On Language Spaces, Scales and Cross-Lingual Transfer of UD Parsers

Tanja Samardžić, Ximena Gutierrez-Vasques, Rob van der Goot, Max Müller-Eberstein, Olga Pelloni, Barbara Plank

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

Cross-lingual transfer of parsing models has been shown to work well for several closely-related languages, but predicting the success in other cases remains hard. Our study is a comprehensive analysis of the impact of linguistic distance on the transfer of UD parsers. As an alternative to syntactic typological distances extracted from URIEL, we propose three text-based feature spaces and show that they can be more precise predictors, especially on a more local scale, when only shorter distances are taken into account. Our analyses also reveal that the good coverage in typological databases is not among the factors that explain good transfer.
OriginalsprogEngelsk
TitelProceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)
Antal sider16
Vol/bind26
ForlagAssociation for Computational Linguistics
Publikationsdatodec. 2023
Sider266-281
DOI
StatusUdgivet - dec. 2023
BegivenhedThe SIGNLL Conference on Computational Natural Language Learning - Abu Dhabi, United Arab Emirates
Varighed: 7 dec. 20228 dec. 2022
Konferencens nummer: 26
https://conll.org/

Konference

KonferenceThe SIGNLL Conference on Computational Natural Language Learning
Nummer26
Land/OmrådeUnited Arab Emirates
ByAbu Dhabi
Periode07/12/202208/12/2022
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'On Language Spaces, Scales and Cross-Lingual Transfer of UD Parsers'. Sammen danner de et unikt fingeraftryk.

Citationsformater