Abstract
We give a model of dependent type theory with one univalent universe and propositional truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we show that countable choice cannot be proved in dependent type theory with one univalent universe and propositional truncation.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Annual Symposium on Logic in Computer Science |
Antal sider | 12 |
ISSN | 1043-6871 |
DOI | |
Status | Udgivet - 23 jun. 2017 |
Begivenhed | Thirty-Second Annual ACM/IEEE Symposium on Logic in Computer Science - Reykjavik, Island Varighed: 20 jun. 2017 → 23 aug. 2017 Konferencens nummer: 32 |
Konference
Konference | Thirty-Second Annual ACM/IEEE Symposium on Logic in Computer Science |
---|---|
Nummer | 32 |
Land/Område | Island |
By | Reykjavik |
Periode | 20/06/2017 → 23/08/2017 |