Procedural Content Generation of Puzzle Games using Conditional Generative Adversarial Networks

Andreas Hald, Jens Stuckermann Hansen, Jeppe Theiss Kristensen, Paolo Burelli

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

In this article, we present an experimental approach to using parameterized Generative Adversarial Networks (GANs) to produce levels for the puzzle game Lily’s Garden1. We extract two condition-vectors from the real levels in an effort to control the details of the GAN’s outputs. While the GANs performs well in approximating the first condition (map-shape), they struggle to approximate the second condition (piece distribution). We hypothesize that this might be improved by trying out alternative architectures for both the Generator and Discriminator of the GANs.
OriginalsprogEngelsk
TitelFDG '20: International Conference on the Foundations of Digital Games
ForlagAssociation for Computing Machinery
Publikationsdato2020
Artikelnummer99
ISBN (Elektronisk)9781450388078
DOI
StatusUdgivet - 2020
BegivenhedFDG 2020: Foundations of Digitale Games - Malta, Malta
Varighed: 16 sep. 202018 sep. 2020
Konferencens nummer: 2020
http://fdg2020.org/
http://fdg2020.org

Konference

KonferenceFDG 2020: Foundations of Digitale Games
Nummer2020
LokationMalta
Land/OmrådeMalta
Periode16/09/202018/09/2020
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Procedural Content Generation of Puzzle Games using Conditional Generative Adversarial Networks'. Sammen danner de et unikt fingeraftryk.

Citationsformater