Modal dependent type theory and dependent right adjoints

Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts, Bas Spitters

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

In recent years, we have seen several new models of dependent type theory extended with some form of modal necessity operator, including nominal type theory, guarded and clocked type theory and spatial and cohesive type theory. In this paper, we study modal dependent type theory: dependent type theory with an operator satisfying (a dependent version of) the K axiom of modal logic. We investigate both semantics and syntax. For the semantics, we introduce categories with families with a dependent right adjoint (CwDRA) and show that the examples above can be presented as such. Indeed, we show that any category with finite limits and an adjunction of endofunctors give rise to a CwDRA via the local universe construction. For the syntax, we introduce a dependently typed extension of Fitch-style modal λ-calculus, show that it can be interpreted in any CwDRA, and build a term model. We extend the syntax and semantics with universes.
OriginalsprogEngelsk
TidsskriftMathematical Structures in Computer Science
Antal sider21
ISSN0960-1295
DOI
StatusUdgivet - dec. 2019

Emneord

  • Dependent type theory
  • modal logic
  • category theory

Fingeraftryk

Dyk ned i forskningsemnerne om 'Modal dependent type theory and dependent right adjoints'. Sammen danner de et unikt fingeraftryk.

Citationsformater