Shifting Niches for Community Structure Detection

Corrado Grappiolo, Julian Togelius, Georgios N. Yannakakis

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

We present a new evolutionary algorithm for com- munity structure detection in both undirected and unweighted (sparse) graphs and fully connected weighted digraphs (complete networks). Previous investigations have found that, although evolutionary computation can identify community structure in complete networks, this approach seems to scale badly due to solutions with the wrong number of communities dominating the population. The new algorithm is based on a niching model, where separate compartments of the population contain candidate solutions with different numbers of communities. We experimentally compare the new algorithm to the well-known algorithms of Pizzuti and Tasgin, and find that we outperform those algorithms for sparse graphs under some conditions, and drastically outperform them on complete networks under all tested conditions.
OriginalsprogEngelsk
TitelEvolutionary Computation (CEC), 2013 IEEE Congress on
Antal sider8
ForlagIEEE Computer Society Press
Publikationsdato21 jun. 2013
Sider111-118
ISBN (Trykt)978-1-4799-0453-2
StatusUdgivet - 21 jun. 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Shifting Niches for Community Structure Detection'. Sammen danner de et unikt fingeraftryk.

Citationsformater