TY - UNPB

T1 - Uncalibrated Non-Rigid Factorisation by Independent Subspace Analysis

AU - Brandt, Sami Sebastian

AU - Ackermann, Hanno

AU - Grasshof, Stella

PY - 2018/11/22

Y1 - 2018/11/22

N2 - We propose a general, prior-free approach for the uncalibrated non-rigid structure-from-motion problem for modelling and analysis of non-rigid objects such as human faces. The word general refers to an approach that recovers the non-rigid affine structure and motion from 2D point correspondences by assuming that (1) the non-rigid shapes are generated by a linear combination of rigid 3D basis shapes, (2) that the non-rigid shapes are affine in nature, i.e., they can be modelled as deviations from the mean, rigid shape, (3) and that the basis shapes are statistically independent. In contrast to the majority of existing works, no prior information is assumed for the structure and motion apart from the assumption the that underlying basis shapes are statistically independent. The independent 3D shape bases are recovered by independent subspace analysis (ISA). Likewise, in contrast to the most previous approaches, no calibration information is assumed for affine cameras; the reconstruction is solved up to a global affine ambiguity that makes our approach simple but efficient. In the experiments, we evaluated the method with several standard data sets including a real face expression data set of 7200 faces with 2D point correspondences and unknown 3D structure and motion for which we obtained promising results.

AB - We propose a general, prior-free approach for the uncalibrated non-rigid structure-from-motion problem for modelling and analysis of non-rigid objects such as human faces. The word general refers to an approach that recovers the non-rigid affine structure and motion from 2D point correspondences by assuming that (1) the non-rigid shapes are generated by a linear combination of rigid 3D basis shapes, (2) that the non-rigid shapes are affine in nature, i.e., they can be modelled as deviations from the mean, rigid shape, (3) and that the basis shapes are statistically independent. In contrast to the majority of existing works, no prior information is assumed for the structure and motion apart from the assumption the that underlying basis shapes are statistically independent. The independent 3D shape bases are recovered by independent subspace analysis (ISA). Likewise, in contrast to the most previous approaches, no calibration information is assumed for affine cameras; the reconstruction is solved up to a global affine ambiguity that makes our approach simple but efficient. In the experiments, we evaluated the method with several standard data sets including a real face expression data set of 7200 faces with 2D point correspondences and unknown 3D structure and motion for which we obtained promising results.

KW - non-rigid structure-from-motion

KW - computer vision

KW - non-rigid structure-from-motion

KW - computer vision

M3 - Working paper

BT - Uncalibrated Non-Rigid Factorisation by Independent Subspace Analysis

ER -