Steiner trees for fixed orientation metrics

Marcus Brazil, Martin Zachariasen

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to σ ≥ 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation metric generalises to the fixed orientation metric. Finally, we give an O(σ n) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with n terminal leaves.
OriginalsprogEngelsk
TidsskriftJournal of Global Optimization
Vol/bind43
Udgave nummer1
Sider (fra-til)141-169
ISSN0925-5001
StatusUdgivet - 2009
Udgivet eksterntJa

Emneord

  • Steiner tree problem
  • Normed plane
  • Fixed orientation metric
  • Canonical form
  • Fixed topology

Fingeraftryk

Dyk ned i forskningsemnerne om 'Steiner trees for fixed orientation metrics'. Sammen danner de et unikt fingeraftryk.

Citationsformater