Abstract
Determinisation and completion of finite tree automata are important operations with applications in program analysis and verification. However, the complexity of the classical procedures for determinisation and completion is high. They are not practical procedures for manipulating tree automata beyond very small ones. In this paper we develop an algorithm for determinisation and completion of finite tree automata, whose worst-case complexity remains unchanged, but which performs far better than existing algorithms in practice. The critical aspect of the algorithm is that the transitions of the determinised (and possibly completed) automaton are generated in a potentially very compact form called product form, which can reduce the size of the representation dramatically. Furthermore, the representation can often be used directly when manipulating the determinised automaton. The paper contains an experimental evaluation of the algorithm on a large set of tree automata examples.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Logical and Algebraic Methods in Programming |
Vol/bind | 95 |
Sider (fra-til) | 1-16 |
ISSN | 2352-2208 |
DOI | |
Status | Udgivet - jan. 2018 |
Emneord
- Determinisation
- Finite Tree Automata
- Algorithm Optimization
- Product Form Transition
- Program Analysis