Truthful Monadic Abstractions

Taus Brock-Nannestad, Carsten Schürmann

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

In intuitionistic sequent calculi, detecting that a sequent is unprovable is often used to direct proof search. This is for instance seen in backward chaining, where an unprovable subgoal means that the proof search must backtrack. In undecidable logics, however, proof search may continue indefinitely, finding neither a proof nor a disproof of a given subgoal.

In this paper we characterize a family of truth-preserving abstractions from intuitionistic first-order logic to the monadic fragment of classical first-order logic. Because they are truthful, these abstractions can be used to disprove sequents in intuitionistic first-order logic.
OriginalsprogEngelsk
TitelIJCAR'12 Proceedings of the 6th international joint conference on Automated Reasoning
Vol/bind7364
ForlagSpringer
Publikationsdato2012
Sider97-110
ISBN (Trykt)978-3-642-31364-6
DOI
StatusUdgivet - 2012
NavnLecture Notes in Computer Science
Vol/bind7364
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Truthful Monadic Abstractions'. Sammen danner de et unikt fingeraftryk.

Citationsformater