Modes of Convergence for Term Graph Rewriting

    Research output: Conference Article in Proceeding or Book/Report chapterBook chapterResearchpeer-review

    Abstract

    Term graph rewriting provides a simple mechanism to finitely represent restricted forms of infinitary term rewriting. The correspondence between infinitary term rewriting and term graph rewriting has been studied to some extent. However, this endeavour is impaired by the lack of an appropriate counterpart of infinitary rewriting on the side of term graphs. We aim to fill this gap by devising two modes of convergence based on a partial order resp. a metric on term graphs. The thus obtained structures generalise corresponding modes of convergence that are usually studied in infinitary term rewriting. We argue that this yields a common framework in which both term rewriting and term graph rewriting can be studied. In order to substantiate our claim, we compare convergence on term graphs and on terms. In particular, we show that the resulting infinitary calculi of term graph rewriting exhibit the same correspondence as we know it from term rewriting: Convergence via the partial order is a conservative extension of the metric convergence.
    Original languageUndefined/Unknown
    Title of host publication22nd International Conference on Rewriting Techniques and Applications (RTA'11)
    EditorsManfred Schmidt-Schau
    Number of pages16
    Volume10
    Place of PublicationDagstuhl, Germany
    PublisherSchloss Dagstuhl--Leibniz-Zentrum für Informatik
    Publication date1 May 2011
    Pages139-154
    ISBN (Print)978-3-939897-30-9
    DOIs
    Publication statusPublished - 1 May 2011

    Keywords

    • term graphs, partial order, metric, infinitary rewriting, graph rewriting

    Cite this