Abstract
Accurate translation requires documentlevel information, which is ignored by sentence-level machine translation. Recent work has demonstrated that document-level consistency can be improved with automatic post-editing (APE) using only targetlanguage (TL) information. We study an extended APE model that additionally integrates source context. A human evaluation of fluency and adequacy in EnglishRussian translation reveals that the model with access to source context significantly outperforms monolingual APE in terms of adequacy, an effect largely ignored by automatic evaluation metrics. Our results show that TL-only modelling increases fluency without improving adequacy, demonstrating the need for conditioning on source text for automatic post-editing. They also highlight blind spots in automatic methods for targeted evaluation and demonstrate the need for human assessment to evaluate document-level translation quality reliably.
Original language | English |
---|---|
Title of host publication | Proceedings of the 23rd Nordic Conference on Computational Linguistics (NODALIDA) |
Publisher | Linköping University Electronic Press |
Publication date | 2021 |
Pages | 326-335 |
Publication status | Published - 2021 |
Keywords
- document-level translation
- automatic post-editing
- source context integration
- translation adequacy
- human evaluation methods