TY - JOUR
T1 - High-level prior-based loss functions for medical image segmentation: A survey
AU - El Jurdi, Rosana
AU - Petitjean, Caroline
AU - Honeine, Paul
AU - Cheplygina, Veronika
AU - Abdallah, Fahed
PY - 2021
Y1 - 2021
N2 - Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks. Despite early success, segmentation networks may still generate anatomically aberrant segmentations, with holes or inaccuracies near the object boundaries. To mitigate this effect, recent research works have focused on incorporating spatial information or prior knowledge to enforce anatomically plausible segmentation. If the integration of prior knowledge in image segmentation is not a new topic in classical optimization approaches, it is today an increasing trend in CNN based image segmentation, as shown by the growing literature on the topic. In this survey, we focus on high level prior, embedded at the loss function level. We categorize the articles according to the nature of the prior: the object shape, size, topology, and the inter-regions constraints. We highlight strengths and limitations of current approaches, discuss the challenge related to the design and the integration of prior-based losses, and the optimization strategies, and draw future research directions.
AB - Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks. Despite early success, segmentation networks may still generate anatomically aberrant segmentations, with holes or inaccuracies near the object boundaries. To mitigate this effect, recent research works have focused on incorporating spatial information or prior knowledge to enforce anatomically plausible segmentation. If the integration of prior knowledge in image segmentation is not a new topic in classical optimization approaches, it is today an increasing trend in CNN based image segmentation, as shown by the growing literature on the topic. In this survey, we focus on high level prior, embedded at the loss function level. We categorize the articles according to the nature of the prior: the object shape, size, topology, and the inter-regions constraints. We highlight strengths and limitations of current approaches, discuss the challenge related to the design and the integration of prior-based losses, and the optimization strategies, and draw future research directions.
KW - Deep Convolutional Neural Networks (CNNs)
KW - Medical Image Segmentation
KW - Anatomically Plausible Segmentation
KW - Prior Knowledge Integration
KW - Loss Function Design
KW - Deep Convolutional Neural Networks (CNNs)
KW - Medical Image Segmentation
KW - Anatomically Plausible Segmentation
KW - Prior Knowledge Integration
KW - Loss Function Design
U2 - 10.48550/arXiv.2011.08018
DO - 10.48550/arXiv.2011.08018
M3 - Journal article
SN - 1077-3142
VL - 210
SP - 103248
JO - Computer Vision and Image Understanding
JF - Computer Vision and Image Understanding
ER -