Abstract
In this paper we propose a log likelihood-ratio function of foreground and background models used in a particle filter to track the eye region in dark-bright pupil image sequences. This model fuses information from both dark and bright pupil images and their difference image into one model. Our enhanced tracker overcomes the issues of prior selection of static thresholds during the detection of feature observations in the bright-dark difference images. The auto-initialization process is performed using cascaded classifier trained using adaboost and adapted to IR eye images. Experiments show good performance in challenging sequences with test subjects showing large head movements and under significant light conditions.
Original language | English |
---|---|
Title of host publication | Improved Likelihood Function in Particle-based IR Eye Tracking |
Publication date | 2005 |
ISBN (Print) | 0-7695-2372-2 |
DOIs | |
Publication status | Published - 2005 |
Keywords
- Log likelihood-ratio function
- Particle filter
- Eye region tracking
- Dark-bright pupil image sequences
- Auto-initialization process