Transition-Based Deep Input Linearization.

Ratish Puduppully, Yue Zhang, Manish Shrivastava

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

Traditional methods for deep NLG adopt pipeline approaches comprising stages such as constructing syntactic input, predicting function words, linearizing the syntactic input and generating the surface forms. Though easier to visualize, pipeline approaches suffer from error propagation. In addition, information available across modules cannot be leveraged by all modules. We construct a transition-based model to jointly perform linearization, function word prediction and morphological generation, which considerably improves upon the accuracy compared to a pipelined baseline system. On a standard deep input linearization shared task, our system achieves the best results reported so far.
OriginalsprogEngelsk
TitelProceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
ForlagAssociation for Computational Linguistics
Publikationsdato2017
Sider643-654
DOI
StatusUdgivet - 2017
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Transition-Based Deep Input Linearization.'. Sammen danner de et unikt fingeraftryk.

Citationsformater