PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel, Maria Sinziana Astefanoaei, Oliver Kiss, Ferenc Béres, Guzmán López, Nicolas Collignon, Rik Sarkar

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review


We present PyTorch Geometric Temporal a deep learning framework combining state-of-the-art machine learning algorithms for neural spatiotemporal signal processing. The main goal of the library is to make temporal geometric deep learning available for researchers and machine learning practitioners in a unified easy-to-use framework. PyTorch Geometric Temporal was created with foundations on existing libraries in the PyTorch eco-system, streamlined neural network layer definitions, temporal snapshot generators for batching, and integrated benchmark datasets. These features are illustrated with a tutorial-like case study. Experiments demonstrate the predictive performance of the models implemented in the library on real world problems such as epidemiological forecasting, ridehail demand prediction and web-traffic management. Our sensitivity analysis of runtime shows that the framework can potentially operate on web-scale datasets with rich temporal features and spatial structure.
TitelCIKM '21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021
RedaktørerGianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, Hanghang Tong
Antal sider10
ForlagAssociation for Computing Machinery
StatusUdgivet - 2021


Dyk ned i forskningsemnerne om 'PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models'. Sammen danner de et unikt fingeraftryk.