Making Trouble: Techniques for Queering Data and AI Systems

Anh-Ton Tran, Annabel Rothschild, Kay Kender, Ekat Osipova, Brian Kinnee, Jordan Taylor, Louie Søs Meyer, Oliver L. Haimson, Ann Light, Carl DiSalvo

    Publikation: Artikel i tidsskrift og konference artikel i tidsskriftKonferenceartikelForskningpeer review

    Abstract

    This one day workshop will explore queering as a design technique for troubling data and AI systems, ranging from quotidian personal data to recent Generative AI tools. By surfacing numerous instances of queering data or AI, we will come together to develop an archive of techniques for queering or artful subversion. From this archive, participants will select a technique and develop a speculative prototype or artifact via critical making. In doing so, we resist techno-determinism and conventional narratives of AI harms and benefits by tracing queer possibilities outside these categories.
    OriginalsprogEngelsk
    TidsskriftProceedings of the 2024 ACM Designing Interactive Systems Conference
    Sider (fra-til) 381-384
    Antal sider4
    DOI
    StatusUdgivet - 1 jul. 2024

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Making Trouble: Techniques for Queering Data and AI Systems'. Sammen danner de et unikt fingeraftryk.

    Citationsformater