Symbolic Quantitative Information Flow for Probabilistic Programs

Philipp Schröer, Francesca Randone, Raúl Pardo, Andrzej Wa̧sowski

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelBidrag til bog/antologiForskningpeer review

Abstract

It is of utmost importance to ensure that modern data intensive systems do not leak sensitive information. In this paper, the authors, who met thanks to Joost-Pieter Katoen, discuss symbolic methods to compute information-theoretic measures of leakage: entropy, conditional entropy, Kullback-Leibler divergence, and mutual information. We build on two semantic frameworks for symbolic execution of probabilistic programs. For discrete programs, we use weakest pre-expectation calculus to compute exact symbolic expressions for the leakage measures. Using Second Order Gaussian Approximation (SOGA), we handle programs that combine discrete and continuous distributions. However, in the SOGA setting, we approximate the exact semantics using Gaussian mixtures and compute bounds for the measures. We demonstrate the use of our methods in two widely used mechanisms to ensure differential privacy: randomized response and the Gaussian mechanism.
OriginalsprogEngelsk
TitelSymbolic Quantitative Information Flow for Probabilistic Programs
Vol/bind15260
ForlagSpringer Nature Switzerland
Publikationsdato2024
Sider128-154
DOI
StatusUdgivet - 2024
BegivenhedColloquium on Principles of Verification: Cycling the Probabilistic Landscape: Essays Dedicated to Joost-Pieter Katoen on the Occasion of His 60th Birthday - University of Aachen, Aachen, Tyskland
Varighed: 7 nov. 2024 → …

Andet

AndetColloquium on Principles of Verification: Cycling the Probabilistic Landscape
LokationUniversity of Aachen
Land/OmrådeTyskland
ByAachen
Periode07/11/2024 → …

Fingeraftryk

Dyk ned i forskningsemnerne om 'Symbolic Quantitative Information Flow for Probabilistic Programs'. Sammen danner de et unikt fingeraftryk.

Citationsformater