action. In our instinct-regulated RL (IR2L) approach, an “instinctual” network is trained to recognize undesirable situations, while guarding the learning policy against entering them. The instinct network is pre-trained on a single task where it is safe to make mistakes, and transferred to environments in which learning a new task safely is critical. We demonstrate IR2L in the OpenAI Safety gym domain, in which it receives a significantly lower number of safety violations during training than a baseline RL approach while reaching similar task performance.
Original language | English |
---|---|
Journal | Artificial Life Conference Proceedings |
Issue number | 2021 |
Number of pages | 10 |
ISSN | 2693-1508 |
Publication status | Published - 19 Jul 2021 |
Event | ALIFE 2021: The 2021 Conference on Artificial Life - Duration: 19 Jul 2021 → 23 Jul 2021 |
Conference
Conference | ALIFE 2021: The 2021 Conference on Artificial Life |
---|---|
Period | 19/07/2021 → 23/07/2021 |
Keywords
- safe reinforcement learning
- Reinforcement learning
- Life-long learning