Neuroevolution

Joel Lehman, Risto Miikkulainen

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

Neuroevolution is a machine learning technique that applies evolutionary algorithms to construct artificial neural networks, taking inspiration from the evolution of biological nervous systems in nature. Compared to other neural network learning methods, neuroevolution is highly general; it allows learning without explicit targets, with only sparse feedback, and with arbitrary neural models and network structures. Neuroevolution is an effective approach to solving reinforcement learning problems, and is most commonly applied in evolutionary robotics and artificial life.
OriginalsprogEngelsk
TidsskriftScholarpedia
Vol/bind8
Udgave nummer6
Sider (fra-til)30977
Antal sider1
ISSN1941-6016
DOI
StatusUdgivet - 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Neuroevolution'. Sammen danner de et unikt fingeraftryk.

Citationsformater