Wildfire: HTAP for Big Data

Ronald Barber, Vijayshankar Raman, Richard Sidle, Yuanyuan Tian, Pinar Tözün

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelEncyclopædiartikelForskningpeer review

Abstract

Emerging large-scale real-time analytic applications (real-time inventory/pricing /recommendations, fraud detection, risk analysis, IoT, etc.) require data management systems that can handle fast transactions (OLTP) and analytics (OLAP) simultaneously. Some of them even require analytical queries as part of a transaction. Efficient processing of transactional and analytical requests, however, leads to different design decisions in a system. This article presents the Wildfire system, which targets hybrid transactional and analytical processing (HTAP) for big data. Wildfire leverages Apache Spark to enable large-scale data processing with different types of complex analytical requests and columnar data processing to enable fast transactions and analytics concurrently.
OriginalsprogEngelsk
TitelEncyclopedia of Big Data Technologies
ForlagSpringer
Publikationsdato2019
ISBN (Elektronisk)978-3-319-63962-8
DOI
StatusUdgivet - 2019

Emneord

  • Hybrid Transactional and Analytical Processing (HTAP)
  • Big Data
  • Real-Time Analytics
  • Apache Spark
  • Columnar Data Processing

Fingeraftryk

Dyk ned i forskningsemnerne om 'Wildfire: HTAP for Big Data'. Sammen danner de et unikt fingeraftryk.

Citationsformater