Stack semantics of type theory

Thierry Coquand, Bassel Mannaa, Fabian Ruch

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftKonferenceartikelForskningpeer review

Abstract

We give a model of dependent type theory with one univalent universe and propositional truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we show that countable choice cannot be proved in dependent type theory with one univalent universe and propositional truncation.
OriginalsprogEngelsk
TidsskriftAnnual Symposium on Logic in Computer Science
Antal sider12
ISSN1043-6871
DOI
StatusUdgivet - 23 jun. 2017
BegivenhedThirty-Second Annual ACM/IEEE Symposium on Logic in Computer Science - Reykjavik, Island
Varighed: 20 jun. 201723 aug. 2017
Konferencens nummer: 32

Konference

KonferenceThirty-Second Annual ACM/IEEE Symposium on Logic in Computer Science
Nummer32
Land/OmrådeIsland
ByReykjavik
Periode20/06/201723/08/2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Stack semantics of type theory'. Sammen danner de et unikt fingeraftryk.

Citationsformater