TY - GEN
T1 - TARDIS: A Foundation of Time-Lock Puzzles in UC
AU - Baum, Carsten
AU - David, Bernardo
AU - Dowsley, Rafael
AU - Nielsen, Jesper Buus
AU - Oechsner, Sabine
PY - 2021
Y1 - 2021
N2 - Time-based primitives like time-lock puzzles (TLP) are finding widespread use in practical protocols, partially due to the surge of interest in the blockchain space where TLPs and related primitives are perceived to solve many problems. Unfortunately, the security claims are often shaky or plainly wrong since these primitives are used under composition. One reason is that TLPs are inherently not UC secure and time is tricky to model and use in the UC model. On the other hand, just specifying standalone notions of the intended task, left alone correctly using standalone notions like non-malleable TLPs only, might be hard or impossible for the given task. And even when possible a standalone secure primitive is harder to apply securely in practice afterwards as its behavior under composition is unclear. The ideal solution would be a model of TLPs in the UC framework to allow simple modular proofs. In this paper we provide a foundation for proving composable security of practical protocols using time-lock puzzles and related timed primitives in the UC model. We construct UC-secure TLPs based on random oracles and show that using random oracles is necessary. In order to prove security, we provide a simple and abstract way to reason about time in UC protocols. Finally, we demonstrate the usefulness of this foundation by constructing applications that are interesting in their own right, such as UC-secure two-party computation with output-independent abort.
AB - Time-based primitives like time-lock puzzles (TLP) are finding widespread use in practical protocols, partially due to the surge of interest in the blockchain space where TLPs and related primitives are perceived to solve many problems. Unfortunately, the security claims are often shaky or plainly wrong since these primitives are used under composition. One reason is that TLPs are inherently not UC secure and time is tricky to model and use in the UC model. On the other hand, just specifying standalone notions of the intended task, left alone correctly using standalone notions like non-malleable TLPs only, might be hard or impossible for the given task. And even when possible a standalone secure primitive is harder to apply securely in practice afterwards as its behavior under composition is unclear. The ideal solution would be a model of TLPs in the UC framework to allow simple modular proofs. In this paper we provide a foundation for proving composable security of practical protocols using time-lock puzzles and related timed primitives in the UC model. We construct UC-secure TLPs based on random oracles and show that using random oracles is necessary. In order to prove security, we provide a simple and abstract way to reason about time in UC protocols. Finally, we demonstrate the usefulness of this foundation by constructing applications that are interesting in their own right, such as UC-secure two-party computation with output-independent abort.
U2 - https://doi.org/10.1007/978-3-030-77883-5_15
DO - https://doi.org/10.1007/978-3-030-77883-5_15
M3 - Article in proceedings
SN - 978-3-030-77882-8
T3 - Lecture Notes in Computer Science
SP - 429
EP - 459
BT - Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part III.
PB - Springer
ER -