Online evolution for multi-action adversarial games

Niels Orsleff Justesen, Tobias Mahlmann, Julian Togelius

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

We present Online Evolution, a novel method for playing turn-based multi-action adversarial games. Such games, which include most strategy games, have extremely high branching factors due to each turn having multiple actions. In Online Evolution, an evolutionary algorithm is used to evolve the combination of atomic actions that make up a single move, with a state evaluation function used for fitness. We implement Online Evolution for the turn-based multi-action game Hero Academy and compare it with a standard Monte Carlo Tree Search implementation as well as two types of greedy algorithms. Online Evolution is shown to outperform these methods by a large margin. This shows that evolutionary planning on the level of a single move can be very effective for this sort of problems.
OriginalsprogEngelsk
TitelApplications of Evolutionary Computation : 19th European Conference, EvoApplications 2016 Porto, Portugal, March 30 – April 1, 2016 Proceedings, Part I
ForlagSpringer Publishing Company
Publikationsdato15 mar. 2016
Sider590-603
ISBN (Elektronisk)978-3-319-31204-0
DOI
StatusUdgivet - 15 mar. 2016
NavnLecture Notes in Computer Science
Vol/bind9597
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Online evolution for multi-action adversarial games'. Sammen danner de et unikt fingeraftryk.

Citationsformater