TY - JOUR
T1 - Community Detection in Multiplex Networks
AU - Magnani, Matteo
AU - Hanteer, Obaida
AU - Interdonato, Roberto
AU - Rossi, Luca
AU - Tagarelli, Andrea
PY - 2021/5
Y1 - 2021/5
N2 - A multiplex network models different modes of interaction among same-type entities. In this article, we provide a taxonomy of community detection algorithms in multiplex networks. We characterize the different algorithms based on various properties and we discuss the type of communities detected by each method. We then provide an extensive experimental evaluation of the reviewed methods to answer three main questions: to what extent the evaluated methods are able to detect ground-truth communities, to what extent different methods produce similar community structures, and to what extent the evaluated methods are scalable. One goal of this survey is to help scholars and practitioners to choose the right methods for the data and the task at hand, while also emphasizing when such choice is problematic.
AB - A multiplex network models different modes of interaction among same-type entities. In this article, we provide a taxonomy of community detection algorithms in multiplex networks. We characterize the different algorithms based on various properties and we discuss the type of communities detected by each method. We then provide an extensive experimental evaluation of the reviewed methods to answer three main questions: to what extent the evaluated methods are able to detect ground-truth communities, to what extent different methods produce similar community structures, and to what extent the evaluated methods are scalable. One goal of this survey is to help scholars and practitioners to choose the right methods for the data and the task at hand, while also emphasizing when such choice is problematic.
U2 - 10.1145/3444688
DO - 10.1145/3444688
M3 - Journal article
SN - 0360-0300
VL - 54
JO - ACM Computing Surveys
JF - ACM Computing Surveys
IS - 3
M1 - 48
ER -