Abstract
This paper introduces Rank-based Interactive Evolution (RIE) which is an alternative to interactive evolution driven by computational models of user preferences to generate personalized content. In RIE, the computational models are adapted to the preferences of users which, in turn, are used as fitness functions for the optimization of the generated content. The preference models are built via ranking-based preference learning, while the content is generated via evolutionary search. The proposed method is evaluated on the creation of strategy game maps, and its performance is tested using artificial agents. Results suggest that RIE is both faster and more robust than standard interactive evolution and outperforms other state-of-the-art interactive evolution approaches.
Original language | English |
---|---|
Title of host publication | Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG) |
Number of pages | 8 |
Publisher | IEEE Computer Society Press |
Publication date | 2013 |
Pages | 1-8 |
ISBN (Print) | 978-1-4673-5308-3 |
Publication status | Published - 2013 |
Keywords
- Rank-based Interactive Evolution
- User Preference Modeling
- Fitness Functions
- Evolutionary Search
- Strategy Game Maps