Neuroevolution in Games: State of the Art and Open Challenges

Sebastian Risi, Julian Togelius

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

This paper surveys research on applying neuroevolution
(NE) to games. In neuroevolution, artificial neural networks
are trained through evolutionary algorithms, taking inspiration
from the way biological brains evolved. We analyse the
application of NE in games along five different axes, which are the
role NE is chosen to play in a game, the different types of neural
networks used, the way these networks are evolved, how the
fitness is determined and what type of input the network receives.
The article also highlights important open research challenges in
the field.
OriginalsprogEngelsk
TidsskriftI E E E Transactions on Computational Intelligence and A I in Games
Vol/bind9
Udgave nummer1
Sider (fra-til)25-41
Antal sider17
ISSN1943-068X
DOI
StatusUdgivet - 2015

Emneord

  • Evolutionary algorithms
  • neural networks
  • neuroevolution

Fingeraftryk

Dyk ned i forskningsemnerne om 'Neuroevolution in Games: State of the Art and Open Challenges'. Sammen danner de et unikt fingeraftryk.

Citationsformater