Optimizing the mitigation of epidemic spreading through targeted adoption of contact tracing apps

Research output: Journal Article or Conference Article in JournalJournal articleResearchpeer-review

Abstract

The ongoing COVID-19 pandemic is the first epidemic in human history in which digital contact tracing has been deployed at a global scale. Tracking and quarantining all the contacts of individuals who test positive for a virus can help slow down an epidemic, but the impact of contact tracing is severely limited by the generally low adoption of contact-tracing apps in the population. We derive here an analytical expression for the effectiveness of contact-tracing app installation strategies in a susceptible-infected-recovered (SIR) model on a given contact graph. We propose a decentralized heuristic to improve the effectiveness of contact tracing under fixed adoption rates, which targets a set of individuals to install contact-tracing apps and can be easily implemented. Simulations on a large number of real-world contact networks confirm that this heuristic represents a feasible alternative to the current state of the art.
Original languageEnglish
JournalPhysical Review Research
Volume4
Issue number2
Pages (from-to)023092
ISSN2643-1564
DOIs
Publication statusPublished - 2 May 2022

Keywords

  • COVID-19 pandemic
  • Digital contact tracing
  • App adoption
  • SIR model
  • Decentralized heuristic

Fingerprint

Dive into the research topics of 'Optimizing the mitigation of epidemic spreading through targeted adoption of contact tracing apps'. Together they form a unique fingerprint.

Cite this