Optimizing the mitigation of epidemic spreading through targeted adoption of contact tracing apps

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

The ongoing COVID-19 pandemic is the first epidemic in human history in which digital contact tracing has been deployed at a global scale. Tracking and quarantining all the contacts of individuals who test positive for a virus can help slow down an epidemic, but the impact of contact tracing is severely limited by the generally low adoption of contact-tracing apps in the population. We derive here an analytical expression for the effectiveness of contact-tracing app installation strategies in a susceptible-infected-recovered (SIR) model on a given contact graph. We propose a decentralized heuristic to improve the effectiveness of contact tracing under fixed adoption rates, which targets a set of individuals to install contact-tracing apps and can be easily implemented. Simulations on a large number of real-world contact networks confirm that this heuristic represents a feasible alternative to the current state of the art.
OriginalsprogEngelsk
TidsskriftPhysical Review Research
Vol/bind4
Udgave nummer2
Sider (fra-til)023092
ISSN2643-1564
DOI
StatusUdgivet - 2 maj 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Optimizing the mitigation of epidemic spreading through targeted adoption of contact tracing apps'. Sammen danner de et unikt fingeraftryk.

Citationsformater