Co-evolution of Initial Configuration and Control in Evolutionary Robotics

Research output: Journal Article or Conference Article in JournalConference articleResearchpeer-review

Abstract

In evolutionary robotics, we evaluate individuals by placing them in an initial configuration in the environment, and then measure their fitness over a period of time. The choice of initial configuration has a direct impact on the fitness of an individual and thereby also the overarching evolutionary process. In this paper, we propose the concept of dynamic initial configurations, which is an initial configuration that is neither random nor fixed, but develops dynamically in response to the evolutionary process. As an example we have implemented a competitive co-evolutionary algorithm where initial configurations and controllers are evolved together to solve an obstacle avoidance task of a mobile robot. We show that, while a evolutionary approach taken from literature consistently fails, the co-evolutionary approach succeeds in 22 out of 25runs. This example demonstrates the benefit of dynamic initial configurations, but more work is needed to establish if the concept generalizes to more complex tasks, environments and morphologies.
Original languageEnglish
JournalALIFE : proceedings of the artificial life conference
ISSN2693-1508
Publication statusPublished - 2021

Keywords

  • Evolutionary Robotics
  • Dynamic Initial Configurations
  • Co-evolutionary Algorithms
  • Obstacle Avoidance
  • Fitness Evaluation

Fingerprint

Dive into the research topics of 'Co-evolution of Initial Configuration and Control in Evolutionary Robotics'. Together they form a unique fingerprint.

Cite this